SECOND EDITION

24-Hour Trainer

Complete learning package with online video tutorials

Rod Stephens

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

C# 24-HOUR TRAINER

INTRODUCTION i i i i i i i i e XXVii

» SECTION | THE VISUAL STUDIO IDE AND CONTROLS

LESSON 1
LESSON 2
LESSON 3
LESSON 4
LESSON 5
LESSON 6
LESSON 7
LESSON 8
LESSON 9
LESSON 10

Getting Started with the Visual Studio IDE 3
Creating Controls. 21
Making Controls Arrange Themselves 43
Handling Events. i 57
MakingMenus e 73
Making Tool Strips and Status Strips. 89
Using RichTextBoxes 103
Using Standard Dialogso 115
Creating and Displaying New Forms 133
Building Custom Dialogs 147

» SECTION Il VARIABLES AND CALCULATIONS

LESSON 11
LESSON 12
LESSON 13
LESSON 14
LESSON 15
LESSON 16
LESSON 17

Using Variables and Performing Calculations. 161
DebuggingCodet 187
Understanding Scope il 199
Working with Stringso 21
Working with Datesand Times 225
Using Arrays and Collections.o 233
Using Enumerations and Structures 249

» SECTION Il PROGRAM STATEMENTS

LESSON 18
LESSON 19
LESSON 20
LESSON 21
LESSON 22

Making Choices i 263
Repeating Program Steps oo 275
Reusing Code with Methods 289
Handling Errors 301
PreventingBugs. i i i 313

www.it-ebooks.info

http://www.it-ebooks.info/

» SECTION IV CLASSES

LESSON 23 Defining Classes.o vttt 325
LESSON 24 Initializing Objectsttt 347
LESSON 25 Fine-Tuning Classesouuiininii i 361
LESSON 26 Overloading Operators..............c.iiiiiiiiiinn... 371
LESSON 27 UsinglInterfaces......... ..ottt 383
LESSON 28 Making Generic Classes. vviinin i, 397

» SECTION V SYSTEM INTERACTIONST
LESSON 29 UsingFileso i e 409
LESSON 30 Printing.cooii e e et e 421

» SECTION VI WINDOWS APPS
LESSON 31 Windows Store AppS. . ..o vtiii it 439
LESSON 32 Windows Phone Appso 455

» SECTION VII SPECIALIZED TOPICS

LESSON 33 Localizing Programs.ttt 467
LESSON 34 Programming Databases, Part1.......... 479
LESSON 35 Programming Databases, Part2............ 493
LESSON 36 LINQtoObjects.ocvtiii it 499
LESSON 37 LINQtoSQL. e 511
AFTERWORD What's Next?t e 527
INDEX .« e e e e e e e 529

www.it-ebooks.info

http://www.it-ebooks.info/

C# 24-Hour Trainer

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

C# 24-Hour Trainer

Second Edition

Rod Stephens

AN

WFrox

A Wiley Brand

www.it-ebooks.info

http://www.it-ebooks.info/

C# 24-Hour Trainer, Second Edition

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-06566-1
ISBN: 978-1-119-06564-4 (ebk)
ISBN: 978-1-119-06569-2 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional ser-
vices. If professional assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred
to in this work as a citation and/or a potential source of further information does not mean that the author or the pub-
lisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport .wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2015953613

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

www.it-ebooks.info

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
http://www.it-ebooks.info/

ABOUT THE AUTHOR

ROD STEPHENS started out as a mathematician, but while studying at MIT, he discovered the joys
of programming and has been programming professionally ever since. During his career, he has
worked on an eclectic assortment of applications in such fields as telephone switching, billing, repair
dispatching, tax processing, wastewater treatment, concert ticket sales, cartography, optometry, and
training for professional football players.

Rod has been a Microsoft Visual Basic Most Valuable Professional (MVP) for more than 10 years.
He has written 30 books that have been translated into languages from all over the world and more
than 250 magazine articles covering C#, Visual Basic, Visual Basic for Applications, Delphi, and
Java he has helped create. He’s even published a couple of video training courses in addition to the
videos that go along with this book.

Rod’s popular C# Helper website www.csharphelper.com contains thousands of example programs
that demonstrate tips, tricks, and useful techniques for C# programmers. His VB Helper website
www . vb-helper.com provides similar material for Visual Basic developers.

ABOUT THE TECHNICAL EDITOR

JOHN MUELLER is a freelance author and technical editor. He has writing in his blood, having
produced 98 books and more than 600 articles to date. The topics range from networking to home
security and from database management to heads-down programming. Some of his current books
include a book on Python for beginners, Python for data scientists, and MATLAB. He has also
written a variety of books on both C# and C++. His technical editing skills have helped more than
65 authors refine the content of their manuscripts. John has provided technical editing services to
both Data Based Advisor and Coast Compute magazines. Be sure to read John’s blog at http://
blog.johnmuellerbooks.com/.

www.it-ebooks.info

http://www.csharphelper.com
http://www.vb-helper.com
http://blog.johnmuellerbooks.com
http://blog.johnmuellerbooks.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CREDITS

PROJECT EDITOR
Adaobi Obi Tulton

TECHNICAL EDITOR
John Mueller

PRODUCTION EDITOR
Joel Jones

COPY EDITOR
Kimberly A. Cofer

MANAGER OF CONTENT DEVELOPMENT &
ASSEMBLY
Mary Beth Wakefield

PRODUCTION MANAGER
Kathleen Wisor

MARKETING DIRECTOR
David Mayhew

MARKETING MANAGER
Carrie Sherrill

www.it-ebooks.info

PROFESSIONAL TECHNOLOGY & STRATEGY
DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nicole Hirschman

INDEXER
Nancy Guenther

COVER DESIGNER
Wiley

COVER IMAGE
© Antonio Guillem/Shutterstock

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

THANKS TO KENYON BROWN, Bob Elliott, Adaobi Obi Tulton, Kim Cofer, Joel Jones, and all of the
others who worked so hard to make this book possible.

Thanks also to John Mueller for giving me the benefit of his advice and extensive technical
expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

INTRODUCTION XXVii
LESSON 1: GETTING STARTED WITH THE VISUAL STUDIO IDE 3
Installing C# 4
Configuring the IDE 6
Building Your First Program 7
Copying Projects 12
Exploring the IDE 13
Try It 16
Lesson Requirements 17
Hints 17
Step-by-Step 17
Exercises 20
LESSON 2: CREATING CONTROLS 21
Understanding Controls 21
Properties 22
Methods 22
Events 22
Creating Controls 23
Setting Control Properties 24
Control Names 26
Popular Properties 27
Modifying Properties in Code 28
Arranging Controls 30
Snap Lines 30
Arrow Keys 31
The Format Menu and Layout Toolbar 31
WPF Controls 32
Try It 32
Lesson Requirements 33
Hints 33
Step-by-Step 33
Exercises 37

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Xiv

www.it-ebooks.info

LESSON 3: MAKING CONTROLS ARRANGE THEMSELVES 43
Restricting Form Size 44
Using Anchor Properties 44
Using Dock Properties 47
Layout Containers 48

Windows Forms Controls 48
WPF Controls 49
Try It S0
Lesson Requirements 51
Hints 51
Step-by-Step 52
Exercises 52

LESSON 4: HANDLING EVENTS 57
Making Event Handlers 57
Using Event Parameters 59

Setting Scrollbar Properties 60
Tracking Mouse Movement 61
Moving the Mouse Picture 61
Removing Event Handlers 62
Adding and Removing Event Handlers in Code 62
Useful Events 63
Try It 65
Lesson Requirements 65
Hints 65
Step-by-Step 66
Exercises 66

LESSON 5: MAKING MENUS 73
Creating Menus 73
Setting Menu Properties 75
Handling Menu Events 76
Creating Context Menus 77
WPF Menus 78
WPF Context Menus 79
WPF Commanding 79
Try It 80

Lesson Requirements 80
Hints 81
Step-by-Step 81
Exercises 83

http://www.it-ebooks.info/

CONTENTS

LESSON 6: MAKING TOOL STRIPS AND

STATUS STRIPS 89
Using Tool Strips 89
Using Tool Strip Containers 91
Using Status Strips 92
Try It 93

Lesson Requirements 93
Hints 95
Step-by-Step 95
Exercises 98

LESSON 7: USING RICHTEXTBOXES 103
Using RichTextBox Properties 103
Giving the User Control 105
Using RichTextBox Methods 106
Using WPF Commands 108
Try It 110

Lesson Requirements 110
Hints 110
Step-by-Step 110
Exercises 112

LESSON 8: USING STANDARD DIALOGS 115

Using Dialogs in General 116
Adding the Dialog to the Form 117
Initializing the Dialog 117
Displaying the Dialog and Checking the Return Result 118
Processing the Results 119
Putting It All Together 120

Using Dialog Properties 120

Using File Filters 123

Using Dialogs in WPF 124

Try It 126
Lesson Requirements 126
Hints 127
Step-by-Step 127

Exercises 130

www.it-ebooks.info

XV

http://www.it-ebooks.info/

CONTENTS

LESSON 9: CREATING AND DISPLAYING NEW FORMS 133
Adding New Forms 133
Understanding Classes and Instances 134
Displaying Forms 135
Controlling Remote Forms 138
Try It 140

Lesson Requirements 141
Hints 141
Step-by-Step 141
Exercises 143

LESSON 10: BUILDING CUSTOM DIALOGS 147
Making Custom Dialogs 147
Setting the Dialog Result 148
Using Custom Dialogs 149
Try It 150

Lesson Requirements 150
Hints 151
Step-by-Step 151
Exercises 153

LESSON 11: USING VARIABLES AND PERFORMING

CALCULATIONS 161
What Are Variables? 161
Data Types 161

Float, Double, and Decimal Data Types 163
Declaring Variables 164
Literal Values 165
Type Conversions 167

Casting 168

Converting 169

Parsing 169
Performing Calculations 170

Operands and Operators 171

Promotion 171

Operator Summary 171

Precedence 177
Constants 179

XVi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Try It 179
Lesson Requirements 180
Hints 180
Step-by-Step 181

Exercises 182

LESSON 12: DEBUGGING CODE 187

Deferred Techniques 187

Debugging Then and Now 188

Setting Breakpoints 188

Reading Variables 189

Stepping through Code 190

Using Watches 191

Using the Immediate Window 192

Try It 193
Lesson Requirements 193
Step-by-Step 194

Exercises 196

LESSON 13: UNDERSTANDING SCOPE 199

Scope within a Class 199
Same Named Variables 200
Method Variable Lifetime 201
Block Scope 202

Accessibility 203

Restricting Scope and Accessibility 204

Try It 204
Lesson Requirements 205
Hints 205
Step-by-Step 205

Exercises 208

LESSON 14: WORKING WITH STRINGS 211

String Methods 21

Format and ToString 213
Standard Numeric Formats 215
Custom Numeric Formats 217
Standard Date and Time Formats 218
Custom Date and Time Formats 219

Try It 222

www.it-ebooks.info

Xvii

http://www.it-ebooks.info/

CONTENTS

Lesson Requirements 222
Hints 222
Step-by-Step 222
Exercises 223
LESSON 15: WORKING WITH DATES AND TIMES 225
Creating DateTime Variables 225
Local and UTC Time 226
DateTime Properties and Methods 226
TimeSpans 228
Try It 229
Lesson Requirements 230
Hints 230
Step-by-Step 230
Exercises 231
LESSON 16: USING ARRAYS AND COLLECTIONS 233
Arrays 233
Creating Arrays 234

A Fibonacci Example 235
Multi-Dimensional Arrays 236
Array Properties and Methods 237
Collection Classes 238
Generic Classes 239
Lists 240
SortedLists 240
Dictionaries 242
Queues 242
Stacks 242
Try It 243
Lesson Requirements 243
Step-by-Step 244
Exercises 245
LESSON 17: USING ENUMERATIONS AND STRUCTURES 249
Enumerations 249
Structures 250
Structures versus Classes 251
Reference Types 251
Value Types 252
Other Differences 252

xviii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Where to Put Structures 254
Try It 254
Lesson Requirements 255
Step-by-Step 255
Exercises 257
LESSON 18: MAKING CHOICES 263
Decision Statements 263
if Statements 264
if-else Statements 265
Cascading if Statements 265
Nested if Statements 266
switch Statements 267
Try It 269
Lesson Requirements 269
Hints 269
Step-by-Step 269
Exercises 270
LESSON 19: REPEATING PROGRAM STEPS 275
for Loops 275
foreach Loops 277
while Loops 278
do Loops 279
break and continue 281
Try It 282
Lesson Requirements 282
Hints 282
Step-by-Step 283
Exercises 284
LESSON 20: REUSING CODE WITH METHODS 289
Method Advantages 290
Method Syntax 291
Using ref Parameters 294
Using out Parameters 295
Try It 296

XiX

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Lesson Requirements 296
Hints 296
Step-by-Step 296
Exercises 298
LESSON 21: HANDLING ERRORS 301
Errors and Exceptions 301
try-catch Blocks 302
TryParse 304
Throwing Exceptions 305
Try It 307
Lesson Requirements 307
Hints 308
Step-by-Step 308
Exercises 309
LESSON 22: PREVENTING BUGS 313
Input Assertions 313
Other Assertions 316
Try It 316
Lesson Requirements 317
Hints 317
Step-by-Step 317
Exercises 319
LESSON 23: DEFINING CLASSES 325
What Is a Class? 325
Class Benefits 326
Making a Class 327
Properties 327
Try It 330
Lesson Requirements 330
Step-by-Step 330
Methods 331
Events 332
Delegates 332
Event Handler Delegates 333
Try It 336

XX

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Lesson Requirements 336
Hints 337
Step-by-Step 337
Inheritance 339
Polymorphism 340
Try It 341
Lesson Requirements 341
Hints 341
Step-by-Step 342
Exercises 344
LESSON 24: INITIALIZING OBJECTS 347
Initializing Objects 347
Constructors 348
Parameterless Constructors 349
Parameterized Constructors 349
Destructors 350
Invoking Other Constructors 352
Try It 354
Lesson Requirements 354
Hints 355
Step-by-Step 355
Exercises 358
LESSON 25: FINE-TUNING CLASSES 361
Overloading Methods 361
Overriding Methods 362
Overriding ToString 363
Try It 365
Lesson Requirements 365
Hints 365
Step-by-Step 366
Exercises 367
LESSON 26: OVERLOADING OPERATORS 371
Overloadable Operators 371
Unary Operators 372
Binary Operators 373
Comparison Operators 374
Conversion Operators 374

www.it-ebooks.info

XXi

http://www.it-ebooks.info/

CONTENTS

Try It 375
Lesson Requirements 375
Hints 376
Step-by-Step 376

Exercises 379

LESSON 27: USING INTERFACES 383

Interface Advantages 383
Multiple Inheritance 383
Code Generalization 384

Implementing Interfaces 385

Defining Interfaces 388

Try It 389
Lesson Requirements 389
Hints 390
Step-by-Step 390

Exercises 392

LESSON 28: MAKING GENERIC CLASSES 397

Defining Generic Classes 397

Using Generic Constraints 399

Making Generic Methods 400

Try It 401
Lesson Requirements 401
Hints 402
Step-by-Step 402

Exercises 403

LESSON 29: USING FILES 409

Filesystem Classes 409
Drivelnfo 410
Directorylnfo 410
Directory 412
FileInfo 412
File 413

Path 414

Streams 415
Writing Files 416
Reading Files 417

XXii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Try It 418
Lesson Requirements 418
Hints 418
Step-by-Step 418

Exercises 419

LESSON 30: PRINTING 421

Windows Forms Printing 421
Getting Started 422
Starting a Printout 422
Drawing Shapes 423
Drawing Text 424

WPF Printing 425

Printing Visuals 426

Try It 431
Lesson Requirements 431
Hints 431
Step-by-Step 432

Exercises 434

LESSON 31: WINDOWS STORE APPS 439

Navigation Style 439

App Styles 440

App Images 440

Deployment 444
Deploying Locally 444
Deploying to the Windows Store 445

WPF Techniques 446
Using Styles 446
Setting Dependency Properties 447

Try It 448
Lesson Requirements 448
Hints 449
Step-by-Step 449

Exercises 452

www.it-ebooks.info

xXiii

http://www.it-ebooks.info/

CONTENTS

LESSON 32: WINDOWS PHONE APPS 455
Building Apps 455
Navigation Style 458
App Styles 458
App Images 459
Try It 461

Lesson Requirements 461
Step-by-Step 462
Exercises 462

LESSON 33: LOCALIZING PROGRAMS 467
Understanding Localization 468
Building Localized Interfaces 469
Testing Localizations 469
Processing Locale-Specific Values 470
Try It 472

Lesson Requirements 472
Hints 472
Step-by-Step 472
Exercises 474

LESSON 34: PROGRAMMING DATABASES, PART 1 479
Connecting to a Database 479
Displaying Data in a Grid 483
Displaying Data One Record at a Time 486
Try It 488

Lesson Requirements 488
Hints 488
Step-by-Step 488
Exercises 489

LESSON 35: PROGRAMMING DATABASES, PART 2 493
Searching 493
Filtering 494
Sorting 495
Try It 495

Lesson Requirements 495

XXiV

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Hints 496
Step-by-Step 496
Exercises 496
LESSON 36: LINQ TO OBJECTS 499
LINQ Basics 499
where Clauses 501
order by Clauses 504
select Clauses 504
Try It 507
Lesson Requirements 508
Hints 508
Step-by-Step 508
Exercises 509
LESSON 37: LINQ TO SQL 511
Connecting to the Database 511
Making LINQ to SQL Classes 515
Writing Code 517
Using LINQ Queries 518
Understanding Nullable Fields 519
Understanding Query Execution 520
Using LINQ to SQL with Access 522
Try It 524
Lesson Requirements 524
Hints 524
Step-by-Step 524
Exercises 525
AFTERWORD: WHAT'S NEXT? 527
INDEX 529

XXV

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

SO YOU WANT TO learn C# programming? Excellent choice!

C# is a powerful, general-purpose programming language that lets you build desktop, Windows
Store, Windows Phone, and web apps. C# provides all of the tools that you need to build a huge
variety of applications such as:

> Database applications

Point of sales systems

Two- and three-dimensional graphics programs
Image-processing and photo-manipulation systems
Computer-aided design (CAD) systems

Document layout and printing systems

Hardware control systems

High-performance games

Y Y Y VY Y Y Y Y

Much, much more

NOTE [n case you ever need to mention it at parties, C# is pronounced “see
sharp.” It’s written C# because the number sign (#) is the closest most keyboards
can get to the musical sharp symbol (8).

Of course, you won’t be able to solve every problem with C#. If you want a program that picks the
winning number on a roulette wheel or that can predict stock prices, you may have better luck using
tarot cards (or a degree in economics), but for tractable problems C# is a great choice.

This book is a self-paced guide to C# programming in the Visual Studio environment. It uses easy-
to-follow lessons, reinforced by step-by-step instructions, screencasts, and supplemental exercises, to
help you master C# programming quickly and painlessly. It explains how to write C# programs that
interact with the user to read inputs, calculate results, and display outputs. It shows how to read

and write files, make printouts, and use databases. It shows how to build programs that run on the
Windows desktop, on tablet computers, and on Windows Phones.

This book won’t make you an expert, but it will give you a solid understanding of how to write

C# programs. When you’ve finished reading this book and working through the Try It sections and
exercises, you’ll be able to write non-trivial programs of your own. You may not be able to accu-
rately pick winning lottery numbers (if you do, please let me know!), but you will be able to build

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

some useful programs and you’ll be ready to learn more about more specialized topics that interest
you such as database programming, file processing, and graphics.

WHAT'S NEW IN THE SECOND EDITION

This second edition has been modified and expanded to provide more material than the first edition,
but it’s not intended to be the second in a series. If you read the first edition, don’t get the second
edition because there’s a lot of overlap.

The main differences between this edition and the first are:
> More exercises (almost 400!)
More screencast videos (more than 12 hours!)

>

> Windows Store apps
> Windows Phone apps
>

A lot more material about Windows Presentation Foundation (WPF) and eXtensible Markup
Language (XAML) (which you can use to build Windows Store and Windows Phone style

apps)
To make room for the new material, some of the old material had to go. This edition doesn’t cover:
> The clipboard and drag-and-drop
> Bitmap manipulation
> Parallel programming
>

Console applications

I’d love to include those topics and many others, but there just isn’t room in a book of this size.

WHO THIS BOOK IS FOR

This book is for anyone who wants to learn how to write programs using C#. Whether you want to
move into a lucrative career as a software developer, add a few new skills to your résumé, or pick up
a fascinating new hobby, this book can get you started.

This book does not assume you have any previous programming experience. It assumes you’re unin-
formed rather than an idiot or a dummy. It assumes you can turn your computer on and surf the
web but that’s about it for previous qualifications. It is suitable as a first programming book for high
school or college students, but its self-paced hands-on approach also makes it ideal if you’re trying
to learn to program on your own.

XXViii

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

(I don’t want to receive a bunch of flaming e-mails complaining that the material in this book is

too basic, so ’'m warning you right now. If you’ve been programming in C++ or Visual Basic for

16 years, don’t blame me if a lot of this material seems pretty simple to you. Instead of wasting your
time complaining, go find a more advanced book.)

WHAT THIS BOOK COVERS (AND WHAT IT DOESN'T)

This book explains C# programming. It explains how to write, debug, and run applications that
interact with the user and the computer. It shows how to understand object-oriented concepts,
perform calculations, manipulate files and strings, produce printouts, and interact with simple
databases. It explains how to run programs on your desktop, from the Windows Start menu, with a
Windows tablet-style interface, and on a Windows Phone.

Programming in any language is an enormous topic, however, so this book doesn’t cover everything.
It doesn’t explain how to design databases, build cryptographically secure web applications, create
multithreaded programs that run on multiple CPUs, or build Xbox games, all tasks that are pos-
sible using C#. When you’re finished reading this book, however, you’ll be ready to move on to more
advanced books that cover those topics.

THE WROX 24-HOUR TRAINER APPROACH

Educators have known for many years that different people use different learning styles most effec-
tively. Different students may learn best by:

> Reading a textbook

> Looking at nonwritten material such as pictures and graphs
> Listening to an instructor lecture

> Watching someone demonstrate techniques

>

Doing exercises and examples

(Personally, I learn best by watching and doing.)

Good instructors try to incorporate material that helps students with all of these learning styles.
Combining text, lecture, demonstration, discussion, and exercises lets every student pick up as much
as possible using whichever methods work best.

Like a good instructor, this book uses materials that address each learning style. It uses text and fig-
ures to help visual learners, screencasts that provide visual demonstrations and auditory instruction,
step-by-step instructions to help you do it yourself, and exercises for further study.

The book is divided into small, bite-sized lessons that begin with a discussion of a particular con-
cept or technique, complete with figures, notes, tips, and other standard fare for instructional
books. The lessons are short and tightly focused on a single task so you can finish each one in a

XXiX

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

single sitting. You shouldn’t need to stop in the middle of a lesson and leave concepts half-learned
(at least if you turn off your phone).

NOTE The “24-Hour” in the title means the book is available to train you 24
hours per day, not that you should be able to read then entire book in 24 hours.
Unless you just skim the text and skip all of the Try Its and exercises, 1'd be sur-
prised if anyone could work through the whole thing in 24 hours.

After describing the main concept, the lesson includes a Try It section that invites you to perform a
programming exercise to solidify the lesson’s ideas.

The Try It has several subsections. Lesson Requirements describes the exercise so you know what
should happen. Hints gives pointers about possible confusing aspects of the problem, if they’re
needed. Step-by-Step provides a numbered series of steps that show how to solve the problem.

A screencast on the accompanying DVD shows me working through the Try It problem. Additional
commentary at the end of the screencast highlights extensions of the lesson’s main concepts.

After the Try It’s Step-by-Step section, the lesson concludes with extra exercises that you can solve
for further practice and to expand the lesson’s main ideas. Some of the exercises extend the material
in the main lesson, so I recommend that you at least skim the exercises and ask yourself if you think
you could do them. Solutions to the Try Its and all of the exercises are available for download on the
book’s website. Additional screencasts show how to work through many of the exercises.

WEBSITES

To find the book’s web page, go to www.wrox.com/go
/csharp24hourtrainer2e. There you can find solutions to all of the Try Its
and exercises, plus some additional resources. You can view the screencasts at
wWww.wrox.com/go/csharp24hourtrainer2evideos.

The one thing that a good classroom experience has that this book doesn’t is direct interaction. You
can’t shout questions at the instructor, work in a team with fellow students, and discuss exercises
with other students in the campus coffee house.

Although the book itself can’t help here, you can do at least three things to get this kind of interaction.
First, join the Wrox P2P (peer-to-peer) discussion forum for this book. As the section “P2PWROX.COM”
later in this lesson says, you can join the discussion forum to post questions, provide answers, see what
other readers are doing with the book’s material, and generally keep tabs on book-related topics.

You can also sign up for other discussion groups on the Internet, too. You can post questions on
those discussions, but it’s also very interesting to see what other people are asking. Book discussion

XXX

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.wrox.com/go/csharp24hourtrainer2evideos
http://www.it-ebooks.info/

INTRODUCTION

groups often don’t have as much traffic, so the topics tend to be more limited than those in these
other groups. (Although I watch my P2P groups closely, so go there if you want me to answer.)

Finally, if you get stuck on an exercise or some other program you’re working on, e-mail me at
RodStephens@CSharpHelper.com. I won’t solve the exercises for you but I’ll try to clarify problems
or give you the hints you need to solve them yourself.

GETTING THE MOST OUT OF THE BOOK

This book provides a lot of tools that you can use to best match your learning style,
but you have to use them. If you learn best by reading text, spend more time on the
text. If you like step-by-step instructions, focus on the Try Its and their step-by-step
instructions. If you learn best by watching and listening, focus on the screencasts.

Then, after you’ve finished a lesson, use the exercises to verify that you’ve mastered
the material. Most of the lessons are fairly easy to just read through quickly. Unless
you practice what you’ve learned, you can’t be sure it’s sticking, so plan to spend
some time on the exercises. It would not be strange to spend half an hour reading
the lesson and then several hours working through the Try It and exercises.

And don’t be afraid to invent programs of your own. Just because an idea isn’t in
the book doesn’t mean it wouldn’t make good practice. Modify the programs you
build for the exercises to find out what you can accomplish.

HOW THIS BOOK IS STRUCTURED

This book is divided into seven sections, each containing a series of short lessons. The lessons are
generally arranged in order, with later lessons depending on earlier ones, so you should study the
lessons more or less in order, at least through the first four sections. The lessons in sections V, VI,
and VII cover slightly more specialized topics and you can study them in any order.

Many of the exercises are tagged with a topic as in [Games]| or [WPF]. Those indicate a theme that
you may find interesting. For example, the [Games] exercises involve techniques that you may find
useful if you want to build game programs. The topics include:

> [WPF]—These ask you to use WPF. They are often harder than corresponding Windows
Forms programs, but they sometimes produce better-looking results. (You also need to use
WPF to build tablet-style and Windows Phone apps.)

> [Games|—These are generally amusing or demonstrate techniques that may be useful in
building game programs.

> [SimpleEdit]—This is a simple word processing application that is built and enhanced over a
sequence of exercises in several lessons.

XXXi

www.it-ebooks.info

mailto:RodStephens@CSharpHelper.com
http://www.it-ebooks.info/

INTRODUCTION

[Drawing]—These exercises make a program that draws lines and shapes.

[Hard]—Exercises with this tag are generally harder than most of the other exercises so they
may take some extra time. (I bet you guessed that!)

[Advanced]—These exercises use more advanced techniques and may be harder.

[Bonus]—These exercises extend the topic covered in the lesson and include extra instruc-
tions for performing a technique not covered in the main lesson.

PERSISTENT PROGRAMS

Many of the exercises ask you to edit an earlier version of a program. Just copy the
previous version into a new directory and modify it there. (The section “Copying
Projects” in Lesson 1 explains how to do that.)

If you skip an exercise, you may later not have a version that you need to copy. In
that case just download the version you need from the book’s website.

For example, the instructions for Exercise 24-1 ask you to copy the program you
built for Exercise 23-1. If you skipped that exercise, you can download the Lesson
23 material from the book’s website and use the version that it contains.

The book’s sections are:

XXXii

>

I: The Visual Studio IDE and Controls—These lessons explain how to use the Visual Studio
integrated development environment (IDE) and how to use the controls that make up a user
interface. You need to study these lessons to get started.

II: Variables and Calculations—These lessons deal with variables and calculations. They
explain what variables are and how a program can use them to calculate results. They also
explain how to debug programs.

III: Program Statements—These lessons describe program statements and syntax. They
explain how to control the program’s flow, make decisions, and repeat operations.

IV: Classes—These lessons deal with classes. They explain how to create and use classes and
how to use more advanced class features such as generics and operator overloading.

V: System Interactions—These lessons explain ways in which a program can interact with the
operating system by reading and writing files and by generating printouts.

VI: Windows Apps—These sections explain how you can build Windows Store and Windows
Phone apps.

VII: Specialized Topics—These lessons introduce topics that don’t fit well in the other sec-
tions. They explain how to localize programs for different parts of the world, how to build
simple database programs, and how to use Language Integrated Query (LINQ) to manipulate
data in objects and databases.

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

WHAT YOU NEED TO USE THIS BOOK

To get the most out of this book, you need to install Visual Studio and C#. You don’t need any fancy
version of Visual Studio or C# Professional Edition. In fact, Visual Studio Professional and the other
full-featured versions don’t really add all that much that you’re likely to want to use for a long time.
Mostly they add support for performing unit tests, managing test cases, profiling code, building
code libraries, and performing other tasks that are more useful for programming teams than they
are for individuals.

To work through this book, the Community Edition should be good enough. (And it’s free!)

NOTE In previous versions of Visual Studio, the free “starter” version was
called Visual Studio Express Edition. Microsoft seems to be changing the name
to Visual Studio Community Edition. It hasn’t changed the name everywhere
and some small differences exist between the earlier editions and the latest one,
but you should be able to work with either version.

The following list describes some links that you may find useful for learning about and installing
different Visual Studio products:

> Compare Visual Studio 2015 Offerings: www.visualstudio.com/products/compare

-visual-studio-2015-products-vs.aspx
> Visual Studio homepage: msdn.microsoft.com/vstudio
Visual C# resources: msdn.microsoft.com/vstudio/hh341490.aspx

> Visual Studio free products page: www.visualstudio.com/products/

free-developer-offers-vs

> \ﬁsualStudk)EXpraB:www.visualstudio.com/products/visual—studio—express—vs

.aspx

» Visual Studio Downloads: www.visualstudio.com/downloads/download-visual

-studio-vs.aspx
> C# Express Edition homepage: www.microsoft .com/express/vcesharp

At a minimum, visit the Visual Studio Express Edition page (www.visualstudio.com/products/
visual-studio-express-vs) and download and install Visual Studio Community Edition.

Running any version of Visual Studio will require that you have a reasonably fast, modern computer
with a large hard disk and lots of memory. For example, I'm fairly happy running my Intel Core 2
system at 1.60 GHz with 8 GB of memory and a huge 1 TB hard drive. (That’s a lot more disk space
than necessary but disk is relatively cheap.)

XXXiii

www.it-ebooks.info

http://www.visualstudio.com/products/compare-visual-studio-2015-products-vs.aspx
http://www.visualstudio.com/products/free-developer-offers-vs
http://www.visualstudio.com/products/visual-studio-express-vs.aspx
http://www.visualstudio.com/downloads/download-visual
http://www.microsoft.com/express/vcsharp
http://www.visualstudio.com/products/visual-studio-express-vs
http://www.visualstudio.com/products/visual-studio-express-vs
http://www.it-ebooks.info/

INTRODUCTION

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used several con-
ventions throughout the book.

SPLENDID SIDEBARS

Sidebars such as this one contain additional information and side topics.

WARNING Boxes like this one hold important, not-to-be-missed information
that is directly relevant to the surrounding text.

NOTE Notes such as this contain tips, hints, tricks, and asides to the current
discussion. They are offset and placed in italics like this.

As for styles in the text:
> New terms and important words are highlighted when they are introduced.
> Keyboard strokes look like this: Ctrl+A.

> Code, URLs, and e-mail addresses within the text are shown in monofont type as in x = 10,
www . vb-helper.com, and RodStephens@CSharpHelper . com.

» (Code snippets are shown in a monofont type like this.

The code editor in Visual Studio provides a rich color scheme to indicate various parts of code
syntax such as variables, comments, and C# keywords. That’s a great tool to help you learn lan-

guage features in the editor and to help prevent mistakes as you code, but the colors don’t show up
in the book.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code files that accompany the book. (I like to type in the code because it
helps me focus on it so I get a better understanding.)

Many of the examples show only the code that is relevant to the current topic and may be missing
some of the extra details that you need to make the example work properly. If you get stuck, e-mail
me or download the solution from the book’s web page.

XXXiV

www.it-ebooks.info

http://www.vb-helper.com
mailto:RodStephens@CSharpHelper.com
http://www.it-ebooks.info/

INTRODUCTION

All of the source code used in this book is available for download on the book’s website. Any
updates to the code will be posted there.

ERRATA

The Wrox editors and I make every effort to ensure that there are no errors in the text or in the
code. However, no one is perfect, and mistakes do occur. If you find an error in one of our books,
like a spelling mistake or faulty piece of code, we would be very grateful for your feedback. By send-
ing in errata you may save another reader hours of frustration and at the same time you will be help-
ing us provide even higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click on the Errata link. On this page you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact
/techsupport . shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click on the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

XXXV

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact//techsupport.shtml
http://p2p.wrox.com
http://www.it-ebooks.info/

INTRODUCTION

NOTE You can read messages in the forums without joining P2P, but to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click on the “Subscribe to this Forum” icon by the forum name in the forum listing.

For more information about how to use Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click on the FAQ link on any P2P page.

Using the P2P forums allows other readers to benefit from your questions and any answers they gen-
erate. I monitor my book’s forums and respond whenever I can help.

If you have other comments, suggestions, or questions that you don’t want to post in the forums,
feel free to e-mail me at RodStephens@CSharpHelper.com. I can’t promise to solve every problem
but Il try to help you out if I can.

XXXVi

www.it-ebooks.info

mailto:RodStephens@CSharpHelper.com
http://www.it-ebooks.info/

C# 24-Hour Trainer

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION |
The Visual Studio IDE and Controls

The lessons in this section of the book explain how to use the Visual Studio integrated devel-
opment environment (IDE). They explain how to use the IDE to create forms, place controls

on the forms, and set control properties. These lessons describe some of C#’s most useful con-
trols and give you practice using them.

You can do practically all of this in the IDE without writing a single line of code! That makes
C# a great environment for rapid prototyping. You can build a form, add controls, and run the
program to see what it looks like without ever creating a variable, declaring a method, or get-
ting stuck in an infinite loop.

The lessons in this section explain how to get that far. A few of these lessons show how to add
a line or two of code to make a form more interesting, but for now the focus is on using the
IDE to build forms and controls. Writing code (and fixing the inevitable bugs) comes later.

» LESSON 1: Getting Started with the Visual Studio IDE
» LESSON 2: Creating Controls

» LESSON 3: Making Controls Arrange - Themselves

» LESSON 4: Handling Events

» LESSON 5: Making Menus

» LESSON 6: Making Tool Strips-and Status Strips

» LESSON 7: Using RichTextBoxes

» LESSON 8: Using Standard Dialogs

» LESSON 9: Creating and Displaying New Forms

» LESSON 10: Building Custom Dialogs

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the
Visual Studio IDE

The Visual Studio integrated development environment (IDE) plays a central role in C# devel-
opment. In this lesson you explore the IDE. You learn how to configure it for C# development,
and you learn about some of the more useful of the IDE’s windows and what they do. When
you finish this lesson, you’ll know how to create a new project. It may not do much, but it will
run and will prepare you for the lessons that follow.

VISUAL C#

Visual Studio is a development environment that you can use with several
programming languages including Visual C#, Visual Basic, Visual C++, and F#.
All of those are high-level programming languages that you can use to perform
complex calculations, organize your Pokémon cards, draw pretty fractals

(see en.wikipedia.org/wiki/Fractal and mathworld.wolfram.com/Fractal
.html), play games, download cat pictures from the Internet, and do everything
else you would expect from a program.

They can also contain bugs that delete files accidentally, discard an hour’s worth
of typing without warning, balance your checkbook incorrectly, and cause all sorts
of other problems. Programming languages can help you do things, but they can’t
force you to do the right things. That’s up to you.

Visual C# combines C# with the Visual Studio development environment. You can
use a text editor to write C# programs without Visual Studio, but it’s a lot of work.
You don’t get all of the nice features that Visual Studio provides, such as special
code editing features, drag-and-drop control creation, and a debugger. In short, it’s
a lot less fun, so I won’t cover that kind of programming in this book.

continues

www.it-ebooks.info

http://www.it-ebooks.info/

4 | LESSON 1 VISUAL STUDIO IDE

(continued)

Visual C# and C# go together like hockey and fistfights: if you mention one, most
people assume you’re also talking about the other. Most people simply say C#, so
this book does, too, unless there’s a reason to distinguish between C# and Visual C#.

The .NET Framework also plays an important role in C# programs. It includes
classes that make performing certain tasks easier, runtime tools that make it
possible to execute C# programs, and other plumbing necessary to build and run
C# programs.

Normally you don’t need to worry about whether a feature is provided by Visual
Studio, the C# language, or the .NET Framework. They all go together, so for the
purposes of this book at least you can ignore the difference.

INSTALLING C#

Before you can use C# to write the next blockbuster first-person Xbox game, you need to install it.
So if you haven’t done so already, install C#.

You can install one of the free Express Editions at www.microsoft .com/express/Windows. As I
write this, that page lists versions of Visual Studio 2015, but when you visit that page it should let
you install the latest version. (I’'m using a preview build of Visual Studio 2015 to write the programs
that go with this book.)

Several versions are available on that page, so be sure you pick the right one. Here’s a quick
summary of some of the versions that may be available:

>

Community—This version lets you build web, Windows Store (including tablet and phone
apps), Windows Desktop, Android, and iOS applications. This is probably the best version
for you to download.

Express for Web—This version focuses on building websites.

Express for Windows—This version focuses on building Windows Phone and Windows
Store apps.

Express for Windows Desktop—This version focuses on desktop applications. You run these
from the Windows desktop, not the start screen.

Team Foundation Server Express—This edition is for people working in teams. This includes
tools that you don’t need right now and that can provide extra opportunities for confusion,
so skip this version. (If you don’t think things are confusing enough, e-mail me and Ill sug-
gest some more confusing topics for you to study.)

The Community Edition includes tools to get started building any of these kinds of applications,
so it’s a good choice. You may never use it to build websites or iOS applications, but having those
abilities installed won’t hurt you.

www.it-ebooks.info

http://www.microsoft.com/express/Windows
http://www.it-ebooks.info/

InstallingC# | 5

The Express Editions are only intended to get you started, but they’re seriously powerful so you
probably won’t need anything else for quite a while. I’ve been happily using Express Editions for
about two decades.

If you think you need some other version of Visual Studio (for example, you’re working on a big
project and you need test management, source code control, and other team programming tools), go
to msdn.microsoft.com/vesharp and install the version that’s right for you.

All of these are big installations (5 or 6 GB), so they could take a while. While a constant supply of
cookies, caffeine, and conversation will help you pass the time more quickly, the other customers
won’t thank you if you hammer the Starbucks Wi-Fi for 12 straight hours. Be sure you have a rea-
sonably fast connection before you start.

TALKIN' '‘BOUT MY GENERATION

Developers talk about different generations of programming languages ranging
from the very primitive to the remarkably advanced. In a nutshell, the different gen-
erations of languages are:

> 1GL—Machine language. This is a series of Os and 1s that the machine
can understand directly. Here’s a sample: 01001010 11010100 10101011
10001000. Pretty hard to read, isn’t it?

> 2GL—Assembly language. This is a collection of mnemonic codes that repre-
sent machine language instructions. It is slightly more readable but provides
no higher-level structure for performing complex tasks. Here’s a sample:
brfalse.s IL 0028 leave.s IL 007a ldloc.0 ldloc.1. This may be
easier to read than binary, but it still looks like gibberish to me.

> 3GL—A higher-level language such as FORTRAN or BASIC. These provide
additional structure (such as looping and subroutines) that makes building
complex programs easier. Here’s a sample: num players = num players
+ 1. Finally something I can read and almost understand!

> 4GL—An even higher-level language or a development environment that helps
build programs, typically in a specific problem domain.

> 5GL—A language where you specify goals and constraints and the language
figures out how to satisfy them. For example, the database Structured Query
Language (SQL) allows you to use statements like SELECT FirstName FROM
Employees. You don’t need to tell the database how to get the names; it
figures that out for you.

Visual Studio provides code snippets that let you copy standard chunks of code into
your program, IntelliSense that helps you select and use functions and other pieces
of code, refactoring tools that help you rearrange and restructure your code, and
much more. That makes Visual C# a 4GL. (Or perhaps a 3.5GL depending on how
high your standards are.)

www.it-ebooks.info

http://www.it-ebooks.info/

6 | LESSON1 VISUAL STUDIO IDE

CONFIGURING THE IDE

When you first run Visual Studio, the dialog shown in Figure 1-1 appears to let you configure the
IDE. (You may also see a few other dialogs before that point asking you to log in to your Microsoft
profile. You can create one if you don’t already have one.)

x

g Visual Studio
Hello, Rod Stephens

g rodstephens@csharphelper.com

A View your Visual Studie profile

=
Start with a familiar environment
Development Settings: |\c"isua|C# |'|
[] Apply customizations from the previous version to the

environment selected above.
Choose your color theme
@ Blue) Dark) Light

Y visuzl studio - ¢ visusl Studic
I || I
You can always change these settings later,
Start Visual Studio

FIGURE 1-1

The dialog lets you pick settings for general development, Visual Basic, Visual C#, and so forth.
Because you’re going to be focusing on C# development, select that option.

NOTE These settings determine such things as what keystrokes activate certain
development features. You can certainly write C# programs with the Visual C++
settings, but we may as well use the same playbook, so when I say, “Press FS,”
the IDE starts your program instead of displays a code window or whatever
Visual C++ thinks FS should do.

The dialog also lets you pick a color scheme. Pick the one you think you’ll like best (admittedly
without getting to try them out) and click Start Visual Studio. (Then be ready to wait again because
the initial configuration can take a while.)

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your First Program | 7

If you ever want to switch to different settings (for example, if you initially picked the Dark colors
but then discovered that they give you a headache), you can always change them later.

To change the settings, open the Tools menu and select Import and Export Settings to display the
Import and Export Settings Wizard. You can use this tool to save your current settings, reload
previously saved settings, or restore the settings to their default values.

To reset the settings, select the Reset All Settings option on the wizard’s first page and click Next.

On the next page, indicate whether you want to save your current settings. When you’ve made your
choice, click Next to display the page shown in Figure 1-2. Select the Visual C# choice and click Finish.

Import and Export Settings Wizard _

K
A Y Choose a Default Collection of Settings

Which collection of settings do you want to reset to?

£} General Description:

£ JavaSeript Customizes the environment to maximize

£ Visual Basic code editor screen space and improve the
- visibility of commands specific to C#.

£t Visual C2 Increases productivity with keyboard

£} Visual C++ shortcuts that are designed to be easy to

£ Visual F2 learn and use.

£} Web Development
‘Web Development (Code Only)
p .

FIGURE 1-2

Then sit back and wait. Or better still, go get something to drink because this could take a while.
Visual Studio has a lot of settings to reset, and it could take several minutes depending on how fast
your computer is. (And how busy your computer is playing YouTube videos.)

BUILDING YOUR FIRST PROGRAM

Now that you’ve installed C#, you’re ready to build your first program. Launch Visual Studio
by double-clicking its desktop icon, selecting it from the system’s Start menu, finding it with the
Windows Search tool, or doing whatever you do to run programs on your version of Windows.

www.it-ebooks.info

http://www.it-ebooks.info/

8 | LESSON1 VISUAL STUDIO IDE

When it starts, Visual Studio should look more or less like Figure 1-3. You can use the links in the
center pane to get more information about Visual Studio, .NET, Azure, and whatever else Microsoft
thinks is important today.

b Start Page - Microsoft Visual Studio (Administrator) Y1 & |QuickLaunch (Ctr+Q) Pl- B x
File Edit View Debug Team Tools Architecture Test Apalyze Window Help Rod Stephens = Gy
l@-2 - P Attach.. - | 57 _

Start Page & X ¥ | Solution Explorer

Visual Studio Discover what's new in Ultimate
2015 CTP

Learn about new features in Ultimate 2015 CTP

Start See what's new in the .NET Framework
New Project... Explore what's new in Visual Studio Online
Open Project...

Open from Source Contral..
Ready to Cloud-power your experience?

Recent Connect to Azure ®

New on Microsoft Platforms
28 Windows

EH Microsoft Azure

' ASP.NET vNext and Web

@ Windows Phone
0 Microsoft Office

Solution Explorer [REETRNSIIIES

FIGURE 1-3

You can use the links in the left pane to create a new project or open an existing project. You can
also create a new project by opening the File menu, expanding the New submenu, and selecting
Project. Or if you’re in a hurry to create your first project, just press Ctrl+Shift+N.

NOTE Often you have several ways to do something in Visual Studio. You may
be able to use a menu command, keyboard shortcut, or toolbar button to do the
same thing. Usually Ill just mention one or two ways to do something, such as
creating a new project, but you’ll probably discover other ways, too.

All of those methods display the New Project dialog shown in Figure 1-4. Expand the Visual
C# project types folder on the left and select the template for the type of project that you
want to build on the right. For most of this book, that will be a Visual C# Windows Forms
Application.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your First Program | 9

New Project _
P Recent MET Framework 4.5 ~| Sort by: Default Search Installed Ternplates (Ctrl+E) Pl
4 |nstalled C# - -
K] Blank App (Universal Apps) Visual C2 Type: Visual C#
4 Templates = A _proja(tfor creating an application with a
4 isual CG# Windows Forms Application Visual C# Windows Forms user interface
I Store Apps cx . . .
'WPF Application Visual C2
Windows Desktop <m
Ci
Web Bl Console Application Visual C2
I Office/SharePoint
=T .) .
Android _'I Hub App (Universal Apps) Visual C#
Cloud (=]
o B] ASPNET Web Application Visual G2
i0s @
c#
LightSwitch "] shared Project Visual C#
Reporting F.m]) .
Siverliaht -‘[31! ASP.MET 5 Class Library Visual
P Online mld —— - - e
Click here to go online and find templates.
Mame: ‘WlndnwanrmsAppll:at\nnT |
Location: cusersirod\documents\visual studic 2015\Projects -
Solution name: WindowsFormsApplicationl Create directory for solution
[[] Add te seurce control
FIGURE 1-4

After you select a project type, you need to enter several pieces of information:

> Name—This is the application’s name. Visual Studio creates a folder with this name to hold
the program’s files. It also uses this name for some key values in the project.

> Location—This is where you want Visual Studio to put the project’s folder.

Solution Name—If the Create Directory for Solution box is checked (which it is by default),
Visual Studio creates a folder with this name at the location you entered. It then places the
application’s folder inside the solution’s folder.

So if the Create Directory for Solution box is checked, you get a filesystem layout that looks like this:

SolutionFolder

SolutionFiles

ApplicationFolder

ApplicationFiles

If the Create Directory for Solution box is not checked, you get a filesystem layout that looks like this:

ApplicationFolder

ApplicationFiles

www.it-ebooks.info

http://www.it-ebooks.info/

10 | LESSON 1 VISUAL STUDIO IDE

NOTE A project typically includes the files that make up a single application.

A solution can contain several projects. A solution is useful when you want to
build applications that go closely together. For example, a project could contain
one program that builds three-dimensional data sets, another that displays them,
and a third that lets you print them from different points of view.

Solutions are particularly useful if you want to build a library of routines plus an
executable program to test the library.

The applications you build in this book are single programs so they don’t really need to be inside a
separate solution folder. Most of the time, I uncheck the Create Directory for Solution box to keep
my filesystem simpler.

NOTE By default, Visual Studio places new projects in your Projects folder
at some obscure location such as C: \Users\MyUserName \Documents\Visual
Studio 2016\Projects. Later it can be hard to find these projects in File
Explorer (for example, to make a copy).

To make finding projects easier, set the location to something more intuitive such
as the desktop or a folder on the desktop. In fact, you might want to make a
folder to hold projects for this book and then give each lesson a subfolder.

The next time you create a new project, Visual Studio will remember your last
choice, so from now on it’ll be easy to find your projects.

If you open the New Project dialog while you have another project open, you’ll see an additional
dropdown that lists the choices Create New Solution and Add to Solution. The first choice closes the
current solution and creates a new one. The second choice adds the new application to the solution
you currently have open. Normally you’ll want to create a new solution.

After you display the New Project dialog and enter a Name, Location, and Solution Name, click
OK. The result should look like Figure 1-5.

NOTE If you have previously edited a project, you can quickly reload it from the
File menu’s Recent Projects and Solutions submenu. You can also load a solution
into the IDE by using File Explorer to double-click the solution’s .sln file.

The rest of this lesson deals with the features available in Visual Studio, some of which are displayed
in Figure 1-5. Before you launch into an inventory of useful features, however, open the Debug menu
and select Start Debugging. Or if you’re in a hurry, just press FS5.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your First Program | 11

> FirstProgram - Microsoft Visual Studio (Administrator) Y1 @ QuickLlaunch (Ctri+Q) P - B x
File Edit View Project Build Debug Team Format Tools Architecture Test Analyze Window Help Rod Stephens ~ _&
o | B2 |0 -0 | Debug -] AnyCPU - B Start - | B | | | -
Forml.cs [Design] + X ~ | Solution Explorer > I X
@l o-seam|op -
‘,_',’:‘, = Form1 EE. Search Selution Explorer (Ctrl+;) P~
: %] Solution FirstProgram' (1 project)
= 4 (@ FirstProgram
[} b J Properties
P =B References
¥ App.config
b B Forml.cs
b © Program.cs
Solution Explorer REET NSRS
Properties
Form1 Systern.Windows.Forms.Form -
AR
Size 300, 300 -
] SizeGripStyle Auto
StartPosition WindowsDefaultLocation
Tag
Text Form1 -
Text
The text associated with the control.
FIGURE 1-5
Your first program should look like Figure 1-6. Admittedly this first o form1 =0 0
program isn’t very fancy, but by the same token you didn’t need to
do much to build it. All you did was press Ctrl+Shift+N and then F5!
This first program may not seem terribly impressive, but there’s
a lot going on behind the scenes. C# has built a form with a
bunch of useful features, including;:
> A resizable border and a draggable title bar.
> Working minimize, maximize, and close buttons in the
upper-right corner.
> A system menu in the upper-left corner that contains
FIGURE 1-6

working Restore, Move, Size, Minimize, Maximize, and
Close commands.

An icon in the system taskbar that lets you minimize, restore, and close the program.
The ability to use Alt+Tab and Flip3D (Win+Tab) to move between the application and others.

> Other standard window behaviors. For example, if you double-click the form’s title bar it
maximizes (or restores if it is already maximized), and if you press Alt+F4, the form closes.

Unless you’re an absolute beginner to Windows, you probably take all of these features for granted,
but providing them is actually a huge amount of work. Not too long ago you would have had to
write around 100 lines of code to provide a subset of those features. Now Visual Studio automati-
cally builds a form that handles most of the details for you.

www.it-ebooks.info

http://www.it-ebooks.info/

12 | LESSON 1 VISUAL STUDIO IDE

You can still get in and change the way things work if you want to (for example, you can set a
form’s minimum and maximum allowed sizes), but usually you can ignore all of those issues and
concentrate on your particular application instead of the Windows decorations.

A SUITABLE EXECUTABLE

Whenever you run a program in the IDE, Visual Studio builds an executable
program, normally in the project’s bin\Debug subdirectory. You can run the
executable by finding it in File Explorer and double-clicking it.

Unfortunately that doesn’t mean the executable can run on any old computer! If
you copy that file to another computer, it won’t run unless the .NET Framework
runtime libraries have been installed there. If that computer has Visual Studio
installed, you’re all set, but if it doesn’t you’ll need to install the redistributable
yourself.

To install these libraries, go to Microsoft’s download web page www.microsoft
.com/downloads and search for “.NET Framework redistributable.” Pick the
version that matches the one you’re using (probably the most recent version if you
just installed Visual Studio) and install it on the target computer.

Now you can copy C# executables onto the other computer and run them.

COPYING PROJECTS

Sometimes you may want to copy a project. For example, you might want to save the current version
and then make a new one to try things out. Or you may want to give a copy of the project to a friend
or your programming instructor so he or she can tell you why its New button makes the program exit.

You might look in Visual Studio’s File menu and see the Copy As commands. Don’t be tempted!
Those commands copy single files, not the entire project. Later when you try to open one of those
files, you’ll discover that Visual Studio cannot find all of the other pieces that it needs and you’ll be
left with nothing usable.

To correctly copy a project, copy the entire solution or application folder and its directory hierarchy.
Alternatively, you can compress the project directory and then copy the compressed file. Just be sure
that whatever copying method you use brings along all of the project’s files.

Note that you can delete the bin and obj subdirectories if you like to save space. Those directories
contain files that Visual Studio creates when it loads and builds a program, and it will re-create
them whenever it needs them later.

You can also delete the .vs directory, which contains user settings. Unfortunately that directory is hid-
den by default so it may be hard to find. To make File Explorer show you hidden files, open the Control
Panel, click Appearance and Personalization, and select Folder Options. On the View tab, select Show
Hidden Files and Folders, and then click OK. Now you can see the .vs directory to delete it.

www.it-ebooks.info

http://www.microsoft.com/downloads
http://www.it-ebooks.info/

Exploring the IDE | 13

NOTE Compressing a project is very useful because it keeps all of its files
together in a package. In particular, if you ever need to e-mail a project to some-
one (for example, if you e-mail me at RodStephens@CSharpHelper.com for
help), you can remove the bin, obj, and .vs directories, compress the project
folder, and e-mail the package as a single file.

If you're sending the project to your instructor as part of an assignment, rename
the compressed file so it contains your name and the name of the assignment; for

example, RodStephens6-1.zip.

EXPLORING THE IDE

The Visual Studio IDE contains a huge number of menus, toolbars, windows, wizards, editors,
and other components to help you build applications. Some of these, such as the Solution Explorer
and the Properties window, you will use every time you work on a program. Others, such as the
Breakpoints window and the Connect to Device dialog, are so specialized that it may be years

before you need them.

Figure 1-7 shows the IDE with a simple project loaded and some of the IDE’s most important pieces

marked. The following list describes those pieces.

hd FirstProgram - Microsoft Visual Studio (Administrator)

File Edit View Project Build Debug Team Tools Architecture Test Analyze
P@-0|B-2 B9 -0 -] Debug - AnyCRU - B Start - | B
2 [Toolbox * 1 X| Forml.cs® Formi.cs [Design]* + X
5_“ Search Toolbox o P~
E - All Windows Forms - all Form1 EIE“Z‘
4 Commeon Controls
&k Pointer First Name:
Button Last Name
B= CheckedListBox -
= ComboBox
DateTimePicker nke 2
A Label b
A LinkLabel
ES ListBox
i ListView Immediate Window
(- MaskedTextBox
MonthCalendar
ke Motifylcon
[B MumericUpDown
F PictureBox
ED ProgressBar
® RadioButton
22 RichTextBox
] B - WERE T ETNY Immediate Window
FIGURE 1-7

www.it-ebooks.info

Window

Y1
Help

@Duigals=|as,

Pl - B

Rod Stephens ~ &

Quick Launch (Ctrl+Q) x

Solution Explorer

Search Selution Explorer (Ctrl+;)

%] Solution ‘FirstPragram’ (1 project) -
4 FirstProgram
b J Properties
P =B References
¥ App.config
4 [=] Forml.cs

b T Form1Designer.cs

.
Solution Explorer REET NSRS

Properties X
Form1 Systern.Windows.Forms.Form -
g e
Size 280, 186 =
SizeGripStyle Auto
StartPosition WindowsDefaultLocation
Tag
Text Form1 -
Text

The text associated with the control.

mailto:RodStephens@CSharpHelper.com
http://www.it-ebooks.info/

14

LESSON 1 VISUAL STUDIO IDE

Menus—The menus provide all sorts of useful commands. Exactly which commands are
available, which are enabled, and even which menus are visible depends on what kind of
editor is open in the editing area (#4). Some particularly useful menus include File (opening
old projects and creating new ones), View (finding windows), Project (adding new forms and
other items to a project), Debug (build, run, and debug the project), and Format (arrange
controls on a form).

Toolbars—The toolbars provide shortcuts for executing commands similar to those in
the menus. Use the Tools menu’s Customize command to determine which toolbars
are visible.

Solution Explorer—The Solution Explorer lists the files in the project. One of the most
important is Forml . cs, which defines the controls and code for the form named Form1. If
you double-click a file in the Solution Explorer, the IDE opens it in the editing area.

Editing Area—The editing area displays files in appropriate editors. Most often you will use
this area to design forms (place controls on them and set control properties) and write code
for forms, but you can also use this area to edit other files such as text files, bitmaps, and
icons.

Toolbox—The Toolbox contains controls and components that you can place on a form.
Select a tool and then click and drag to put a copy of the tool on the form. Notice that the
Toolbox groups controls in tabs (All Windows Forms, Common Controls, Containers,
Menus & Toolbars, and so on) to make finding the controls you need easier.

Properties Window—The Properties window lets you set control properties. Click a control
on the Form Designer (shown in the editing area in Figure 1-7) to select it, or click and drag
to select multiple controls. Then use the Properties window to set the control(s) properties.
Notice that the top of the Properties window shows the name (1abel1) and type (System
.Windows.Forms.Label) of the currently selected control. The currently selected property
in Figure 1-7 is Text, and it has the value First Name:. You’ll spend a lot of time working
with the Properties window.

Property Description—The property description gives you a reminder about the current prop-
erty’s purpose. In Figure 1-7, it says that the Text property gives the text associated with the
control. (Duh!)

Other Windows—This area typically contains other useful windows. The tabs at the bottom
let you quickly switch between different windows.

Figure 1-7 shows a fairly typical arrangement of windows, but Visual Studio is extremely flexible so
you can rearrange the windows if you like. You can hide or show windows, make windows floating
or docked to various parts of the IDE, make windows part of a tab group, and make windows auto-
matically hide themselves if you don’t need them constantly.

If you look closely at the right side of the title bar above one of the windows in Figure 1-7 (for
example, the Properties window), you’ll see three icons: a dropdown arrow (=),
a thumbtack (), and an X (3¢).

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the IDE | 15

If you click the dropdown arrow (or right-click the window’s title bar), a menu appears with the fol-
lowing choices:

>

Float—The window breaks free of wherever it’s docked and floats above the IDE. You can
drag it around and it will not re-dock. To make it dockable again, open the menu again and
select Dock.

Dock—The window can dock to various parts of the IDE. (This is kind of fun and I’ll say
more about it shortly.)

Dock as Tabbed Document—The window becomes a tab in a tabbed area similar to #8 in
Figure 1-7. Unfortunately, it’s not always obvious which area will end up holding the win-
dow. To make the window a tab in a specific tabbed area, make it dockable and drag it onto
a tab (described shortly).

Auto Hide—The window shrinks itself to a small label stuck to one of the IDE’s edges and
its thumbtack icon turns sideways (4) to indicate that the window is auto-hiding. If you
float the mouse over the label, the window reappears. As long as the mouse remains over

the expanded window, it stays put, but if you move the mouse off the window, it auto-hides
itself again (like a cockroach when you turn on the lights). Select Auto Hide again or click
the sideways thumbtack to turn off auto-hiding. Auto-hiding gets windows out of the way so
you can work in a bigger editing area.

Hide—The window disappears completely. To get the window back, you’ll need to find it
somewhere in the bewildering assortment of menus. You can find many of the most use-
ful windows in the View menu, the View menu’s Other Windows submenu, and the Debug
menu’s Windows submenu.

The thumbtack in a window’s title bar works just like the dropdown menu’s Auto Hide com-
mand does. Click the thumbtack to turn on auto-hiding. Expand the window and click the side-
ways thumbtack to turn off auto-hiding. (Turning off auto-hiding is sometimes called pinning the
window.)

The ¢ symbol in the window?’s title bar hides the window just like the dropdown menu’s Hide
command does.

In addition to using a window’s title bar menu and icons, you can drag windows into new positions.
As long as a window is dockable or part of a tabbed window, you can grab its title bar and drag it to
a new position.

As you drag the window, the IDE displays little drop targets to let you dock the window in various
positions. If you move the window so the mouse is over a drop target, the IDE displays a translucent
blue area to show where the window will land if you drop it. If you drop when the mouse is not over
a drop target, the window becomes floating.

Figure 1-8 shows the Properties window being dragged in the IDE. The mouse is over the right drop
target above the editing area so, as the translucent blue area shows, dropping it there would dock
the window to the right side of the editing area. The picture is kind of messy, but it’s not too hard to
see what’s going on if you give it a try.

www.it-ebooks.info

http://www.it-ebooks.info/

16 | LESSON 1 VISUAL STUDIO IDE

b FirstProgram - Microsoft Visual Studio (Administrator) Y1 @ | QuickLaunch (Ctrl+Q) Pl- o x
File Edit View Project Build Debug Team Format Tools Architecture Test Analyze Window Help Rod Stephens ~ _&
P@-0 | @ -2 M9 - Debug - AnyCPU - b stat - | B _E | | | | -

2 [Toolbox + 1 x| Formlcs® Form?.cs [Design” S 7 [Eoimn g
E_T' Search Toolbox m‘ w5 ¢ a l'@‘ o o
Fl b All Windows Forms L Form1 Search Solution Explorer (Ctrl=-) p-
4 Common Cantrals
& Pointer First Name: |Cosmo fa] Solution FirstProgram’ (1 project)
- FirstProgram
Button Last Name: |Bodjimmes b Properties
CheckBox Strest E i - | X b =B References
BZ CheckedListBox - [Form Systy =W . 2 App.config
& ComboBox ’ - 4 [E Formlcs
DateTimePicker s [c| B2 B0 F b Y Form1Designer.cs
Label StartPositid, . WindowsDefaultLocation = 7 Forml.resx
LinkLabel Tag b % Form
o T b e progams

ListBox

! TopMost False
ListView Immediate Window TransparencyKey O .
-

MaskedTextBox

MonthCalendar Text
The text associated with the control.

ke Motifylcon

[NumericUpDown

[l PictureBox

ED ProgressBar

® RadioButton

23 RichTextBox

- ~ WL Immediate Window Selution Explorer EEN=TIRTES

FIGURE 1-8

The drop area just to the left of the mouse represents a tabbed area. If you drop on this kind of
target, the window becomes a tab in that area.

CUSTOMIZATION MODERATION

Visual Studio lets you move, dock, float, hide, auto-hide, and tabify windows. If
you have multiple monitors, you can float a window and move it to another moni-
tor, giving you a larger editing area. It’s so flexible that it can present as many dif-
ferent faces as a politician during an election year.

Feel free to customize the IDE to suit your needs, but if you do, keep in mind that your
version of Visual Studio may look nothing like the pictures in this book. To minimize
confusion, you may want to keep the IDE looking more or less like Figure 1-7, at least
until you get a better sense of which tools will be most useful to you.

TRY IT

In this Try It, you prepare for later work throughout the book. You locate web resources that you
can use when you have questions or run into trouble. You create and run a program, explore the
project’s folder hierarchy, and make a copy of the project. You also get a chance to experiment a bit
with the IDE, displaying new toolbars, moving windows around, and generally taking the IDE for a
test drive and kicking the tires.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 17

NOTE Note that the solutions for this lesson’s Try It and exercises are not all
available on the book’s website. The Try It and some of the exercises ask you

to experiment with the IDE rather than produce a finished program, so there’s
really nothing to download. In later lessons, example solutions to the Try It and
exercises are available on the book’s website.

Lesson Requirements
In this lesson, you:
> Find and bookmark useful web resources.
> Launch Visual Studio and start a new Visual C# project.

> Experiment with the IDE’s layout by displaying the Debug toolbar, pinning the Toolbox, and
displaying the Output window.

Run the program.
Find the program’s executable, copy it to the desktop, and run it there.

Copy the project folder to a new location and make changes to the copy.

Y VYV VY

Compress the project folder to make a backup.

NOTE You can download the code and resources for this lesson from the website
at www .wrox .com/go/csharp24hourtrainer2e.

Hints

> When you create a new project, be sure to specify a good location so you can find it later.

> Before you compress the project, remove the bin, obj, and .vs directories to save space.

Step-by-Step
> Find and bookmark useful web resources.
1. Open your favorite web browser.

2. Create a new bookmark folder named C#. (See the browser’s documentation if you
don’t know how to make a bookmark folder.)

3. Go to the following websites and bookmark the ones you like (feel free to search for
others, too):

> My C# Helper website (www . CSharpHelper.com)

> This book’s web page (www.CSharpHelper.com/24hour.html)

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.CSharpHelper.com
http://www.CSharpHelper.com/24hour.html
http://www.it-ebooks.info/

18 | LESSON1

VISUAL STUDIO IDE

>

>

> This book’s Wrox web page (go to www.wrox.com and search for C# 24-Hour

Trainer, Second Edition)

> Visual C# Express Edition MSDN forum (social.msdn.microsoft .com/

Forums/en-US/Vsexpressvcs/threads)

> Visual C# IDE MSDN forum (social.msdn.microsoft.com/Forums/

en-US/csharpide/threads)

> Visual C# Language MSDN forum (social.msdn.microsoft.com/Forums/

en-US/csharplanguage/threads)

» Visual C# General MSDN forum (social .msdn.microsoft.com/Forums/

en-US/csharpgeneral/threads)

MSDN (msdn.microsoft .com)

> Stack Overflow (www . stackoverflow.com)

Code Project (www.codeproject . com)

Launch Visual Studio and start a new Visual C# project.

1.

If you don’t have a desktop or taskbar icon for Visual Studio, create one. For example,
in Windows 8, follow these steps:

a.

b.

Open the Charms area, click Search, and type VS Express (or part of the name
of the version you installed). If Visual Studio isn’t in the result list, make sure the
search box’s dropdown list has Everywhere selected.

In the search results, right-click the program and select Pin to Start or Pin to Taskbar.

Launch Visual Studio by clicking the tile you just pinned to the start screen or the icon
you just pinned to the taskbar.

Create a new project.

a.

b.

d.
e.

Press Ctrl+Shift+N or open the IDE’s File menu, expand the New submenu, and
select Project.

Expand the Visual C# project types folder and select the Windows Forms
Application template.

Enter a project name and a good, easy-to-find location like the desktop or a
folder named C# Projects on the desktop.

Uncheck the Create Directory for Solution box.
Click OK.

Experiment with the IDE’s layout by displaying the Debug toolbar, pinning the Toolbox, and
displaying the Output window.

1.

Open the Tools menu and select Customize. On the Customize dialog, select the
Toolbars tab and check the box next to the Debug toolbar. Experiment with the other
toolbars if you like. Close the dialog when you’re done.

www.it-ebooks.info

http://www.wrox.com
http://www.stackoverflow.com
http://www.codeproject.com
http://www.it-ebooks.info/

Trylt | 19

If the Toolbox is auto-hiding (it should be after you first install Visual Studio), float the
mouse over it until it expands. Click the thumbtack to pin it.

To display the Output window, open the View menu and select Output. Grab the Output
window’s title bar and drag it around. Move it over some drop targets to see where it
lands. When you’re finished, drop it at the bottom of the IDE as shown in Figure 1-7.

> Run the program.

1.
2.

Press F5 or open the Debug menu and select Start Debugging.

Try out the form’s minimize, maximize, and close buttons and the commands in the
form’s system menu. Move the form around and resize it. Marvel at the fact that you
didn’t need to write any code!

> Find the program’s executable, copy it to the desktop, and run it there.

1.

2.

4.
5.

Start File Explorer and navigate to the location that you specified when you created the
new program.

There you should find a folder named after the program. Open that folder and examine
the files inside. Notice the .s1n file that you can double-click to reopen the solution in
Visual Studio. Notice also the bin, obj, and .vs directories.

Enter the bin directory and move into its Debug subdirectory. It contains several files
including the executable, named after the program but with the .exe extension. Right-
click the executable and select Copy.

Right-click the desktop and select Paste to copy the executable to the desktop.

Double-click the copy of the executable on the desktop.

> Copy the project folder to a new location and make changes to the copy.

1.

2.
3.
4

In File Explorer, go to the directory that contains the project folder.
Right-click the project’s folder and select Copy.
Right-click the desktop and select Paste to copy the project folder.

Open the copied project folder and double-click the . s1n file to open the copied project
in Visual Studio. If the form doesn’t open in the Form Designer (#4 in Figure 1-7), look
in Solution Explorer and double-click the file Form1 .cs.

In the Form Designer, grab the handle on the form’s lower-right corner and resize the
form to make it tall and skinny.

Run the modified program. Then go back to the original project (which should still be
running in another instance of Visual Studio) and run it. Notice that the two versions
display forms of different sizes.

> Compress the project folder to make a backup.

1.
2.

In Visual Studio, close the project. (Or close Visual Studio.)

In File Explorer, return to the project’s folder and delete the bin, obj, and .vs directo-
ries. (Note that you can’t delete the bin directory if Visual Studio has the project open.)

www.it-ebooks.info

http://www.it-ebooks.info/

20 | LESSON 1 VISUAL STUDIO IDE

3. Move up one level to the directory that contains the project folder. Right-click the
folder, expand the Send To submenu, and select Compressed (Zipped) Folder.

4. E-mail copies of your first project to all of your friends and relatives. 'm sure they’ll
thank you!

EXERCISES

1.

Build a solution that contains two projects. (Create a project named Project1. Check the
Create Directory for Solution box and name the solution TwoProjects. Then open the
File menu, expand the Add submenu, and select New Project to add a new project named
Project2.)

This lesson explains only a tiny fraction of the ways you can customize Visual Studio. Try
another one by making your own toolbar. Select the Tools menu’s Customize command.
On the Toolbars tab, click the New button, and name the new toolbar MyTools. On the
Commands tab, select the Toolbar radio button and then select the new toolbar from the
dropdown list. Now use the Add Commands button to add some commands to the toolbar.

This lesson also describes only a few of the windows Visual Studio offers. Use the menus to
find and display the Output, Immediate, Error List, and Task List windows. Put them all in
tabs at the bottom of Visual Studio (#8 in Figure 1-7).

Some tools are available only when Visual Studio is in a certain state. Look in the Debug
menu’s Windows submenu. Then start the program and look there again. Most of those win-
dows are useful only when the program is running and you are debugging it. (I talk about
some of them in later lessons.)

[WPF] Create a new WPF application. Run it side by side with a Windows Forms applica-
tion. What are the differences? (Hint: There shouldn’t be many and they should be cosmetic.
You learn about more important but less obvious differences in later lessons.)

NOTE Please select the videos for Lesson 1 online at www .wrox .com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

Creating Controls

Way back in the computer stone ages, when programmers worked by candlelight on
treadle-powered computers and hand-carved wooden monitors, input and output were very
simple. The computer wrote text in toxic green on the bottom of a monitor and the text
scrolled up as the monitor became full. The user typed on a keyboard to enter text at a
single input prompt, and that was about it. Multiple windows performing useful work simul-
taneously, mice, and forms displaying many labels and textboxes, buttons, scrollbars, and
full-color images existed only in the fevered dreams of science-fiction writers.

Today these things are so commonplace that we take them completely for granted. They
appear in desktop software, web pages, laptops, handheld computers, and even cell phones.

Building these sorts of objects in the old days would have been extremely difficult, but today
it’s practically trivial to add them to your application.

You already saw in Lesson 1 how easy it is to make an application (albeit a trivial one) that
displays a form that runs independently of the others on the computer. It’s almost as easy to
use labels, textboxes, buttons, scrollbars, images, menus, popups, and everything else that
makes up a modern application.

C# makes all of these objects and more available as controls.

In this lesson, you learn how to add controls to a form. You learn how to size, position, and
arrange controls. You also learn how to use a control’s properties to change its appearance and
behavior at design time and at run time. When you’re done with this lesson, you’ll be able to
build a professional-looking form.

UNDERSTANDING CONTROLS

A control is a programming entity that combines a visible appearance on the screen and code
to manage it. The code defines the control’s appearance and behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

22

LESSON 2 CREATING CONTROLS

For example, a TextBox control displays a blank area on the screen where the user can type infor-
mation. The code inside the control determines how the control draws itself and provides normal
textbox features such as multiline or single-line behavior; scrolling and scrollbars displayed as
needed; copy, cut, and paste; a context menu displayed when you right-click the control; the ability
to navigate when the user presses the Tab key; and much more.

WHAT'S IN A NAME?

By convention, in C# the names of control types (and other types) use Pascal
casing where multiple words are strung together with the first letter of each word
capitalized; for example, TextBox, ProgressBar, Button, and PictureBox.

In addition to controls, C# provides components. A component is similar to a control except it has
no visible piece on the form. For example, the Timer component acts as a clock to let the program
do something at regular intervals. The Timer interacts with the program but doesn’t display
anything visible to the user. (Some components such as ErrorProvider and ToolTip may display
visible effects on the screen, but the components themselves are not visible on the form.)

The features of controls (and components) fall into three categories: properties, methods, and events.

Properties

A property determines the appearance and state of a control. If a car were a control, its proper-
ties would be things like color, TransmissionType, CurrentSpeed, and NumberOfCupHolders.
Your program could set a Car’s Color to HotPink (to attract the attention of other drivers) or set its
CurrentSpeed to 110 (to attract the attention of the police).

For a programming example, the TextBox control has a Font property that determines the font it
uses and a ForeColor property that determines the color of its text.

Methods

A method is a feature of a control that makes the control perform some action. Your code can call a
method to make the control do something. For example, the car control might have methods such
as Start, Stop, EjectPassenger, and 0i1Slick. Your program could call the 0i151ick method to
make the car spray oil out the back so you can escape from spies.

For a programming example, the TextBox has a clear method that blanks the control’s text and an
AppendText method that adds text to the end of whatever the control is currently displaying.

Events

An event occurs when something interesting happens to the control. The control raises or fires the
event to tell the program that something happened. For example, a car might have RanoutofGas
and Crashed events. The car control would raise the crashed event to tell the program that the

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Controls | 23

user had driven it into a tree. The program could then take action such as calling an ambulance and
a tree surgeon.

For a programming example, the TextBox has a TextChanged event that tells the program that its text
has changed. When the event occurs, the program could examine the text to see if the user had entered
a valid input. For example, if the TextBox should hold a number and the user entered “One,” the pro-
gram could beep and change the TextBox’s BackColor property to Yellow to indicate an error.

Later lessons discuss events and the code that handles them in greater detail. This lesson focuses on
adding controls to a form, arranging them, and setting their properties.

CREATING CONTROLS

Adding controls to a form is easy. In fact, it’s so easy and there are so many different ways to add
controls to a form that it takes a while to describe them all.

Start by creating a new project as described in Lesson 1. Open the form in the Form Designer. (If the
form isn’t already open, double-click it in Solution Explorer.)

The following list describes some of the ways you can put controls on the form:

> Click a tool in the Toolbox to select it. Then click and drag on the form. When you release
the mouse, Visual Studio creates the control in the area you selected and then selects the
pointer in the Toolbox.

> C(lick a tool in the Toolbox to select it. Then hold down the Ctrl key while you click and
drag on the form to place a copy of the control on the form. When you release the mouse,
Visual Studio creates the control in the area you selected and keeps the control’s tool selected
in the Toolbox so you can make another control of that type.

> Double-click a tool in the Toolbox to create an instance of the control on the form at a
default size and position. (You’ll then probably want to resize and reposition it.)

> Select one or more controls that are already on the form, press Ctrl+C to copy them, and
then press Ctrl+V to paste them onto the form. You can even copy and paste from one
instance of Visual Studio to another.

> Select one or more controls on the form. While holding down the Ctrl key, drag the controls
to a new location. Visual Studio makes a copy of the controls, leaving the originals where
they started.

NOTE You have several ways to select controls on the Form Designer. Click a
control to select only it. Click and drag to select multiple controls.

Hold down the Shift or Cirl key while clicking or clicking and dragging to toggle
whether controls are in the current selection.

And, if you want to deselect all controls, simply click an empty part of the form
or press Esc.

www.it-ebooks.info

http://www.it-ebooks.info/

24 |

LESSON 2 CREATING CONTROLS

The first method (select a tool and then click and drag to create a control) is probably used most
often, but some of the other methods are particularly useful for creating groups of similar controls.

For example, the form in Figure 2-1 displays five rows, each of - Defendant L= 1 2 S|
which holds a Label and a TextBox. You could easily build all

of these controls individually, but you can build them even faster
by using copy and paste. First place one Label and TextBox on
the form, arrange them next to each other, and give them any
property values that you want all of the Labels or TextBoxes to
share. (For example, you may want to set their fonts or colors.)
Now click and drag to select both controls, copy and paste, and
drag the new controls into position. Repeat this three more times
and you’ll have all of the controls in position. You’ll still need to change the Labels’ text but the
basic arrangement will be done without going back and forth to the Toolbox.

First Name: | Hamy

Last Name: | Fatter

Locality: | Little Whinging

|
|
Street: [Privet Dr |
|
|

Town: |S|.|rrey

FIGURE 2-1

SETTING CONTROL PROPERTIES

After you’ve added controls to a form, you can use the Properties window to view and change their
property values. If you have more than one control selected, the Properties window shows only the
properties that the controls have in common.

For example, if you select a TextBox and a Label, the Properties window shows the Text property
because both Labels and TextBoxes have a Text property. However, it won’t display the Multiline
property because the TextBox control has that property but the Label control does not.

The Properties window provides special support for many control properties. For example,
Figure 2-2 shows the Properties window when a TextBox is selected.

Properties * 0 X
firstNameTextBox System.Windows.Forms. TextBox -
=00 g s
Dock Mone -
Enabled True
E_ Microsoft Sans Serif, S.P_Sptizl
Name Microsoft Sans Serif
Size 825
Unit Point
Bold False
GdiCharSet]
GdiVerticalFont False
Italic False
Strikeout False
Underline False
EoreCo.Io.r. . ! WindowText -
Font
The font used to display text in the control,

FIGURE 2-2
Notice that the Font property contains its own sub-properties: Name, Size, Unit, Bold, and so

forth. Click the plus or minus sign next to a property to expand or collapse it and show or hide its
sub-properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Control Properties | 25

Also notice in Figure 2-2 the ellipsis to the right of the Font property. If you click that ellipsis, the
dialog shown in Figure 2-3 appears. You can use this dialog to edit the font sub-properties and see a
sample of the font.

Font

Microsaft Sans Serif]

Mastal

Modern No. 20
Monotyps Corstva
MS Outlook

Microsoft Sans Seriffa

O

W

Effects
[Strikeout
[Undedine

Sample

AaBbYyZz

Sciipt:

Westem

FIGURE 2-3

The Properties window provides appropriate support when it can for other properties. Many proper-
ties can hold only certain values. For example, the Font’s Ttalic, Bold, Strikeout, and Underline
sub-properties can only take the values True or False. The Font’s Unit sub-property can only take
the values world, Pixel, Point, Inch, Document, and Millimeter. In these cases, the Properties
window provides a dropdown listing the allowed choices.

Figure 2-4 shows the editor that the Properties window displays when you click the dropdown
arrow to the right of a TextBox’s BackColor property. The Custom tab lets you pick a color from a
palette, the Web tab lets you pick standard web page colors, and the System tab lets you pick system
colors such as the normal control background color or the menu highlight color.

Properties A X
firstNameTextBox System.Windows.Forms. TextBox -
= nalg | s
AutoCompleteSource Mone =
EZEE] Vi =
BorderStyle Custom
CausesValidation
CharacterCasing I_ I_I_I_I_I_I_I_
ContextMenuStrip l_ l_ l_ l_ l_ l_ . l_
Cumt TS
Emabled L iyl
& Font AEENEEE.
ForeColor
GenerateMember I_I_I_I_I_I_I_I_ -
BackColor [T rrrrr
The background color of the component,

FIGURE 2-4

By using the Properties window’s editors and typing in values when there is no editor, you can
change a control’s appearance and behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

26 | LESSON 2 CREATING CONTROLS

Control Names

Whenever you create a control, Visual Studio gives it a rather nondescript name such as 1abel2,
textBox5, or pictureBox1. Although these names tell you what kind of object the control is, they
don’t tell you what it is for and that’s much more important when you later need to use the control
in your code. Names like firstNameTextBox, hatSizeTrackBar, and mediaTypeComboBox are
much more meaningful than textBox3 and textBox7.

Note that you don’t need to give good names to every control, just the ones that you will need to use later
in the code. You often don’t need to name Labels, GroupBoxes, and other purely decorative controls.

You can learn more about Microsoft’s naming conventions on the web page “Guidelines for Names”
at msdn.microsoft.com/library/ms229002.aspx.

WHAT'S IN A NAME, REDUX

Earlier in this lesson I said that control ¢ype names use Pascal casing. By conven-
tion, the names of specific instances of controls use camel casing, where multiple
words are strung together with the first letter of each word capitalized, except for
the first word. For example, the control type TextBox uses Pascal casing and the
specific control name firstNameTextBox uses camel casing.

It’s called camel casing because it sort of looks like a camel lying down: low at

the ends with one or more humps in the middle. I guess stateLabel would be a
dromedary (one-humped) camel, priceTextBox would be a Bactrian (two-humped)
Camel, and numberOfEmployeesCoveredByInsurancePlanTrackBar would be
some sort of camel created by Dr. Seuss.

WHAT’S IN A NAME, PART 3

Most C# developers add a control’s type as a suffix to its name as in first
NameTextBox Or resultLabel, but it’s becoming more common for developers to
use a more generic word such as value or field. The idea is that if you decide to
change the type of control that handles the value, you won’t need to change the
code that refers to the control.

For example, suppose your program uses a TrackBar to let the user select the number
of UFO detectors to purchase. If you name this control numUfobDetectorsvalue, then
you won’t need to change the code if you later decide to let the user select the value
from a NumericUpDown control instead of a TrackBar.

Some developers even omit the suffix completely as in numUfoDetectors, although
that can be confusing if you need more than one control to represent a similar
concept or if you want a variable inside the code that holds the numeric value repre-
sented by the control.

For now, I recommend that you stick with the control’s full type name as a suffix.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Control Properties | 27

Popular Properties

You’ll learn about key control properties as you go along, but for now Table 2-1 summarizes some
of the most useful properties. Note that not all controls have every property. For example, a Button
cannot display a border (or it always displays a border, depending on your point of view) so it has no
BorderStyle property.

TABLE 2-1

PROPERTY PURPOSE

Anchor Determines how the control sizes itself to use the available space. This
property is described further in Lesson 3.

AutoSize Determines whether the control automatically resizes itself to fit its
contents. This can be True or False. By default, Labels are born with
AutoSize = True.

BackColor Determines the control’s background color.

BackgroundImage Determines the image that the control displays.

BorderStyle Determines whether the control displays a border. This can be None,
FixedSingle, or Fixed3D.

Dock Determines how the control sizes itself to use the available space. This
property is described further in Lesson 3.

Enabled Determines whether the control will interact with the user. Many controls
display a special appearance when disabled such as being grayed out.
This can be True or False.

Font Determines the font that the control uses to display text.

ForeColor Determines the control’s foreground color. For controls that display text,
this is usually the text’s color.

Image Determines the image that the control displays. (Some controls have
Image, others have BackgroundImage, a few have both, and many cannot
display any image. No one said this was completely consistent!)

Items For controls such as ListBox and ComboBox, this is the list of items that
the user can select.

Location Gives the control’s location in pixels from the upper-left corner of what-
ever it is in (for now, assume it’s in the form). Location includes x and Y
sub-properties. For example, the value (10, 20) means the control is 10
pixels from the form’s left edge and 20 pixels from its top edge.

Name Gives the control a name that your code can use to refer to it later. You

should always give a good name to any control that you will refer to in code.

continues

www.it-ebooks.info

http://www.it-ebooks.info/

28 | LESSON 2 CREATING CONTROLS

TABLE 2-1 (continued)
PROPERTY PURPOSE

Size Gives the control’s width and height in pixels. For example, the value (75,
30) means the control is 75 pixels wide and 30 pixels tall.

Tag This property can hold any value that you want to store with the control.
For example, you might put text or a number in the Tag properties of
some Buttons so the code can easily tell the Buttons apart.

Text Many controls have a Text property that determines what the control dis-
plays. For Labels and TextBoxes, Text determines the text they show
(pretty obvious). For controls such as ComboBoxes and ListBoxes, Text
determines the control’s current selection. For a Form, which in a real sense is
just another kind of control, Text determines what's displayed in the title bar.

TextAlign Determines how text is aligned within the control.

Visible Determines whether the control is visible. This can be True or False. Set
it to False to hide a control from the user.

If you want some practice with these properties, create a new project and give them a try. Create a
Button and set its Text property. Also click the form and set its Text property. Change the form’s
Font property and see what happens to the form and the button it contains. Experiment with some
of the other properties such as Tmage and ForecColor if you like.

Modifying Properties in Code

This lesson doesn’t really go into handling control events very much (that’s the subject of

Lesson 4), but I do want to explain how to set properties in code and you need event handlers to do
that. Besides, it’s easy and sort of fun, and it’ll let you make a program that does something more
than just sitting there looking pretty.

To make a simple event handler for a control, double-click the control in the Form Designer. That
opens the Code Editor and creates an empty event handler for the control’s default event. For
Button controls, that’s the c1ick event. Whenever the user clicks the control at run time, it raises its
Click event and this code executes.

To change a property in code, type the control’s name, a dot (or period), the name of the property,
an equals sign, and finally the value that you want to give the property. Finish the line of code
with a semicolon. For example, the following statement sets the Left property of the label named
greetingLabel to 100. That moves the label so it’s 100 pixels from the left edge of its container:

greetingLabel.Left = 100;

The following code shows a complete event handler:

// Move the Label.
private void moveLabelButton Click(object sender, EventArgs e)

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Control Properties | 29

{
}

In this code, I typed the first line that starts with two slashes. That line is a comment, a piece of
text that is contained in the code but that is not executed by the program. Any text that comes after
the // characters is ignored until the end of the current line. You can (and should) use comments to
make your code easier to understand. They don’t make the executable program bigger or slower, so
don’t be stingy with your comments!

greetinglLabel.Left = 100;

I also typed the line that sets the Label’s Left property.

Visual Studio typed the rest when I double-clicked the moveLabelButton control. You don’t need
to worry about the details of this code right now, but briefly the sender parameter is the object that
raised the event (the Button in this example) and the e parameter gives extra information about the
event. The extra information can be useful for some events (for example, in the MouseClick event it
tells where the mouse was clicked), but it’s not very interesting for a Button’s Click event.

Simple numeric values such as the 100 used in this example are easy to set in code, but some proper-
ties aren’t numbers. In that case, you must set them to values that have the proper data type.

For example, a Label’s Text property is a string so you must give it a string value. The following
code sets the greetingLabel control’s Text property to the string Hello:

greetinglLabel.Text = "Hello";

NOTE Notice that you must include the string Hello in double quotes to tell C#
that this is a literal string and not some sort of C# command. If you leave the
quotes off, C# gets confused and gives you the error “The name ‘Hello’ does not
exist in the current context.”

Over time, you’ll get used to messages like this and they’ll make sense. In this
case, the message just means, “I don’t know what the word ‘Hello’ means.”

Other property values have more exotic data types such as Date, AnchorStyles, Point, and
BindingContext. When you set these properties, you must make sure that the values you give them
have the correct data types. I’'m going to ignore most of these for now, but one data type that is rela-
tively simple and useful is color.

A control’s ForeColor and BackColor properties have the data type Color so you cannot simply set
them equal to strings such as Red or Blue. Instead you must set them equal to something that also
has the type color. The easiest way to do that is to use the colors predefined by the color class.
This may seem a bit confusing, but in practice it’s actually quite easy.

For example, the following two statements set a Label’s BackColor and ForeColor properties to
HotPink and Blue, respectively:

greetinglLabel .BackColor = Color.HotPink;
greetinglLabel.ForeColor = Color.Blue;

www.it-ebooks.info

http://www.it-ebooks.info/

30 | LESSON2 CREATING CONTROLS

The following code shows how the MoveButton example program, which is available as part of this
lesson’s code download on the book’s website, changes several Label properties when you click a

Button:

// Change a Label's properties.
private void moveLabelButton Click(object sender, EventArgs e)
{
greetinglLabel.Left = 100;
greetinglLabel.Text = "Hello";
greetinglLabel.BackColor = Color.HotPink;
greetinglLabel.ForeColor = Color.Blue;

ARRANGING CONTROLS

The Form Designer provides several tools to help you arrange controls at design time. The following
sections describe some of the most useful: snap lines, arrow keys, the Format menu, and the Layout

toolbar.

Snap Lines

When you drag a control around on the form, the ad Form1 [=][o]B
Form Designer displays snap lines that show how the
control lines up with the form and with other controls.
Figure 2-5 shows the Form Designer displaying light
blue snap lines indicating that the control is standard
distances away from the form’s top and left edges.
You can drag the control away from this position and, Greefings
if you do so, the snap lines disappear. When you drag
the control close to one of the form’s edges, the control FIGURE 2.5
jumps to the standard distance and the Form Designer
displays the snap lines again.
L= Form1 [=][=]E=

The Form Designer also displays snap lines to show
how controls align. In Figure 2-6, I dragged a second Move Button

Button below the first. Different snap lines show that: I
Button 2

» The second Button is the standard distance Ly
from the form’s left edge.
. . Greetings
> The second Button’s left and right edges line :
up with the first Button’s edges.
» The second Button is a standard distance FIGURE 2-6

below the first Button.

Other snap lines show how the control contents line up. In Figure 2-7 snap lines show that the
Label is the standard distance from the second Button and that the Label’s text baseline lines up

with the baseline of the second Button.

www.it-ebooks.info

http://www.it-ebooks.info/

Arranging Controls | 31

For a more realistic example, consider Figure 2-8. In N

. . 5 Form1 EE.
this figure I was laying out a small data entry form,
and I wanted all of the Labels and TextBoxes to line
up nicely. In this figure, snap lines show that the Street " utons |
TextBox is lined up on the left and right with the other [EE%MB
TextBoxes, is a standard distance from the TextBoxes
above and below, is a standard distance from the
form’s right edge, and has its baseline lined up with the
Street Label.
FIGURE 2-7
Arrow Keys
In addition to dragging controls with the mouse, you can move ud New Customer =@
controls by pressing the arrow keys. Select one or more controls R
and then use the left, right, up, and down arrow keys to move the i |[—
control(s) one pixel at a time. This method is slower than using the et [TmE
mouse but gives you finer control. Ciy: o ———
When you move controls with the arrow keys, the Form Designer See: oA v| 2P 12345679
doesn’t display snap lines so you may want to keep an eye on the con-
trol’s Location property in the Properties window to see where it is.
FIGURE 2-8

The Format Menu and Layout Toolbar

The Format menu contains many commands that arrange one or more controls. Table 2-2 summa-

rizes the Format menu’s submenus.

TABLE 2-2
SUBMENU COMMANDS

Align
centers.

Make Same Size

Horizontal Spacing

Aligns groups of controls on their lefts, middles, rights, tops, bottoms, or

Makes controls have the same width, height, or both.

Adjusts the horizontal spacing between controls. It can make the space

between controls equal, smaller, larger, or zero.

Vertical Spacing
spacing between controls.

Center in Form

Works like the Horizontal Spacing submenu except it adjusts the vertical

Centers the controls vertically or horizontally in their container. If the con-

trols are inside a container like a Panel or GroupBox, these commands
center the controls within the container, not the form.

Order

These commands send a control to the front or back of the stacking order.
This is useful if you have controls that overlap so some are behind others.

www.it-ebooks.info

http://www.it-ebooks.info/

32 | LESSON2 CREATING CONTROLS

The Layout toolbar contains the same commands as the Format menu but in a handy toolbar so
they’re easier to use. The buttons display little pictures that show how they align controls.

NOTE How these tools arrange controls depends on how you select the con-
trols. One of the selected controls, normally the first one you select, is the
group’s dominant control. The dominant control is marked with white boxes at
its corners, whereas the other controls are marked with black boxes.

When you use an arranging tool, the dominant control determines how the oth-
ers are arranged. For example, if you select the Format = Align = Lefts com-
mand, the other controls are moved so their left edges line up with the dominant
control’s left edge.

To change the dominant control in a selected group, click the one you want to be
dominant (without holding down the Ctrl or Shift keys).

WPF CONTROLS

WPF applications use their own set of controls, some of which are similar to controls used by
Windows Forms applications. Visual Studio for Windows lets you create WPF applications in
roughly the same way Visual Studio for Windows Desktop lets you make Windows Forms applica-
tions. Both provide an editor where you can click and drag to create controls and a Properties win-
dow where you can set control properties.

One big difference is that Visual Studio also displays a XAML code editor for WPF applications.
XAML, which stands for “eXtensible Application Markup Language” and which is usually pro-
nounced “zammel,” is a language that Visual Studio uses to define user interfaces for WPF applications.

Sometimes it’s easier to edit the XAML code directly than it is to use the Window editor. In particu-
lar, it’s often easier to make copies of controls by copying and pasting XAML code (and changing
the new controls’ names) than it is to copy controls in the Window editor.

For now, you should probably start with the Window editor, but you may also want to look at the
XAML code and experiment with it a bit to see how it works.

TRY IT

In this Try It, you get some practice building a user interface. You place controls on a form and
arrange them so they line up nicely. You also get some practice setting control properties at design
time and changing them at run time.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 33

Lesson Requirements
In this lesson, you:

> Add controls to a form and arrange them as shown in
Figure 2-9. (Note the form’s title and the fact that the
form has a non-resizable border.)

> Give the key controls names.

> Set properties at design time on the result label (at the
bottom in Figure 2-9) to make the label:

> Display its text centered.
Show a border.

>
> Use a 16-point font.
>

Remain invisible until the user clicks one of the

buttons.

New Customer = = -

First Name |Cosmo

Last Name |Bodklinger

Sreet [1337Lest &
City [Prog

Sae 20

[ok | [cenesl |

New Customer Created

FIGURE 2-9

> Make the OK button be the form’s default button so it fires when the user presses Enter.
Make the Cancel button be the form’s cancel button so it fires when the user presses Esc.

> Add code behind the OK button to display the result label with a green background as shown

in Figure 2-9.

> Add code behind the Cancel button to display the result label with a hot pink background

and the text “Operation Canceled.”

site at www.wrox.com/go/csharp24hourtrainer2e.

NOTE You can download the code and resources for this lesson from the web-

Hints

> Create the First Name Label and TextBox first and arrange them. Then copy and paste them

to make more Labels and TextBoxes.

> Use the Format menu or Layout toolbar to center the buttons and the result label.

Step-by-Step

> Add controls to a form and arrange them as shown in Figure 2-9. (Note the form’s title and

the fact that the form has a nonresizable border.)

1. Start a new project named NewCustomer. Remember to put it somewhere easy to find.

2. Use the Properties window to set the form’s Text property to New Customer.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

34 | LESSON 2 CREATING CONTROLS

3. Use the Properties window to set the form’s FormBorderstyle property to
FixedDialog. (Feel free to experiment with the other values.)

4. Create the First Name TextBox.

a. Click the Toolbox’s TextBox tool and then click and drag to place a TextBox on
the form.

b. Drag the TextBox into the form’s upper-right corner until the snap lines show
that it is a standard distance from the top and right edges of the form.

5. Create the First Name Label.
a. Click the Toolbox’s Label tool and then click and drag to create the Label.

b. Drag the Label to the form’s upper-left corner so the snap lines show that the
Label is a standard distance from the form’s left edge and that its baseline aligns
with the TextBox’s baseline.

C. To determine the Label’s width, you need to set its text. Use the Properties win-
dow to set the Label’s Text property to First Name.

d. Click the TextBox. Click the drag handle on the TextBox’s left edge and drag it
until it is a standard distance from the Label.

6. Make copies of the Label and TextBox.
a. Click and drag to select both the Label and the TextBox.

b. Press Ctrl+C to copy the controls. Then press Ctrl+V to paste new copies of the
controls.

C. With the new controls still selected, click and drag the TextBox until the snap
lines show it is standard distances away from the TextBox above and from the
form’s right edge.

d. Usethe Properties window to set the new Label’s Text property to Last Name.

€. Repeat this four more times (using appropriate Text values) until you have five
rows of Labels and TextBoxes.

7. Make the ZIP Label.

a. Set the bottom TextBox’s Text property to 12345-6789. Then use the TextBox’s
left drag handle to resize it so it’s a bit bigger than its Text value (see Figure 2-9).

b. Create a Label for the ZIP code and set its Text property to ZIP. Drag it so the
snap lines show its baseline aligns with the baseline for the Label and TextBox
on that same line, and it is the standard distance to the left of the TextBox.

C. Use the Properties window to set the TextBox’s TextAlign property to Right.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 35

8. Make the State comboBox.

a. Use the Toolbox to make a comboBox. Set its Text property to WW and resize it
so the text fits reasonably well.

b. Drag the comboBox so the snap lines show its baseline aligns with the Labels on
that row and its left edge aligns with the left edges of the TextBoxes above.

C. With the comboBox selected, look in the Properties window and click the Ttems
property. Then click the ellipsis (...) button on the right to open the String
Collection Editor. Enter CO, AZ, WY, UT, and any other state abbreviations
that you want to use and click OK. (If you want to enter Confusion and Denial,
you’ll need to make the comboBox wider.)

d. Use the Properties window to set the DropDownStyle property to DropDownList.

NOTE The DropDownStyle value Simple makes the ComboBox display a TextBox
where the user can type and a list below it where the user can make selections.

The value DropDown makes the ComboBox display a TextBox where the user can
type and a dropdown arrow that makes a dropdown list appear.

The value DropDownList is similar to DropDown except the user can only select
from the dropdown list and cannot type new values. DropDownList is often the
best choice because it prevents the user from typing invalid values.

9. Make the Buttons.

a. Double-click the Toolbox’s Button tool twice to make two Buttons with stan-
dard sizes.

b. Dragone Button so it is a nice distance below the TextBoxes. Drag the other
Button so it’s aligned vertically with the first, positioning it some reasonable dis-
tance to the side (the exact distances don’t matter here).

C. Click and drag to select both Buttons. Select Format = Center in
Form = Horizontally.

d. Use the Properties window to give the Buttons the Text values OK and Cancel.

10. Use the Toolbox to make the result Label. (Don’t worry too much about its size and
position right now. Just drop it somewhere close to where it is shown in Figure 2-9.)

> Give the key controls names.

1. Give the key controls the names shown in Table 2-3. You don’t need to give names
to the other controls because the program won’t need to refer to them. (Actually this
example doesn’t refer to the TextBoxes or ComboBox either, but a real program certainly
would. A form wouldn’t contain TextBoxes and ComboBoxes that it won’t use.)

www.it-ebooks.info

http://www.it-ebooks.info/

36 | LESSON2 CREATING CONTROLS

TABLE 2-3
CONTROL
First Name TextBox
Last Name TextBox
Street TextBox
City TextBox
State ComboBox
ZIP TextBox
OK Button
Cancel Button

Result Label

NAME
firstNameTextBox
lastNameTextBox
streetTextBox
cityTextBox
stateComboBox
zipTextBox
okButton
cancelButton

resultLabel

> Set properties at design time on the result label (at the bottom in Figure 2-9) to make the label:

> Display its text centered.

1. Set the Label’s TextAlign property to Middlecenter. (Use the Properties win-
dow’s Textalign editor to select the middle position.)

2. Set the Label’s AutoSize property to False.

3. Set the Label’s Size property to 218, 37. (Or expand the Size property and set
the width and Height sub-properties separately.)

4. Use the Format menu or Layout toolbar to center the Label on the form.

» Show a border.

1. Set the Label’s BorderStyle property to Fixed3D.

> Use a 16-point font.

1. Expand the Properties window’s Font entry. Set the Size sub-property to 16.

» Remain invisible until the user clicks one of the buttons.

1. Set the Label’s Visible property to False.

> Make the OK button be the form’s default button so it fires when the user presses Enter.
Make the Cancel button be the form’s cancel button so it fires when the user presses Esc.

1. Click the form and use the Properties window to set the form’s AcceptButton property

to okButton.

2. Similarly, set the form’s cancelButton property to cancelButton.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 37

Add code behind the OK button to display the result label with a green background as shown
in Figure 2-9.

1. Double-click the OK button to create an event handler for its c1ick event.

2. Type the bold text in the following code so the event handler looks like this:

// Create the new customer.
private void okButton Click (object sender, EventArgs e)

{

resultLabel.Text = "New Customer Created";
resultlLabel.BackColor = Color.LightGreen;
resultLabel.Visible = true;

}

Add code behind the Cancel button to display the result label with a hot pink background
and the text “Operation Canceled.”

1. Double-click the Cancel button to create an event handler for its Click event.

2. Type the bold text in the following code so the event handler looks like this:

// Don't create the new customer.

private void cancelButton Click (object sender, EventArgs e)
resultLabel.Text = "Operation Canceled";
resultLabel.BackColor = Color.HotPink;
resultlLabel.Visible = true;

}

Now run the program and experiment with it. Notice what happens when you press the Enter and
Esc keys while focus is in a TextBox. See what happens if focus is on one of the Buttons.

EXERCISES

1.

[Games] Build a checkerboard similar to the one o Checkerboard | — | 2 [|
shown in Figure 2-10. (Hints: The squares are
PictureBoxes with different background colors.
Give the form a bluish background. Finally, use
the Format menu or Layout toolbar to align the
controls.)

[Games, WPF] Repeat Exercise 1 with a WPF
application. (Hints: Place colored Rectangles
inside a WrapPanel with a width that makes the
Rectangles wrap in eight columns.)

[Games]| Make a tic-tac-toe (or naughts-and-
crosses) board similar to the one shown in

Figure 2-11. (Hints: Make three Labels for each
square, named after the rows and columns. For the
upper-left square, name them xooLabel for the FIGURE 2-10

www.it-ebooks.info

http://www.it-ebooks.info/

38 | LESSON 2 CREATING CONTROLS

10.

little X Label, oooLabel for the little O Label, and 0 Ticracioe =2 HEH
taken0OLabel for the big Label. Give the smaller Labels

X] X (0] X 4]
Click event handlers that set the Text property of the corre-
sponding big Label. Don’t worry about the rules such as not X O X
allowing someone to take a square that is already taken.) A milm mlE G
[Games, WPF] Repeat Exercise 3 with a WPF application. O
(Hints: For each square, use a Border with Margin values set e
to 5. A Border can hold only one content control, so put a X

canvas in each Border. Then put the three Labels inside the
canvas. Put the nine Borders inside a WrapPanel sized so they
form three columns. See the video Making Event Handlers for
instructions on how to make the small Labels act like buttons. Add interesting backgrounds
if you like.)

FIGURE 2-11

[Games] Modify the tic-tac-toe program from Exercise 3 so instead of displaying X or O
in each square, it displays pictures. Use your favorite football team logos, a cat and a dog,
your picture and your boss’s, or whatever. (Hints: Use PictureBoxes instead of the large
Labels. Add two hidden PictureBoxes to the form. To set their Image properties, click
the ellipsis next to the Image property in the Properties window, click the Import but-
ton, and browse for the image files. Finally, instead of setting a Label’s Text property,
the click event handlers should set the appropriate PictureBox’s Image property equal
to one of the hidden PictureBox’s Image properties. Set all sizeMode properties of the
PictureBoxes to Zoom.)

[WPF] Repeat Exercise 5 with a WPF application. (Hints: Use Image controls instead of the
large Labels. Use two Images with Visiblity = Hidden to store the X and O images. In an
event handler, use code similar to taken21Image.Source = oImage.Source.)

Make a program with a Label that says “Move Me” and four Buttons with text (0, 0), (200,
200), (200, 0), and (0, 200). Make each Button move the Label to the corresponding posi-
tion by setting its Left and Top properties.

[WPF] Repeat Exercise 7 with a WPF application. (Hints: Set the Label’s position with code
similar to moveMeLabel .Margin = new Thickness (0, 200, 0, 0).)

The solution to Exercise 7 moves its Label in two steps by setting its Left and Top proper-
ties. Modify the program so it sets the Label’s Location property in a single step using code
similar to this:

moveMeLabel .Location = new Point (0, 0);

o Menu
Build a hotel menu form similar to the one

shown in Figure 2-12. (Hints: Copy and paste
the Labels and TextBoxes from the Try It pro-

First Name |Zaphod |

g

Last Name | Beeblebrox |

, , - . Room# 42 |
gram. To set the PictureBox’s image, look in _

. Brealdast Lunch Dinner
the Properties window and click the ellipsis next (] Toas 7] Sendvich (] Steac
to the Image property. In the Select Resource Cereal Soup 7 Lobster
dialog, click Import and browse to select a pic- [] Pancakes Salad Tofu
ture. Finally, set the PictureBox’s SizeMode
property to AutoSize.) FIGURE 2-12

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 39

1.

12.

13.

14.

15.
16.

[WPF] Repeat Exercise 10 with a WPF
application.

Build a form similar to the one shown in
Figure 2-13. (Don’t worry about making
the program perform any calculations.
You’ll learn how to do that later.)

[WPF] Repeat Exercise 12 with a WPF
application.

Build a form similar to the one shown
in Figure 2-14. (Search the Internet for
“labeled diagram™ and pick an interest-

al

SKU # Description

Bill of Sale

CQuartity

BE |

Price Each tem Tatal

29837] [Basketball dleats

$49.95) [s49.95

13973 | Volleybal helmet

527.95| | s167.70)

515.25| [53050

|
|
| 423098| [Footbal paddie
|

Subtotal £24815
10% Tax 82482
Total 527257

FIGURE 2-13

ing image. Use MS Paint or some other image editing program to remove the labels. Then
add TextBoxes where the labels were so the user can fill them in.)

ozl Budgie Parts

) Cheek patch

—Cere
Beak

FIGURE 2-14

[WPF] Repeat exercise 14 with a WPF application.

Build a bar chart similar to the one shown in Figure 2-15. (Hints: Use a PictureBox for the
chart’s background and Labels for the bars.)

www.it-ebooks.info

http://www.it-ebooks.info/

40 | LESSON 2 CREATING CONTROLS

17.

18.

19.

20.

o People in Car = = -

0 —|—\

1 2 3 4 B+
People in Car

FIGURE 2-15

[WPF] Repeat Exercise 16 with a WPF application. Give the chart background a color gradi-
ent and label the Y axis with a sideways label that says “Occurrences.”

Build a bar chart similar to the one shown in Figure 2-16. (Hints: Use PictureBoxes for the

bars.)

ad People in Car 2 = | = -
20
18
0 —_—
,._.)
ol
5 T
N e—
KO @ Fany
[~ QA—‘—‘
0 = &) F Y
1 2 3 4 5+
People in Car
FIGURE 2-16

[WPF hard] Repeat Exercise 18 with a WPF application but fill the bar Tmage controls

with a tile brush that uses a small picture of a car. Set the brush’s TileMode = Tile

and stretch = None. Use the XAML editor to add the code viewport="0,0,55,27"
ViewportUnits="Absolute" inside the brush’s definition. The result should be bars that are
tiled with little pictures of cars.

Modify the program you made for Exercise 18 to add tooltips for the bars. (Add a ToolTip
control named peopleToolTip to the form. Then use the Properties window to set the
“ToolTip on peopleToolTip” property for the bar labels. For example, make the second bar’s
tooltip say “2 people.”)

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 41

21.

22.

23.

[WPF] Repeat Exercise 20 with a WPF application. (Hint: In WPF you don’t need to use a
ToolTip control. Just set the bars’ ToolTip properties.)

[WPF hard] Build a WPF program similar to the one shown in Figure 2-17. (Hints: For the
reflected text, use a Label. Make its Foreground brush shade from medium gray to light
gray. In the Transform property category, set the scale in the Y direction to —1 and set the
skew in the X direction to 30.)

0 Mirror Text == -

Mirror Text

FIGURE 2-17

[Games| Make a program named MovingButton. Make a Button named clickMeButton
that says “Click Me.” Add a Timer named moveButtonTimer to the form and set its
Interval property to 500.

Next double-click the Timer to open the code for its Tick event and add the bold text so the
event handler looks like the following;:

Random Rand = new Random() ;
private void moveButtonTimer Tick (object sender, EventArgs e)

{

clickMeButton.Left = Rand.Next (0, 250);
clickMeButton.Top = Rand.Next (0, 250);

}

Now double-click the Button and add the bold text in the following code to create its event
handler:

private void clickMeButton Click(object sender, EventArgs e)

{
}

Run the program and have fun! Experiment with different values for the Timer’s Interval
property such as 2000 and 10.

moveButtonTimer.Enabled = !moveButtonTimer.Enabled;

NOTE Please select the videos for Lesson 2 online at www.wrox .com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Making Controls Arrange
Themselves

Lesson 2 explained how to add controls to a form and arrange them nicely. Using those tech-

niques, you can create forms like the one shown in Figure 3-1. (Although we haven’t covered
the code behind that program’s form yet.)

a! Book List
Books Details
;tm:lim Dariel Finkwater) - Title: |Beglnnlng Software Engineering ‘
??lnln Database Design Solutions Author |Rod Stephens ‘
Cold Copper Tears =
Enderaoe = ISBN [978-1-118-969144 |
gi‘ﬂlgga,:;gvels URL hitp://www.wrox.com/WikeyCDAVro Sofe
Mot ortware
Nation Pages Engineering
Something from the Mightside 7=
Spit Infiity - Year 2015
FIGURE 3-1

That form looks okay in Figure 3-1, but what if the user enlarges the form as shown in
Figure 3-2? Pretty lame, huh? Although the form is bigger, the areas that contain data are not.

pe Book List [- [= [
Books Details
;1?;2:';0%; Daniel Pinkwater) - Title |Beg|nn|ng Software Engineering |
™ 'nn se Desi Author |Rnd Stephens |
Cold Copper Tears = ISBN [978-1-118.969144 |
EEU'EEES“?”,E s URL hitp://www wrox.com/WieyCDAMro | egraing
gsmﬁtr;i:%fmm the Nightside > Year ok
FIGURE 3-2

www.it-ebooks.info

http://www.it-ebooks.info/

44 | LESSON 3 MAKING CONTROLS ARRANGE THEMSELVES

The URL for the book selected in Figure 3-2 is too long to fit within the GroupBox, so it is truncated
even though the form has extra wasted space on the right. The ListBox isn’t big enough to display
all of its items even though there’s wasted space at the bottom. It would be nice if the controls rear-
ranged themselves to use the available space and display the entire URL and more list items.

Figure 3-3 shows another problem with this form. If the user shrinks the form, the TextBoxes and
URL LinkLabel are chopped off, the Year Label and TextBox are chopped in half vertically, the
ListBox doesn’t fit, and the cover picture is completely missing.

o Book List = || E -

Books

Details
iﬂtm:‘im Dariel Pinkwater) ~ Title Beginning Software Engineering
Beginning Database Design Solutions Author [Rod Stephens

Be Software Engineering
Cold Copper Tears

Ender's Game = ISEN |578-1-118-96914-4
Fablehaven
Gulible’s Travels URL hittp./www wro com./WileyCD
Mort
Nation Pages
Something from the Mightside v [anigl

FIGURE 3-3

The program would look nicer if the controls were shrunk so you could at least see their edges.
Some of the values still wouldn’t fit, but at least the form wouldn’t look so amateurish. You could
even make the form refuse to shrink so it’s too short to display the Year controls.

This lesson explains some simple ways you can make controls rearrange themselves to take advan-
tage of whatever space is available, and how to give the form minimum and maximum sizes so the
user can’t resize it until it’s completely useless.

RESTRICTING FORM SIZE

Forms (and in fact all controls) have MinimumSize and MaximumSize properties that you can use

to restrict the form’s size. Simply set these properties to a width and height (or set their width and
Height sub-properties) and the form does the rest.

For example, to prevent the user from making the form shown in Figure 3-3 too small, you can set
the form’s Minimumsize property to 663, 233.

USING ANCHOR PROPERTIES

The MinimumSize property prevents the user from making a form too small but it doesn’t solve the

problem shown in Figure 3-2. When the user resizes a form, it would be nice if the controls changed
their sizes to match.

The Anchor property lets a Windows Forms control resize itself when its container resizes. This
property can take one or more of the values Top, Bottom, Left, and Right, in any combination.

These values indicate that the control’s edge should remain the same distance from the correspond-
ing edge of its container.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Anchor Properties | 45

For example, initially a control’s Anchor property is set to Top, Left so it remains the same dis-
tance from its container’s top and left edges. If you resize the form, the control doesn’t move.

For a more interesting example, suppose you place a TextBox on a form, set its Multiline property
to True, arrange it so its edges are 12 pixels from the edges of the form, and set its Anchor property
to Top, Bottom, Left, Right. Then when you resize the form, the TextBox resizes itself so all of
its edges remain 12 pixels from the form’s corresponding edges.

NOTE If an Anchor’s values don’t include either Left/Right or Top/Bottom,
the control moves to keep itself the same distance from the middle of the form.
For example, if a Button’s Anchor property is Bottom, it moves so it remains the
same distance from the horizontal middle of the form.

This fact lets you keep one or more controls centered. For example, place
several Buttons near the bottom of a form and choose Format = Center in
Form = Horizontally to center them horizontally. Now if you set their Anchor
properties to Bottom, the group of Buttons remains centered when the form
resizes.

NOTE The anchor property cannot resize a control such as a Label or
LinkLabel if that control has autosize set to True. In that case, the control has
its own ideas about how big it should be.

To set the anchor property at design time, you can type a value like Top, Left, Right into the
Properties window or you can use the Properties window’s Anchor editor.

To use the editor, click the anchor property in the Properties window. Then click the dropdown
arrow to the right to make the editor shown in Figure 3-4 appear. Click the skinny rectangles to
select or deselect the anchors that you want to use. (In Figure 3-4 the top, bottom, and right anchors
are selected.) When you’re finished, press Enter to accept your changes or Esc to cancel them.

Properties * A X
coverPictureBox System.Windows.Forms.PictureBo -
=0 P g s
(DataBindings) -
(Mame) coverPictureBox
AccessibleDescription
AccessibleName

AccessibleRole Default
Top, Bottom, Right [7]
BackColor

Backgroundlmage

Backgroundimagelayouf.

BorderStyle

ContextMenuStrin
Anchor

Defines the edges of the container to which a certain
control is bound. When a control is anchored to an e...

FIGURE 3-4

www.it-ebooks.info

http://www.it-ebooks.info/

46

LESSON 3 MAKING CONTROLS ARRANGE THEMSELVES

Using the Anchor property, you can solve the problem shown in Figure 3-2. Table 3-1 gives the
Anchor property values used by the controls to let them take advantage of the form’s available space.

TABLE 3-1
CONTROL
booksListBox
detailsGroupBox
titleTextBox
authorTextBox
isbnTextBox
urlLinkLabel

coverPictureBox

Now when the form resizes:

ANCHOR PROPERTY

Top,
Top,
Top,
Top,
Top,
Top,

Top,

Bottom, Left
Bottom, Left, Right
Left, Right

Left, Right

Left, Right

Left, Right

Bottom, Right

> The ListBox stretches vertically to match the form’s height.

> The croupBox stretches vertically and horizontally to use as much of the form’s width and
height as possible.

> The TextBoxes and LinkLabel stretch horizontally to be as wide as possible while still fitting
inside the GroupBox.

> The pictureBox moves with the GroupBox’s right edge so it leaves as much room as possible
to the left for the TextBoxes and LinkLabel. It also stretches vertically as much as possible

while fitting inside the GroupBox.

Figure 3-5 shows the result. Now the ListBox is big enough to show all of its items and the
LinkLabel is big enough to show the entire URL.

o

Books

5 Novels by Daniel Finlwater)
Artemis Fowl

Beginning Database Design Solutions
Cold Copper Tears

Ender's Game

Fablehaven

Gulible’s Travels

Mart

Nation

Something from the Nightside
Split Infinity

The Lightning Thief

The Man with the Golden Tarc
The Tue Game

Wirtersmith

Details

Book List 2 = ':'-

Title |Bsginning Software Engineering

Author |Rod Stephens

ISBN |97&1—11Er9’63144

URL hittp./ A swrooc com./ Wil

Pages
‘fear

DA Title/Beginning-Software-Engineering productCd-1118965146.hitml

Software
Engineering

FIGURE 3-5

www.it-ebooks.info

http://www.it-ebooks.info/

Using Dock Properties | 47

Note that the TextBoxes and LinkLabel do not stretch horizontally when the form resizes; they
stretch when the GroupBox that contains them resizes. In this example, when the form stretches, the
GroupBox stretches, and when the GroupBox stretches, the TextBoxes and LinkLabel stretch, so the
result is the same.

USING DOCK PROPERTIES

The Anchor property can handle most of your arranging needs, but some combinations of Anchor
values are so common that C# provides another property to let you handle these situations more eas-
ily: Dock. The Dock property lets you tell a control to attach itself to one of the edges of its container.

For example, a menu typically stretches across the top of a form. You could provide that behavior by
setting the menu’s Anchor property to Top, Left, Right, but setting Dock to Top is even easier.

The Dock property can take one of six values. Left, Right, Top, and Bottom attach the control to
the corresponding edge of its container. Fi11 makes the control take up any space left over after any
other controls’ Dock properties have had their way. None detaches the control so its Anchor property
can take over.

NOTE The Dock property cannot resize a control such as a Label or LinkLabel
if that control has rutoSize set to True.

The Dock property processes positioning requests in a first-come-first-served order based on the con-
trols’ stacking order on the form. In other words, it positions the first control that it draws first. The
second control positions itself in whatever space is left over. Then the third control positions itself in
the remaining space, and so on.

Normally the stacking order is determined by the order in which you add controls to the form, but
you can change the order by right-clicking a control and selecting Bring to Front or Send to Back.
However, if you’re working with a complicated set of Dock properties and the stacking order gets
messed up, it’s often easier to delete all of the controls and start over from scratch.

Figure 3-6 shows a form holding five docked Labels (with AutoSize = False). The numbers in the
controls’ Text properties give the order in which they were created, which is also their stacking order.

o Docking [-[= [T
1. Top
5. Fill _
2. Left 3. Right
4. Bottom

FIGURE 3-6

www.it-ebooks.info

http://www.it-ebooks.info/

48 | LESSON 3 MAKING CONTROLS ARRANGE THEMSELVES

The following list explains how the form’s space was divvied up among the Labels:

1.
2.

The first Label has Dock = Top, so it took the full width of the top part of the form.

The second Label has Dock = Left, so it took the left edge of the remaining area (after the
first Label was positioned).

The third Label has Dock = Right, so it took the right edge of the remaining area.
The fourth Label has Dock = Bottom, so it took the bottom edge of the remaining area.

The final Label has Dock = Fill, so it filled all of the remaining area.

DOCKED MENUS

In one typical docking scenario, a form contains a MenuStrip with Dock = Top
and a container such as a Panel with Dock = Fill so it takes up the rest of the
form. All of the other controls are placed inside the pPanel.

You can also add ToolStrips, ToolStripContainers, and StatusBars with the
appropriate Dock properties to put those controls in their correct places. Figure 3-7
shows a form holding a MenuStrip (Dock = Top), a ToolStripContainer (Dock =
Top) containing two ToolStrips, a StatusStrip (Dock = Bottom), and a Panel
(Dock = Fill). I made the panel slightly darker so it’s easy to see where it is.

[

5

This is a MenuStrip
This is a TeolStrip inside a ToolStripContainer

This is a second TeolStrip

This is a StatusStrip

Docked Menus = [= -

This is a Label inside the Panel

FIGURE 3-7

LAYOUT CONTAINERS

Visual Studio provides several controls that arrange the child controls that they contain in different
ways. For example, the WPF crid control can arrange controls in rows and columns.

The following sections summarize layout containers for Windows Forms and WPF applications.

Windows Forms Controls

Windows Forms applications use only a few layout controls. Often most of a form’s controls are
placed directly on the form.

www.it-ebooks.info

http://www.it-ebooks.info/

Layout Containers | 49

The following list summarizes the most useful Windows Forms layout controls.

>

Form—The form itself is a layout container that lets you arrange controls by setting their
Top, Left, Width, Height, Anchor, and Dock properties.

FlowLayoutPanel—Arranges controls left to right, right to left, top to bottom, or bottom to
top, wrapping to new rows or columns if necessary.

panel—Lets you arrange controls much as a form does by setting their Top, Left, Wwidth,
Height, Anchor, and Dock properties.

TableLayoutPanel—Lets you arrange controls in rows and columns. Set a control’s
RowSpan and ColumnSpan properties to let it span multiple rows or columns.

Those few controls let you arrange controls very flexibly.

WPF Controls

NOTE If you're focusing on Windows Forms applications for now, skip this sec-
tion and come back to it later.

WPF applications use a different control arrangement philosophy than the one used by Windows
Forms applications. In a Windows Forms application, a control’s Anchor and Dock proper-

ties arrange that control as needed. In contrast, a WPF application typically uses containers to
arrange controls.

For example, in a Windows Forms application, you might make a collection of Labels and
TextBoxes and line them up neatly in two columns and five rows. In contrast, in a WPF application
you might create a Grid control with two columns and five rows. You would then place Labels and
TextBoxes inside the Grid’s rows and columns. When the Grid’s rows and columns resize, the con-
trols they contain resize.

The following list summarizes some of the most useful WPF container controls:

>

>

canvas—A simple control that lets you specify a control’s X and Y positions.

DockPanel—Lets you dock child controls to the left, right, top, and bottom edges. If the
LastChildFill property is True, the last child fills the remaining area.

Grid—Lets you arrange controls in rows and columns.
StackPanel—Arranges child controls vertically in a column or horizontally in a row.

WrapPanel—Arranges child controls vertically or horizontally much as a stackpanel does
except it wraps to a new column or row if necessary.

For example, to make a layout similar to the one shown in Figure 3-5, you might use a Grid that
defines two columns. The left column could hold a vertical stackPanel containing a Label and the
ListBox. The right column could hold a GroupBox containing a second Grid that uses rows and
columns to arrange the Labels, TextBoxes, and Image.

www.it-ebooks.info

http://www.it-ebooks.info/

50 | LESSON 3 MAKING CONTROLS ARRANGE THEMSELVES

NOTE You can click a Grid’s borders to define rows and columns, but it’s some-
times easier to edit them in the XAML Code Editor. For example, that lets you
easily make rows have exactly the same size.

Set a row or column’s size to * to make it use any space not claimed by other
rows or columns. If multiple rows/columns have * sizes, they split the available
space. For example, if one row has a height of * and another has a height of 2%,
then the first gets a third of the available space and the second gets two thirds of
the available space.

After you define the stackPanels, Grids, and other containers, you can add Labels, TextBoxes,
and other content controls to them.

Set a control’s Margin property to make it resize with its container. For example,

Margin="10,7,10,0" keeps a control’s left, top, right, and bottom distances 10, 7, 10, and 0 pixels
from its container’s corresponding edges.

Set a control’s Width and Height properties to give it a fixed size.

When you resize controls in the Window editor, you can click the symbols by the edges of a control’s
container to lock the sides of the control to the container’s sides.

Arranging controls in this way can take a lot of work. Sometimes it’s easier to just type XAML code
in the Code Editor instead of using the interactive Window editor. However, the result is usually
quite flexible and allows the controls to resize when the window resizes.

TRY IT

In this Try It, you get to practice using the Anchor and Dock properties by building the application
shown in Figure 3-8.

al Better Book List = [= -

File

Books Details

Beginning Database Design Solutions |
5 Novels (by Danigl Pinkwater)
Fablehaven

The Man with the Golden Tarc
Something from the Nightside
Gullble's Travels

Mort

Tile [Mort |

Author |Terry Pratchett |

ISBN [978-0061020681 |

URL http://www bamesandnoble.com./w/mort+ ratch

Wintersmith

Nation

Ender's Game Pages
Split Infinity Yi 2001
Cold Copper Tears e sar -

Mort by Terry Pratchett

FIGURE 3-8

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 51

When the window resizes, the TextBoxes and LinkLabel stretch horizontally, and the PictureBox
stretches vertically. Notice in Figure 3-8 that the cover image is rather tall and thin. When the
PictureBox grows taller, it can display a larger version of the cover image. The control displays the
image as large as possible without distorting it.

Note that the program you build won’t actually do anything except sit there looking pretty and
resizing controls when the form resizes. The techniques you need to make it respond to list selections
are covered in later lessons.

Lesson Requirements

In this lesson, you:

>

Create the program’s three main controls: a MenuStrip, a StatusStrip, and a Panel. Use
Dock properties to make these three controls stay in their proper positions.

Add controls to the Panel.
Use the anchor property to make the ListBox stretch vertically when the form resizes.

Use Anchor properties to make the TextBoxes and LinkLabel stretch horizontally when the
form resizes.

Use Anchor properties to make the PictureBox resize vertically when the form resizes.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox .com/go/csharp24hourtrainer2e.

Hints

Remember that the TextBoxes and LinkLabel stretch with the GroupBox that contains them,
not with the form itself. If you don’t make the GroupBox stretch, the controls it contains
won’t either.

To make the File menu, add a Menustrip to the form, select it, click the Type Here box that
appears, and type &File. (The ampersand makes the “F” underlined.) Making the menu do
something useful is covered in Lesson 5, so don’t worry about that right now.

To make the status strip label, add a statusstrip to the form and select it. Click the little
dropdown arrow on the Statusstrip and select StatusLabel. Click the new StatusLabel
and use the Properties window to set its Text to This is a StatusStrip.

Add some items to the ListBox, add a picture to the PictureBox, and add text to the other
controls, but don’t worry about making the program take any actions.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

52 | LESSON 3 MAKING CONTROLS ARRANGE THEMSELVES

Step-by-Step

>

>

Create the program’s three main controls: a MenuStrip, a StatusStrip, and a Panel. Use
Dock properties to make these three controls stay in their proper positions.

1. Start a new project named Better Book List. Set the form’s size and MinimumSize
properties to 726, 286.

2. Add aMenustrip to the form. (Notice that by default the Menustrip has Dock =
Top.) Use the MenuStrip hint from the “Hints” section of this lesson to create the
empty File menu.

3. Adda statusstrip to the form. (Notice that by default the statusstrip has Dock =
Bottom.) Use the statusstrip hint from the “Hints” section of this lesson to create
the This is a StatusStrip label.

4. Add a panel to the form. Set its Dock property to Fill. Set its BackColor property to
light green.

Add controls to the panel.
1. Add controls to the form in roughly the positions shown in Figure 3-8.

2. Set the LinkLabel’s AutoSize property to False and make it the same size as the
TextBoxes.

3. Enter some Text values in the TextBoxes and LinkLabel so you have something to
look at. Enter enough items in the ListBox so they won’t all fit when the form has its
initial size.

4. Set the PictureBox’s SizeMode property to Zoom. Place a relatively tall, thin image in
its Image property.

Use the Anchor property to make the ListBox stretch vertically when the form resizes.

1. Set the ListBox’s Anchor property to Top, Bottom, Left.

Use Anchor properties to make the TextBoxes and LinkLabel stretch horizontally when the
form resizes.

1. Set the GroupBox’s Anchor property to Top, Bottom, Left, Right.
2. Set the TextBoxes’ and the LinkLabel’s Anchor properties to Top, Left, Right.
Use Anchor properties to make the PictureBox resize vertically when the form resizes.

1. Set the PictureBox’s Anchor property to Top, Bottom, Left.

Run the program and see what happens when you resize the form.

EXERCISES

1.

[WPF] Repeat the Try It with a WPF application.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 53

3.

Make a New Customer dialog similar to the one shown in Figure 3-9. Make the First Name,
Last Name, Street, City, and Email TextBoxes resize horizontally when the form resizes. Use
the OK and Cancel buttons as the form’s accept and cancel buttons, and attach them to the
form’s lower-right corner.

o New Customer = | = -

First Name |Zaphad

Last Name |Beeb\ebm

|
|
Street [1 Heart of Gold |
|

City |Damogmn
Email |Zaphad @everywhere net |

Fhone 587-654-3210

ca
FIGURE 3-9

[WPF, Hard] Repeat Exercise 2 with a WPF application. Hints:

> Replace the window’s initial Grid with a DockPanel. Add a Menu (docked to
the top), a statusBar (docked to the bottom), and a grid (filling the rest of the
DockPanel).

» Use the XAML editor to add a StatusBarItem inside the StatusBar. Inside the
StatusBarItem add a Label.

> Give the grid two columns. In the left column, place a Label and a ListBox. Set
the ListBox’s Height = Auto and use its Items property editor to add several
ListBoxItems. Then use the XAML editor to add Labels to the ListBoxItems. For
example, one of the ListBoxItems might look like this:
<ListBoxItem>

<Label Content="Beginning Database Design Solutions"/»>
</ListBoxItem>

> Add a ¢roupBox to the grid’s right column. A GroupBox can have only a single child
control. Make it a ¢rid and give it the rows and columns you need to display the
Image, Labels, and TextBoxes.

A final tip: often it’s easier to make one control just the way you want it and then copy and
paste it in the XAML Code Editor. Don’t forget to change the new control’s name so you
don’t have two controls with the same name.

[SimpleEdit] Create a new project named SimpleEdit. Give it a MenuStrip and StatusStrip
with appropriate (default) Dock values. Add a RichTextBox control and set its Dock property
to Fill. (That’s all for now. In later lessons you’ll add features to this program.)

www.it-ebooks.info

http://www.it-ebooks.info/

54 |

LESSON 3 MAKING CONTROLS ARRANGE THEMSELVES

[WPF, SimpleEdit] Repeat Exercise 4 with a WPF application.

The splitContainer control displays two areas separated by a splitter. The user can drag
the splitter to divide the available space between the two areas. Make a program similar to
the one shown in Figure 3-10. Feel free to use a different picture and information. Make
the PictureBox display its image as large as possible without distortion. Set the bottom
TextBox’s MultiLine property to True and make it stretch vertically and horizontally as
the form resizes. Make the other TextBoxes stretch horizontally. Set the splitContainer’s
PanellMinSize and Panel2MinSize properties to 100.

e Washington Info = = -

Name |Geurge Washington

Date of Bith [February 22, 1732

Yearsin Office 17891797

|
|
Date of Death |December 14, 1739 |
|
|

Vice President |Jchn Adams

Interesting Facts |George Washington had no formal education.
He was the only president elected
unanimously, receiving all 69 of the electoral

FIGURE 3-10

[WPF] Repeat Exercise 6 with a WPF application. Hints: To make a splitter in WPF, create
a Grid control. Then add a cridsplitter to one of its rows or columns. The user can drag
the Gridsplitter to resize the rows or columns on either side of it.

For this program, make a gGrid with three columns that have widths 1%, 5, and 2*. Place an
Image in the left column, a Gridsplitter in the middle column, and another Grid in the
right column.

Then make the Gridsplitter’s XAML code look like this:

<GridSplitter Grid.Column="1" Margin="0,0,0,0"
HorizontalAlignment="Stretch" VerticalAlignment="Stretch"/>

Place the appropriate Labels and TextBoxes in the Grid on the right. Use the “Interesting
Facts” Label’s Margin and VerticalContentAlignment properties to make its text stay
centered in its area when you resize the form.

Make a form similar to the one shown in Figure 3-11. When the form resizes, the three
ListBoxes should be as large as possible and the three columns should divide the form
evenly. (Hint: Use a TableLayoutPanel.)

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 55

a Lists - [= [T
Animal Mineral Vegetable

At ~ | | Agate ~ || | Apple ~

Beatle Bend Banana

Catempilar _ || |Citrine _ || [Chemy _
eer = | | Diamond =|| [Date e

Eagle Emerald Eggplart

Frog Fool's Gold Fig

Giraffe Gold Grapefrut

Hippopatamus Heliotrope Honeydew

Ibex: Iron Ins

Jackalope Jade Juniper

Kangaroo Kryptanite Kale

Lion | | Lapis Lazuli || [Lemon e

FIGURE 3-11

[WPF] Repeat Exercise 8 with a WPF application.

[WPF] One of the cooler new controls in WPF is the Expander. It displays a header and an
expander arrow. When the user clicks the arrow, the Expander expands to display a child
control, which is normally a crid.

Make a WPF program similar to the one shown in Figure 3-12. In that figure, the Expander
for Jupiter is expanded and the Expanders for the other planets are collapsed. (Hints: The

Window in Figure 3-12 contains a StackPanel that contains Expanders holding Grids. First
create the Stackpanel. Next make the Expander and child controls for Mercury. Then copy
and paste that Expander in the XAML editor to make the Expanders for the other planets.)

Wpf Planet Info [= I:'-

Diameter 11.209

FIGURE 3-12

NOTE Please select the videos for Lesson 3 online at www.wrox .com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Events

An event is something that a control raises to tell the program that something significant has
happened. Events are extremely important because they are the main way the user controls the
program. When the user clicks buttons, drags sliders, and selects menu items, events tell the
program that something has happened so it can take action.

An event handler is a piece of code that catches the event and executes when an event occurs.
The event handler might display a message, perform a calculation, or download the latest
Dilbert comic from the web.

Lesson 2 briefly explained how you can catch a Button’s Click event, but that event is only
one of hundreds (if not thousands) of events that your programs can catch.

This lesson explains how you can catch events other than click. It describes some of the most
useful events provided by common controls and, as a bonus, explains how you can display
messages to the user when events occur.

MAKING EVENT HANDLERS

The easiest way to build an event handler is to double-click a control in the Form Designer.
This creates an empty event handler for the control’s default event and opens the event handler
in the Code Editor. You can then type C# code to take whatever action is appropriate.

The following code shows the empty click event handler created for a Button:

private void crashSystemButton Click (object sender, EventArgs e)

{
}

Probably the most commonly used events are the click events raised by Buttons,
ToolStripMenuItems (which represent menu items), and ToolStripButtons (which repre-
sent toolbar buttons). For these controls and many others, you almost always want to use the
default event handler, so double-clicking them is the easiest way to go.

www.it-ebooks.info

http://www.it-ebooks.info/

58 | LESSON4 HANDLING EVENTS

{
}

NOTE If you’re not ready to write the real event handler code, you can write a
placeholder event handler. One easy way to do that is to use MessageBox . Show
to display a message. For example, the following code displays a placeholder
message for the File menu’s Save command:

private void fileSaveMenulItem Click (object sender, EventArgs e)

MessageBox.Show ("File > Save not yet implemented") ;

Lesson 8 describes message boxes in greater detail.

Most controls provide dozens of other events that you can catch. To create an event handler for one
of these non-default events, select the control in the Form Designer. Then click the lightning bolt
icon near the top of the Properties window to make the window list the control’s events. Figure 4-1
shows the Properties window displaying some of the events that a Button can raise.

Properties * 0 X

malnf| e

BindingContextChanged
CausesValidationChanged
ChangeUICues
crashSystemButton_Click |E|
ClientSizeChanged
ContextMenuStripChanged
ControlAdded
ControlRemoved
CursorChanged
DockChanged

DragDrop

Click
Qccurs when the component is clicked.

crashSystemButton System.Windows.Forms.Button -

BackgroundlmagelayoutCha =

DragEnter -

FIGURE 4-1

To create an empty event handler for an event, simply double-click the event’s name in the Properties

window’s event list.

You can also type the name that you want to give the event handler. When you press Enter, Visual
Studio creates the event handler and opens it in the Code Editor.

If your code already contains event handlers that could handle the event, you can click the event and
then click the dropdown arrow to the right to select one of those event handlers.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Event Parameters | 59

USING EVENT PARAMETERS

All event handlers include parameters that give additional information about the event. Later lessons
say more about parameters and how you can use them, but for now you should know that some-
times they can tell you more about the event.

For example, the following code shows a Button’s Click event handler. The parameters sender and
e give extra information about the event.

private void crashSystemButton Click (object sender, EventArgs e)

{
}

In all event handlers, the sender parameter tells you what control raised the event. In this example,
that’s the Button control that the user clicked.

The e parameter has the Eventargs data type, which doesn’t give you a lot of additional informa-
tion. Fortunately, you usually don’t need any additional information for a Button. Just knowing it
was clicked is enough.

Some event handlers, however, provide really useful information in their e parameter. For example, the
e parameter provided by the mouse events MouseC1ick, MouseMove, MouseDown, and MouseUp include
the X and Y coordinates of the mouse over the control raising the event. Those values are crucial if
you’re trying to build a drawing application or need to track the mouse’s position for some other reason.

The FollowMouse example program shown in Figure 4-2 uses a MouseMove event handler to make
two scrollbars follow the mouse’s position. When you click the area in the center of the form, the
program moves the picture of the mouse to that position.

agl FollowMouse = | = -

-~

FIGURE 4-2

The program’s form contains a green Panel control that holds a PictureBox holding the mouse
image. The form also contains VScrollBar and HScrollBar controls. The program uses event
handlers to do three things: set scrollbar properties, track mouse movement, and move the mouse
picture.

www.it-ebooks.info

http://www.it-ebooks.info/

60 |

LESSON 4 HANDLING EVENTS

Setting Scrollbar Properties

When you create a new scrollbar, it has Minimum = 0 and Maximum = 100 so it can take values
between 0 and 100. However, this program sets its scrollbars to locations on the Panel control. For
example, if the Panel is 200 pixels wide, the program might need to give the horizontal scrollbar a
value between 0 and 199. Unfortunately if the scroll’s Maximum property is 100 and the program sets
its value to 199, the program will crash.

To prevent that, the program sets the scrollbars’ Maximum properties to the width and height of the
panel. The Panel might resize at two different times, so the program needs to set the Maximum
properties in two places.

First, when the program’s form is initially displayed, the program needs to set the scrollbar Maximum
properties. To detect when the form is displayed, you can catch the form’s Load event.

NOTE Load is the default event for a form, so you can double-click the form to
create a Load event handler.

The following code shows the program’s Load event handler:

// Set the scrollbar maximums to fit the Panel.
private void Forml Load (object sender, EventArgs e)
{
mouseHScrollBar.Maximum = fieldPanel.Width;
mouseVScrollBar.Maximum = fieldPanel.Height;

This code sets the mouseHScrollBar control’s Maximum property to the width of the Panel. It then
sets the mousevscrollBar control’s Maximum property to the height of the Panel.

Now the program won’t crash when you move the mouse around over the Panel control, unless you
resize the form. The Panel control’s Anchor property makes it resize with the form, so if you make
the form bigger, the Panel gets bigger, too. In that case, the program needs to reset the scrollbars’
Maximum properties to match.

You can do that in the form’s Resize event. This isn’t the default event for a form (Load is), so you
can’t just double-click the form to create a Resize event handler. Instead you need to select the
form, go to the Properties window, click the Events button (the little lightning bolt), and double-
click the Resize event.

The following code shows this program’s Resize event handler:

private void Forml Resize (object sender, EventArgs e)

{
mouseHScrollBar.Maximum = fieldPanel.Width;
mouseVScrollBar.Maximum = fieldPanel.Height;

This code does the same thing as the form’s Load event handler.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Event Parameters | 61

Now even if you resize the form, the scrollbars can hold the coordinates of any point inside the Panel.

Tracking Mouse Movement

When you move the mouse over the Panel, the Panel control raises a MouseMoved event. For this
program, I used the Properties window to create the following MouseMove event handler:

// Move the scrollbars to track the mouse.

private void fieldPanel MouseMove (object sender, MouseEventArgs e)
mouseHScrollBar.Value
mouseVScrollBar.Value

e.X;
e.Y;

This code sets the horizontal scrollbar’s value equal to the mouse’s X position as reported by the
event handler’s e. X parameter. It then sets the vertical scrollbar’s value equal to the mouse’s Y
position as reported by the event handler’s e. v parameter.

NOTE [n C#, coordinates are measured with (0, 0) in the upper-left corner, X
increasing to the right, and Y increasing downward.

WARNING As the program is currently written, if you click and drag the mouse
off of the panel, the Panel receives MouseMove events with coordinates that are
outside of the values allowed by the Scroll1Bars so the program crashes. For
now, don’t do that. In Lesson 18 you’ll learn how to use tests to protect the pro-
gram from that problem.

The form’s Load and Resize event handlers guarantee that the scrollbars’ Maximum properties are
big enough to hold any coordinates on the Panel.

Moving the Mouse Picture

When you click the Panel, the Panel raises a MouseClick event. For this program, I used the
Properties window to create the following MouseClick event handler:

// Move the mouse PictureBox to the point clicked.
private void fieldPanel MouseClick (object sender, MouseEventArgs e)

{

mousePictureBox.Left = e.X;
mousePictureBox.Top = e.Y;

This code simply sets the mouse PictureBox’s Left and Top properties to the coordinates of the
point that was clicked.

That’s all there is to the program. If you like, you can download it and experiment with it.

www.it-ebooks.info

http://www.it-ebooks.info/

62 | LESSON4 HANDLING EVENTS

REMOVING EVENT HANDLERS

Getting rid of an event handler isn’t as simple as you might like. If you just delete the event
handler’s code, the program still includes automatically generated code that attaches the

event handler to the control that raises it. When you try to move to the Form Designer, you’ll get
an error similar to:

The designer cannot process unknown name ‘fieldPanel_MouseClick” at line 51. The code
within the method ‘InitializeComponent’ is generated by the designer and should not be
manually modified. Please remove any changes and try opening the designer again.

All this really means is that C# is confused.

The Properties window gives you an easy way to safely remove event handlers. Before you delete the
event handler’s code, find the event handler in the Properties window. Right-click the event handler’s
name and select Reset to break the link between the event handler and the control. Now you can
safely remove the event handler’s code.

Alternatively, you can double-click the error in the Error window to see the automatically generated
code that’s making C# throw its temper tantrum. The line should look something like this:

this.fieldPanel.MouseClick +=
new System.Windows.Forms.MouseEventHandler (this.fieldPanel MouseClick) ;

Delete that line and you should be ready to run again.

WARNING Don’t fool around inside the automatically generated code! If you
accidentally mess up that code, you may remove controls from the form, change
properties, or even make the form unloadable so you have to throw it away. Get
in, delete that single line, and get out before you do any serious damage.

WPF programs attach event handlers a bit differently. In a WPF application, the XAML code
includes a property that defines the name of the event handler in C# code. For example, the follow-
ing XAML code defines a button with a click event handler:

<Button x:Name="clickMeButton" Content="Click Me"
Width="75" Height="20" Click:"clickMeButton_Click"/>

If you remove the event handler’s C# code, you should also remove click="clickMeButton Click"
from the XAML code.

ADDING AND REMOVING EVENT HANDLERS IN CODE

At design time, you can use the Properties window to attach and detach event handlers.
Occasionally you may want to add or remove an event handler by using code at run time.

www.it-ebooks.info

http://www.it-ebooks.info/

Useful Events | 63

The following code shows a simple Button Click event handler. When this event handler executes,
it displays a message to the user:

// Display a message box.
private void clickMeButton Click (object sender, EventArgs e)

{
}

MessageBox.Show ("You clicked me!");

Suppose you have written this event handler but have not attached it to any control at design time.
The following code attaches the event handler to the clickMeButton control’s click event:

clickMeButton.Click += clickMeButton Click;

The += operator means “add to,” so this code adds the event handler to the c1ickMeButton
.Click event.

After running this code, if the user clicks the c1ickMeButton, the event handler executes.

The following code removes the event handler from the button’s c1ick event:

clickMeButton.Click -= clickMeButton Click;

The -= operator means “subtract from,” so this code removes the event handler from the
clickMeButton.Click event.

The DynamicEvents example program shown in Figure 4-3 lets you add and remove event handlers
at run time. Initially the Click Me button does nothing. Click the Attach button to attach an event
handler to the Click Me button. Click the Detach button to remove the event handler.

ol DynamicEvents = | = B
Attach
C mm

You clicked me!

FIGURE 4-3

USEFUL EVENTS

Table 4-1 lists some of the more useful events raised by various controls.

www.it-ebooks.info

http://www.it-ebooks.info/

LESSON 4 HANDLING EVENTS

TABLE 4-1
EVENT
CheckedChanged
Click

FormClosing

KeyDown
KeyPress
KeyUp

Load

MouseClick

MouseDown
MouseEnter
MouseHover
MouseLeave
MouseMove
MouseUp
Move

Paint

Resize
Scroll
SelectedIndexChanged

TextChanged

Tick

ValueChanged

MEANING
A CheckBox's or RadioButton's checked state has changed.
The user has clicked the control.

The form is about to close. Set the e.Cancel parameter to true
to cancel the closing and force the form to remain open.

The user pressed a key down while this control had focus.
The user pressed and released a key while this control had focus.
The user released a key while this control had focus.

The form is loaded but not yet visible. This is the last place you can
change the form’s appearance before the user sees it.

The user pressed and released a mouse button over the control.
Unlike the click event, this event has parameters that give the
click’s location.

The user pressed a mouse button down over the control.
The mouse entered the control.

The mouse hovered over the control.

The mouse left the control.

The mouse moved while over the control.

The user released a mouse button over the control.

The control has moved.

The control needs to be redrawn. (This is useful for drawing
graphics.)

The control has resized.
The slider on a TrackBar or scrollbar was moved by the user.
A ComboBox's or ListBox's selection has changed.

The control’s Text property has changed. (This is particularly use-
ful for TextBoxes.)

A Timer control’s Interval has elapsed.

The value of a TrackBar or scrollbar has changed (whether by the
user or by code).

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 65

TRY IT

In this Try It, you use event handlers to display color samples as the user adjusts red, green, and blue
scrollbars.

Figure 4-4 shows the finished program in action. When you change a scrollbar’s value, the label to
the right shows the color component’s new numeric value, and the large label on the far right shows
a sample of the color with the selected red, green, and blue color components.

o Try It4 -0
Red < > 187
Green | < > 146
Blue < I:‘ > |—255

FIGURE 4-4

Lesson Requirements
In this lesson, you:
> Create the form shown in Figure 4-4. Arrange the controls and set their Anchor properties.

> Make an event handler for the red scrollbar that displays all three color values and the
color sample.

> Attach the event handler to the green and blue scrollbars, as well as the red one.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox.com/go/csharp24hourtrainer2e.

Hints

This Try It requires a few techniques that haven’t been covered yet, but it’s not too hard to build
with a couple of hints.

> A scrollbar’s value property is an integer. To convert it into a string so you can display it in
a label, call its Tostring method. For example, the following code makes the redrabel
control display the redHScrollBar’s Value property:

redLabel.Text = redHScrollBar.Value.ToString() ;

> The color class’s Fromargb method returns a color with given red, green, and blue color
components between 0 and 255. For example, Color.FromArgb (255, 128, 0) returns the
color orange (red = 255, green = 128, and blue = 0). Pass this method the values selected by
the scrollbars (returned by their value properties) and assign the result to the sample label’s
BackColor property.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

66 | LESSON4 HANDLING EVENTS

Step-by-Step
> Create the form shown in Figure 4-4. Arrange the controls and set their Anchor properties.

1. Create the controls as shown in Figure 4-4. For the scrollbars, set Minimum = 0,
Maximum = 264, SmallChange = 1, LargeChange = 10,andAnchor:=Top, Left,
Right.

NOTE For some bizarre reason, the largest value that a user can select with a
scrollbar is Maximum - LargeChange + 1.IfMaximum = 264¢nuiLargeChange
= 10, the largest selectable value is 264 — 10 + 1 = 2535, so these properties let the
user select values between 0 and 255.

> Make an event handler for the red scrollbar that displays all three color values and the
color sample.

1. Double-click the red scrollbar to create an empty event handler for the control’s scro1l
event. Type the bold lines in the following code so the event handler looks like this:

// Display a color sample.
private void redHScrollBar Scroll (object sender, ScrollEventArgs e)

{

redLabel.Text = redHScrollBar.Value.ToString();
greenLabel.Text = greenHScrollBar.Value.ToString();
blueLabel.Text = blueHScrollBar.Value.ToString() ;
sampleLabel.BackColor = Color.FromArgb (

redHScrollBar.Value,

greenHScrollBar.Value,

blueHScrollBar.Value) ;

}

The first three lines of code make the Labels display the corresponding scrollbar val-
ues. The final statement, which is split across four lines of code, sets the sample Label’s
BackColor property to a color defined by the scrollbars’ values.

> Attach the event handler to the green and blue scrollbars, as well as the red one.

1. In the Form Designer, click the green scrollbar. In the Properties window, click the
event button (the lightning bolt). Then click the control’s scrol1 event, click the drop-
down arrow to the right, and select the event handler you already created.

2. Repeat the previous steps for the blue scrollbar.

Run the program and experiment with it. Note how the largest value you can select in the
scrollbars is 255.

EXERCISES

1. Build the FollowMouse example program shown in Figure 4-2.

2. [WPF, Hard] Repeat Exercise 1 with a WPF application. WPF does several things differently
(such as finding the mouse’s position), so this exercise is kind of hard. Here are some hints:

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 67

» Use two ScrollBar controls, one with Orientation = Horizontal.
» Use a Canvas instead of a Panel and an Image instead of a PictureBox.

> Instead of catching the form’s Load and Resize events, catch the canvas control’s
SizeChanged event and give it the following event handler:

// Set the scrollbar maximums to fit the Canvas.
private void fieldCanvas SizeChanged (object sender, SizeChangedEventArgs e)

{

mouseHScrollBar.Maximum = e.NewSize.Width;
mouseVScrollBar.Maximum = e.NewSize.Height;

}

> Use the following code for the canvas’s MouseMove event handler:

// Move the scrollbars to track the mouse.
private void Canvas_MouseMove (object sender, MouseEventArgs e)

{

Point location = Mouse.GetPosition(fieldCanvas) ;
mouseHScrollBar.Value = location.X;
mouseVScrollBar.Value = location.Y;

}

> Initially position the ITmage control in the canvas control’s upper-left corner. Then
use the following MouseDown event handler:

// Move the mouse Image to the point clicked.
private void fieldCanvas MouseDown (object sender, MouseButtonEventArgs e)

{

Point location = Mouse.GetPosition (fieldCanvas);
mouseImage.Margin = new Thickness(location.X, location.Y¥, 0, 0);

}

3. Build the DynamicEvents example program shown in Figure 4-3. What happens if you click
Attach twice? Three times? What happens if you then click Detach once? Five times?

4. [WPF] Repeat Exercise 3 with a WPF application.

5. Create a form with one Button labeled “Stop” and two Timers named leftTimer and
rightTimer. Set the Timers’ Interval properties to 1000. At design time, set leftTimer’s
Enabled property to True.

» In each Timer’s Tick event handler, disable that Timer and enable the other one.

> Make one Timer’s Tick event handler also move the Button to (10, 10) by setting
its Left and Top properties.

> Make the other Timer’s Tick event handler move the Button to (200, 200).
> In the Button’s Click event handler, set Enabled = false for both Timers.

Run the program. Experiment with different values for the Timers’ Interval properties.
What happens if Interval = 10?

6. Copy the FollowMouse program you built for Exercise 1. Modify the copy so the user can
adjust the scrollbars to move the PictureBox.

www.it-ebooks.info

http://www.it-ebooks.info/

68

LESSON 4 HANDLING EVENTS

7. [WPF] Copy the program you build for Exercise 2. Modify the copy so the user can adjust
the scrollbars to move the Image. (Hints: To save code, use the same event handler for both
scrollbars. To prevent the mouse image from appearing on top of the scrollbars and in the
small area on the window’s lower-right corner, set the canvas control’s C1ipToBounds prop-
erty to True.)

8. Make a program similar to the one shown in Figure 4-5. When the user unchecks the
Breakfast, Lunch, or Dinner checkbox, the program should disable the corresponding

GroupBox.
o2 Exercise 4-8 = [= -
[] Breakfast Lunch [] Dinner

® Pizza
O Sandwich
) Soup

FIGURE 4-5

Hints:

> Make the OK button be the form’s accept button. Make the Cancel button be the
form’s cancel button.

> Blank the GroupBoxes’ Text properties. Then place the CheckBoxes over the
GroupBoxes where their text would go. (Be sure not to place the checkBoxes inside
the GroupBoxes. Try it to see why it won’t work. You may need to position the
CheckBoxes first and then move the GroupBoxes into position.)

> To enable or disable a GroupBox, set its Enabled property equal to the correspond-
ing CheckBox’s Enabled property as in the following code:

// Enable or disable the corresponding GroupBox.
private void breakfastCheckBox CheckedChanged (object sender, EventArgs e)

{

}
Q. [WPF] Repeat Exercise 8 with a WPF application. Hints:

breakfastGroupBox.Enabled = breakfastCheckBox.Checked;

> A WPF checkBox doesn’t display a background so the checkboxes in this program
won’t cover the GroupBox borders below them. To work around that problem, place
each CheckBox inside a canvas and make the canvas use a white background.

> A croupBox can have only a single child. Give each GroupBox a StackPanel
holding RadioButtons. Use the RadioButtons’ Margin properties to add some
spacing between the choices.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 69

» The WPF checkBox control doesn’t have a CheckChanged event. Use the click
event instead.

> To enable or disable a GroupBox, set its IsEnabled property equal to the corre-
sponding CheckBox’s IsChecked.Value property as in the following code:

// Enable or disable the appropriate GroupBox.
private void breakfastCheckBox Click (object sender, RoutedEventArgs e)

{
}

> To set a WPF window’s accept button, set the Button’s IsDefault property to True.

breakfastGroupBox.IsEnabled = breakfastCheckBox.IsChecked.Value;

> To set a WPF window’s cancel button, set the Button’s IsCancel property to True.

10. Make a program similar to the one shown in Figure 4-6.

all Exercise 4-10 | = E'-

FIGURE 4-6

> Create a PictureBox and load an image into it. Set its size to match the picture’s size
and set its ScaleMode property to StretchImage. (Also see what happens if you set
this to Normal.)

> Position the scrollbars next to the PictureBox. Set their Maximum properties so the
user can select values between 0 and the picture’s width/height.

> Initially set the scrollbars’ value properties equal to the image’s width/height.

> Make the scrollbars’ scrol1l event handlers set the PictureBox’s width/height equal
to the scrollbars’ values.

www.it-ebooks.info

http://www.it-ebooks.info/

70 | LESSON4 HANDLING EVENTS

11.

12.

[WPF] Repeat Exercise 10 with a WPF application. Hints:

> Set the Image control’s Stretch property to Fill. (Also see what happens if you set
this to None.)

> In a WPF program, the user can set a ScrollBar to its Maximum value.

[WPF, Games, Hard] One thing that’s hard to do in a Windows Forms application that’s
easy in a WPF application (at least if you set it up properly) is transforming objects. For
example, it’s relatively easy to scale, rotate, and skew controls. For this exercise, make a
program similar to the one shown in Figure 4-7. When the user adjusts the scrollbar at the
bottom, the program should rotate the image and display the angle of rotation in the Label
in the lower right.

" Wpf Exercise 4-12 | = E'-

FIGURE 4-7

Hints:

> Lay out the window and its controls. Put a picture in the Image control. Name the
labelcontroldegreesLabel.

> Use the Properties window’s Transform section to rotate the Tmage by 360 degrees.

Edit the XAML code to give the rotateTransform a property called x:Name with
value rotateTransform. The ITmage control’s code should look something like this:

<Image x:Name="image" HorizontalAlignment="Left"
VerticalAlignment="Top" Source="ScienceGirl.png"
Stretch="None" Grid.ColumnSpan="2"
Margin="10,10,0,0" RenderTransformOrigin="0.5,0.5">
<Image.RenderTransform>
<TransformGroup>
<ScaleTransform/>
<SkewTransform/>
<RotateTransform x:Name="rotateTransform" Angle="360"/>
<TranslateTransform/>
</TransformGroup>
</Image.RenderTransform>
</Image>

» Make the ScrollBar’s ValueChanged event handler look like this:

// Rotate the Image.
private void degreesScrollBar ValueChanged (object sender,

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 71

13.

14.

15.

16.

RoutedPropertyChangedEventArgs<double> e)

rotateTransform.Angle = degreesScrollBar.Value;
degreesLabel.Content = degreesScrollBar.Value.ToString("0");

}

[WPF] Build a WPF application with a arid that contains an Image. Give the ¢rid a
MouseMove event handler that moves the Tmage to the mouse’s location. (Hint: By defaul,
the window’s main Grid has a transparent background so it won’t receive mouse events
correctly. To fix that, set its Background brush. You can use any brush as long as it’s not
transparent.)

Build a Windows Forms program that displays a TrackBar and an HScrollBar. Set their
Maximum properties to 10, and set the scrollbar’s LargeChange property to 1. When the
controls’ values change at run time, display the new values in Labels.

[WPF] Make a WPF application that displays two sliders and a ScrollBar all with
Maximum set to 10. Set IsSnapToTickEnabled to True for one of the s1iders. When the
controls’ values change at run time, display the new values in Labels.

Make a bar chart similar to the one shown in Figure 4-8. When you click the button, it
should assign random values to the bars.

e Exercise 4-16 = [= -

FIGURE 4-8

Hints:
> For the bars, use Labels inside a multi-column TableLayoutPanel.

> To make the Labels appear at the bottom of the TableLayoutPanel, set their
Anchor properties to Bottom, Left, Right.

> To make the Labels touch, set their Margin properties to 0, 0, 0, 0.

> Use code similar to the following to give random heights to the Labels. Note that the

statements in bold are outside of the event handler.

// Make a random number generator.
private Random Rand = new Random() ;

// Pick random values for the Labels.
private void pickValuesButton Click(object sender, EventArgs e)

www.it-ebooks.info

http://www.it-ebooks.info/

72 | LESSON 4 HANDLING EVENTS

labell.Height = Rand.Next (10, 150);
label2.Height = Rand.Next (10, 150);
label3.Height = Rand.Next (10, 150);
label4 .Height = Rand.Next (10, 150);
label5.Height = Rand.Next (10, 150);
label6.Height = Rand.Next (10, 150);

}
17. [WPF] Repeat Exercise 16 with a WPF application.

18. Modify the program you wrote for Exercise 16 so it uses a Timer to pick random Label heights
instead of using a Button. Set the Timer’s properties Enabled = True and Interval = 500.

NOTE Please select the videos for Lesson 4 online at www .wrox . com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

Making Menus

In addition to buttons, labels, and textboxes, menus are one of the most common user inter-
face elements in interactive programs. This lesson explains how to add menus and context
menus to forms. It also explains how to catch their events so your program can take action
when the user selects menu items.

CREATING MENUS

To create a menu, simply drop a MenuStrip control on a form. By default, the Menustrip is
docked to the top of the form so you don’t really need to position it carefully. Just double-click
the Toolbox’s Menustrip tool and you’re set.

Unlike most controls, the MenuStrip appears in the Component Tray below the form in addition
to appearing on the form itself. Figure 5-1 shows the SimpleEdit program in the Form Designer.
Below the form you can see the Component Tray containing a MenuStrip and a StatusStrip.

When you select a MenuStrip in the Form Designer, either on the form’s surface or in the
Component Tray, the menu bar at the top of the form displays a Type Here box. Click that box
and type the menu’s caption to create a main menu.

If you create a main menu entry and then click it to select it, the Form Designer displays a new
Type Here box to let you create menu items. Figure 5-2 shows the top of the Form Designer
after I created the top-level File menu.

You can continue clicking menu items to add submenus as deeply as you like. Continue enter-

ing text in the Type Here boxes to build the whole menu structure. Figure 5-3 shows the Edit

menu for a new version of the SimpleEdit program. Notice that the menu contains several cas-
cading submenus. The Offset submenu is expanded in Figure 5-3.

www.it-ebooks.info

http://www.it-ebooks.info/

74 | LESSON5 MAKING MENUS

Dd SimpleEdit o Simplekdit IEHE‘.

Forml.cs [Design]™ & X
-

) SimpleEdit [=]=]pE

FIGURE 5-2

o

: =] menuStripl

b statu sStrip1

FIGURE 5-1

> SimpleEdit

Forml.cs [Design]* +

ol SimpleEdit [=]=lB
File Edit | Format

Align 3

Text Color...

Background Color...

Bullet

Offset ¥ |. Mormal

Font... Superscript

Indent 3 Subscript
21 menustript =] contextMenuStrip1 b statusstript

FIGURE 5-3

You can use the Type Here boxes to create submenus to any depth, although in practice three levels
(as in Edit &> Offset = Subscript) are about all the user can stomach.

In addition to menu items, you can place Separators, TextBoxes, and ComboBoxes in menus. TextBoxes
and comboBoxes are unusual in menus, so I won’t cover them here. Separators, however, are quite useful
for grouping related menu items.

To create a Separator, right-click an item, open the Insert submenu, and select Separator.
Alternatively, you can create a normal menu item and set its Text to a single dash (-).

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Menu Properties | 75

SETTING MENU PROPERTIES

The items in a menu are ToolStripMenuItems, and like other controls, they have properties that
determine their appearance and behavior. Table 5-1 summarizes the most useful ToolStripMenuItem
properties.

TABLE 5-1

PROPERTY PURPOSE

Checked Determines whether the item is checked. In Figure 5-3, the Normal item is
checked. (See also checkonclick.)

CheckOnClick If you set this to True, the item automatically toggles its checked state when
the user selects it.

Enabled Indicates whether the item is enabled.

Name The ToolStripMenuItem's name. Normally you should give a good name to
any menu item that makes the program do something at run time so your code
can refer to it.

ShortcutKeys Indicates the item’s shortcut key combination (if any). Either type a value such as
Ctrl+N or click the dropdown arrow to the right to display the shortcut editor
shown in Figure 5-4.

Text The text that the item displays. Place an ampersand before the character that
you want to use as the item'’s accelerator (if any). For example, if you set an
item’s Text to &Open, the item appears as Open in its menu and the user can
activate it by pressing Alt+O while the menu is open.

Modifiers:
el [shift [Ak
Key:
|N v|| Reset |
FIGURE 5-4

ESSENTIAL ELLIPSES

By convention, if a menu item opens a dialog or requires some other input from the
user before proceeding, its Text should end with an ellipsis (...). If the menu item
starts an action immediately, it should not include an ellipsis.

For example, the Open...menu item displays a file open dialog, so its caption ends
with an ellipsis. In contrast, the Edit menu’s Copy item immediately copies the
selected text so it doesn’t need an ellipsis.

www.it-ebooks.info

http://www.it-ebooks.info/

76 | LESSON5 MAKING MENUS

Accelerators allow the user to navigate menus with the keyboard instead of the mouse. When the
user presses Alt, the menu’s items display underlines below their accelerator keys. For example, if the
File menu appears as File, the user can press Alt+F to open that menu and then use other accelera-
tors to select the menu’s items.

NOTE Recent versions of the Windows operating system typically don’t under-
line menu accelerators until you press the Alt key.

You should give accelerators to most if not all of your program’s menus, submenus, and menu items.
Experienced users can often navigate a menu system faster by using accelerators than they can by
using the mouse.

WARNING Be sure not to give the same accelerator character to two items in
the same menu. For example, in the File menu, don’t have Save and Save As
menu items.

Shortcuts allow the user to instantly activate a menu item. For example, in many programs Ctrl+O
opens a file and Ctrl+S saves the current file. (You can remember the difference between accelerators
and shortcuts by realizing that “accelerator” and the Alt key both begin with the letter “a.”)

WARNING Be extra sure not to give two menu items the same shortcut!

TIP Use standard accelerators and shortcuts to help users learn how to use your
application more quickly and with fewer mistakes. The web pages support
.microsoft.com/kb/126449 and windows.microsoft .com/en-us/windows/
keyboard-shortcuts list some shortcuts that Microsoft uses. I haven’t seen a
good list of standard accelerators, but you can try to make yours match those
used by other common applications such as Visual Studio and Word.

HANDLING MENU EVENTS

When the user clicks a menu item, its control raises a Click event exactly as a clicked Button does,
and you can handle it in the same way. You can even create default event handlers in the same way:
by double-clicking the control.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Context Menus | 77

CREATING CONTEXT MENUS

A context menu appears When you rlght-chck a - Simpleedit | = | o [
particular control. In a Windows Forms applica- I —
tion, using a context menu is almost as easy as The RN jumps over the lazy programmer.
using a main menu. Figure 5-5 shows an applica-
tion displaying a context menu. Align g

Text Color...
Start by dropping a ContextMenuStrip on the form. Background Color...
Like a MenuStrip, a ContextMenuStrip appears Eulist
below the form in the Component Tray so you can Offet » I Nownal | |
. K s) Font... Superscript
just double-click the Toolbox’s ContextMenusStrip ndent , Cubscript
tool and not worry about positioning it.

Unlike a MenuStrip, a ContextMenuStrip does
not appear at the top of the form. In the Form
Designer, you can click a Menustrip either on the form or in the Component Tray to select it. To
select a ContextMenuStrip, you must click it in the Component Tray.

FIGURE 5-5

After you select the ContextMenustrip, you can edit it much as you can a Menustrip. The big
difference is that a contextMenustrip does not have top-level menus, just submenu items.

Figure 5-6 shows the Form Designer with a ContextMenustrip selected. By now the menu editor

should look familiar.

b SimpleEdit

Forml.cs [Design]® & X

o SimpleEdit ===

File Edit Format

ContextMenubtrip
Align >
Text Color...

Background Color...

Bullet
Offset 3
Font...
Indent 3
-
EJ menustripl contextMenuStripl | b statusStript
FIGURE 5-6

After you create a ContextMenuStrip, you need to associate it with the control that should display
it. To do that, simply set the control’s contextMenuStrip property to the ContextMenuStrip. To do
that, select the control’s ContextMenuStrip property in the Properties window, click the dropdown

www.it-ebooks.info

http://www.it-ebooks.info/

78 | LESSONS5 MAKING MENUS

arrow on the right, and select the contextMenustrip. The rest is automatic. When the user right-
clicks the control, it automatically displays the contextMenuStrip.

WPF MENUS

To create a menu in a WPF application, add a Menu control to the window and use your preferred
method to make it attach itself to the top. For example, if the window contains a Grid, you can
make the Menu fill the Grid’s top row. Alternatively, if the window contains a DockPanel, you can
dock the Menu to the top.

After you create the Menu, you can add items to it in two ways. First, you can use the Properties
window’s menu editor. Select the Menu, find the Menu’s Ttems property in the Properties window,
and click the ellipsis to the right to open the editor shown in Figure 5-7.

Collection Editor: ltems -

[tems Properties

[0] Menultem Cursar o -

[1] Menultem DataContext o

[2] Menultem

H

IsCheckable | a]
IsEnabled u]
EalEaEn e T L

FIGURE 5-7

Use the editor to add and modify the items in the menu. Set a menu item’s Header property to the
text that you want it to display. Place an underscore in front of the character that you want the item
to use as an accelerator key. For example, the menu item in Figure 5-5 has Header set to _Edit so
when you press Alt at run time, it will appear as Edit.

To make a submenu, click the ellipsis to the right of the Ttems property in the menu item editor (in
the bottom right in Figure 5-5).

NOTE You can put practically anything inside a WPF menu. A menu could hold
CheckBoxes, RadioButtons, ComboBoxes, Sliders, even a Grid containing a
whole slew of other controls.

However, that’s not what users expect to see in a menu, so adding too many
unusual items can make a menu confusing. Normally menus should contain only
MenuItems and Separators.

The second way you can create a menu hierarchy is to edit the XAML code manually. That may
seem intimidating, but it’s actually not too hard, particularly if you make a few menu items and
then copy and paste their code.

www.it-ebooks.info

http://www.it-ebooks.info/

WPF Commanding | 79

The following code shows the XAML code for a menu structure that contains File and Format
menus. Notice that the Format menu has two submenus, Align and Offset:
<Menu x:Name="menu" VerticalAlignment="Top" DockPanel.Dock="Top">

<Menultem Header="_File">
<Menultem Header=" New"/>

<Menultem Header="_Open..."/>
<Menultem Header=" Save"/>
</Menultem>

<Menultem Header="_Format">
<MenulItem Header="_Align">
<Menultem Header="_ Left" IsChecked="True"/>
<Menultem Header="_Right"/>
<Menultem Header=" Center"/>
</Menultem>
<Menultem Header="_Offset">
<Menultem Header="_Normal" IsChecked="True"/>
<MenuItem Header="Su_perscript"/>
<Menultem Header:"Su_bscript"/>
</Menultem>
</Menultem>
</Menu>

If you click a menu item in the XAML editor, the Window Designer opens to show that item. You
can then double-click the item to give it a click event handler.

WPF CONTEXT MENUS

Like Windows Forms applications, WPF applications let you associate a context menu with a
control. When the user right-clicks the control at run time, the context menu appears.

To add a context menu to a control, first select the control. Then in the Properties window, find the
ContextMenu property (in the Miscellaneous section), and click the New button to its right.

After you create a ContextMenu, you can edit it much as you can edit a main menu. The items inside
a ContextMenu are MenuItems just as they are inside a Menu. In the Properties window, you can click
the ellipsis next to its Items property to open the menu item editor. Alternatively, you can edit the
ContextMenu’s XAML code.

WPF COMMANDING

WPF has a whole system for handling standard commands such as Open, New, and Copy. You can
even define your own commands.

The idea is that you might want to allow several different methods for invoking the same command. For
example, you might allow the user to click a Button, select a MenuItem, or check a CheckBox to invoke
the Save command. The commands provide a central location for invoking the appropriate behaviors.

You can define code to execute when a command is invoked. Then you can assign a MenuItem (or
Button or CheckBox or whatever) to a command so when the user clicks the control, it invokes the
command. You can even assign gestures to a command. For example, you could make the Ctrl+L
gesture invoke a custom LeftAlign command.

www.it-ebooks.info

http://www.it-ebooks.info/

80 | LESSON5 MAKING MENUS

Gestures are quite powerful, but they’re also fairly complicated so I’'m not going to cover them in
this book. You can learn more about them in the article “Commanding Overview” at msdn

.microsoft.com/en-us/library/ms752308.

Meanwhile, you can just create click event handlers for menu items.

TRY IT

In this Try It, you create a main menu and a context menu. The main menu includes an Exit com-
mand that closes the form. Both menus contain commands that let you change the appearance of a
TextBox on the form. Figure 5-8 shows the finished program displaying its context menu.

u Try It

File Format

How sharper than a
serpent's tooth it is

to have a buggy | cowr »
I Background Color » Pink
prOg ram: Font 4 Light Green
iy LightBlue . |
FIGURE 5-8

Lesson Requirements

In this lesson, you:
> Create the form shown in Figure 5-8.

> Create the following main menu structure (note the accelerator keys and shortcuts):

File
Exit
Format

Color
Red Ctrl+R

Green Ctrl+G

Blue Ctrl+B
Background Color

Pink

Light Green

Light Blue

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 81

Font
Small Ctrl+S
Normal Ctrl+N
Large Ctrl+L
Add code behind the main menu items.
Make the context menu duplicate the main menu’s Format submenu.

Attach the context menu items to the same event handlers used by the main menu.

Y VYV VY

Attach the context menu to the TextBox.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox.com/go/csharp24hourtrainer2e.

Hints

> The Exit menu item can close the program’s form by calling this.cClose ().

> Creating a font isn’t trivial (and I haven’t covered that yet). It’s much easier to keep a
sample of a font in a control somewhere on the form and then set the TextBox’s Font
property equal to that control’s Font property. And what better control to store the font
than the menu item itself?

Step-by-Step
> Create the form shown in Figure 5-8.
1. Create the main menu by double-clicking the Toolbox’s Menustrip tool.

2. Add a TextBox to the form. Type some text into its Text property and set its proper-
ties: Name = contentsTextBox, MultiLine = True, Dock = Fill, ScrollBars = Both.

3. Create the context menu by double-clicking the Toolbox’s ContextMenuStrip tool.
> Create the main menu structure.

1. Select the Menustrip. Click the Type Here box and type &File.

2. In the Type Here box below the File menu, type E&xit.

NOTE By convention, the Exit command uses X as its accelerator. It never has
a shortcut because it would be too easy to accidentally close the program while
banging your head on the keyboard (or if you fat-finger the keys, the keyboard is
hit by a flying tennis ball, or your cat walks across the keyboard).

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

82 | LESSONS5 MAKING MENUS

3. Click the File item again. In the Type Here box to the right, type F&ormat. (You can’t
use the F character as this menu’s accelerator because it’s already used by the File menu.)

4. Use the Type Here boxes below the Format menu to create the format menu items and
their submenus.

5. Use the Properties window to set the font sizes for the Font menu’s Small, Normal, and
Large items to 6, 9, and 20, respectively.

6. Give the Color and Font submenu items appropriate shortcuts.

7. Give the menu items that take action appropriate names. For example, name the Font
menu’s Small item formatFontSmallMenuItem.

» Add code behind the main menu items.

1. Double-click the Exit menu item and type the bold line in the following code so the
event handler looks like this:

private void fileExitMenulItem Click(object sender, EventArgs e)

{
}

The keyword this means “the object currently executing this code,” which in this
case means the current form, so this line of code tells the current form to close itself.

this.Close();

2. Double-click the Format & Color = Red menu item and type the bold line in the
following code so the event handler looks like this:

private void formatColorRedMenuItem Click (object sender, EventArgs e)

{
}

3. Repeat step 2 for the Green and Blue menu items.

contentsTextBox.ForeColor = Color.Red;

4. Repeat step 2 for the Format & Background Color menu items.

5. Double-click the Format & Font = Small menu item and type the bold line in the
following code so the event handler looks like this:

private void formatFontSmallMenuItem Click (object sender, EventArgs e)

{
}

6. Repeat step S for the Normal and Large menu items.

contentsTextBox.Font = formatFontSmallMenuItem.Font;

> Make the context menu duplicate the main menu’s Format submenu.
Do either 1 or 2:
1. Build the structure from scratch. (This is straightforward but slow.)
a. Click the contextMenustrip in the Component Tray to open it for editing.

b. Use steps similar to the ones you used to build the main menu’s structure
to build the context menu’s structure. End context menu item names with
ContextMenultem, as in colorRedContextMenultem.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 83

2. Copy the Format menu’s structure. (This is sneakier and faster, and therefore much cooler!)

a. Click the Menustrip in the Component Tray to open it for editing. Expand the
Format menu. Click the Color item and then shift-click the Font item to select all
of the menu’s items. Press Ctrl+C to copy the menu items into the clipboard.

b. Click the contextMenustrip in the Component Tray to open it for editing. Press
Ctrl+V to paste the menu items into the context menu.

C. Give appropriate names to the new menu items.
> Attach the context menu items to the event handlers used by the main menu.

1. Open the contextMenustrip for editing. Expand the Color submenu and click the Red
item. In the events page of the Properties window, select the c1ick event. Open the
dropdown on the right and select formatColorRedMenuItem Click.

2. Repeat step 1 for the contextMenustrip’s other items, attaching them to the correct
event handlers.

» Attach the context menu to the TextBox.

1. Click the TextBox. In the Properties window, set its ContextMenuStrip property to
formatContextMenu.

EXERCISES

1. [WPF] Repeat the Try It with a WPF application Hints:.

> You might save time by building some menus and then copying and pasting them in

the XAML Code Editor.
> Set the TextBox’s colors as in contentsTextBox.Foreground = Brushes.Red.

Set the TextBox’s font size as in contentsTextBox.FontSize =
formatFontSmallMenulItem.FontSize.

2. [SimpleEdit] Copy the SimpleEdit program you started in Lesson 3, Exercise 4 (or download
Lesson 3’s version from the book’s website at www.wrox.com) and add the following menu
structure. Set the Checked property of the bold items to True.

File
New Ctrl+N
Open... Ctrl+O
Save Ctrl+S
Save As...

Print Preview...

Print... Ctrl+P

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

84 | LESSON5 MAKING MENUS

Exit
Edit

Undo Ctrl+Z
Redo Ctrl+Y
Copy Ctrl+C
Cut Ctrl+X
Paste Ctrl+V
Delete Del

Select All Ctrl+A
Format
Align
Left
Right
Center
Text Color...
Background Color...
Bullet
Offset
Normal
Subscript
Superscript
Font...
Indent
None
Hanging
Left
Right
Both

Add the code behind the Exit item, but don’t worry about the other items yet.

Eventually the user will be able to use the Bullet menu item to toggle whether a piece of text
is bulleted. To allow C# to toggle this item for you, set the menu item’s CheckonClick prop-
erty to True.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises |

85

Add a contextMenustrip that duplicates the Format menu and use it for the TextBox’s
ContextMenuStrip property.

[WPE, SimpleEdit] Repeat Exercise 2 with a WPF application. Hint: To check a menu item,
set its IsChecked property to True.

[SimpleEdit] Copy the SimpleEdit program you built for Exercise 1 and add images to its
menu and context menu items. (You can find suitable image files in the PngFiles direc-
tory of the Lesson 5 downloads available on the book’s website.) Figure 5-9 shows what the
menus should look like when you’re finished.

File Edit

[MNew Crl+MN 7 Undo Crl+Z

@ Open. Ctrl+0 4 Redo Ctrl+¥

E save Ctrl+5 By Copy Chrl+C
S b cut Ctrl+X

& Print Preview... E Paste Ctrl+V

& Pint.. Ctil+P ¥ Delete Del
Exit Select Al Ctrl+A

Align N
W TextColor..
D Background Color...
= Bullet
Offset b | ———————
F Font.. AB Superscript
Indent » Ap Subscript
= Hanging
Left
Right
E Both
FIGURE 5-9

[WPEF, SimpleEdit] Repeat Exercise 4 with the WPF application you built for Exercise 3. The
Properties window in the version of Visual Studio ’'m using doesn’t seem to allow you to set
a menu item’s Icon property, but this isn’t too hard to do in the XAML editor. First use the
Project menu’s Add Existing Item command to add the image files to the project. Then use
XAML code similar to the following to add icons to the appropriate menu items:
<Menultem Header="_ New" Name="fileNewMenuItem">
<Menultem.Icon>
<Image Source="New.png" />

</Menultem.Icon>
</Menultem>

[SimpleEdit] Copy the SimpleEdit program you built for Exercise 4 and add placeholder
routines for the menu items’ event handlers. The routines should display simple message

www.it-ebooks.info

http://www.it-ebooks.info/

86 |

LESSON 5 MAKING MENUS

boxes indicating what they should really do. For example, the following code shows the File
menu’s Save event handler:

private void fileSaveMenultem Click (object sender, EventArgs e)

{
}

Add placeholders for all menu items (except separators) that do not contain items. For
example, add a placeholder for the Format &> Align = Left item but not for Format = Align
because it contains items.

MessageBox.Show ("Save") ;

Attach the context menu’s items to the same event handlers except give the context menu’s
Bullet item its own event handler. (If you make these two share the same event handler, they
will interfere with each other because of their toggling behavior.)

[WPF, SimpleEdit] Repeat Exercise 6 with the WPF application you built for Exercise 5. Hints:

> If you click a menu item’s XAML code to select it, then you can double-click it in the
Window Designer to create an event handler for it.

> You may need to edit the XAML code directly to define its event handler, as in
Click="alignLeftContextMenuItem Click". Then you can right-click the event
handler’s name and select Go To Definition to create the event handler.

[SimpleEdit] Copy the SimpleEdit program you built for Exercise 7 and add code to manage
exclusive selections in the Format menu’s Align, Offset, and Indent submenus. For example,
the user can select only one of the Align submenu’s choices at a time.

Modify the items’ placeholder code so when the user selects a choice, the code:
a. Checks the selected submenu item

b. Unchecks the other submenu items

C. Checks the corresponding context menu item

d. Unchecks the other context menu items

For example, the following code executes when the user selects the Align submenu’s Left
choice:

private void formatIndentLeftMenuItem Click (object sender, EventArgs e)

{
formatIndentNoneMenuItem.Checked = false;
formatIndentHangingMenuItem.Checked = false;
formatIndentLeftMenuItem.Checked = true;
formatIndentRightMenuItem.Checked = false;
formatIndentBothMenuItem.Checked = false;
indentNoneContextMenultem.Checked = false;
indentHangingContextMenulItem.Checked = false;
indentLeftContextMenultem.Checked = true;
indentRightContextMenultem.Checked = false;
indentBothContextMenulItem.Checked = false;
MessageBox.Show ("Indent Left");

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 87

10.

1.

12.

13.

[WPE, SimpleEdit] Repeat Exercise 8 with the WPF application you built for Exercise 7.
(Hint: In WPF you need to set the IsChecked property instead of the Checked property.)

[SimpleEdit] Copy the SimpleEdit program you built for Exercise 8 and add code to make the
Format = Bullet menu item and the bullet context menu item check and uncheck each other.
(Hint: Set one item’s Checked property equal to the other item’s Checked property.)

[WPE, SimpleEdit] Unlike Windows Forms, WPF’s MenuItem control doesn’t have a
CheckoOnClick property, so the Bullet menu items won’t check and uncheck themselves when
the user clicks them.

Add code to make those menu items check and uncheck themselves by setting each control’s
IsChecked property equal to the negation of its current value. The ! character takes the

logical negation of a value. In other words, !true is false and !false is true. For exam-
ple, the following code toggles whether the Format menu’s Bullet item is checked:

formatBulletMenuItem.IsChecked = !formatBulletMenulItem.IsChecked;

[WPF, SimpleEdit] Repeat Exercise 10 with the WPF application you built for Exercise 11.
(Hint: In WPF you need to set the IsChecked property instead of the Checked property.)

[WPF] In WPF, a menu can contain just about anything. Build an application similar to the
one shown in Figure 5-10. (Although I’m not saying this is a good idea in an actual program.)

0 Exercise 5-13 = | = -
File

Apple =

Apple

Eanana [}S

Cherry

O Choice 1
(®) Choice 2

O Choice 3

Width: 199

FIGURE 5-10

The program’s File menu should contain:
> A comboBox with three choices.
> A ListBox with three choices.

> Three RadioButtons.

www.it-ebooks.info

http://www.it-ebooks.info/

88 |

LESSON 5 MAKING MENUS

14.

15.
16.

17.
18.

19.

> An Image.
> A stackPanel holding a Label and a TextBox.
> A crid containing a 3 X 3 arrangement of RadioButtons.

Make a Windows Forms program with five levels of nested menus. In other words, make a
menu File = Level 1 = Level 2 &> Level 3 = Level 4 &> Level 5. Make the bottommost menu
item display a message box. (Again, 'm not saying this is a good idea in an actual program.)

[WPF] Repeat Exercise 14 with a WPF application.

A useful user interface technique is to not allow the user to do things that are inappropriate
at the time. In a drawing application, for example, if the user isn’t editing a drawing, you
should disable the drawing tools.

Werite a program that has three menus: File, Customers, and Employees. Give them each one
menu item: Exit (and give it code), New Customer, and New Employee.

Give the program’s form three RadioButtons labeled General, Manage Customers, and
Manage Employees. When the user clicks a RadioButton, enable and disable the appropri-
ate menus. (Some applications hide inappropriate menus, but that can be confusing to users
who know a menu should exist but can’t find it.)

For example, when the user clicks the Manage Customers button, enable the Customers
menu and disable the Employees menu. Disable both menus when the user clicks the General
button. (Hint: Make sure the program starts with the correct menus enabled.)

[WPF] Repeat Exercise 16 with a WPF application.

Generally it’s better to use as little code as possible so you have less to program, debug,
and maintain over time. Copy the application you wrote for Exercise 5-16 and change it so
all three RadioButtons share a single event handler.

[WPF] Repeat Exercise 18 with the WPF application you wrote for Exercise 17. (Hint:
IsChecked.Value tells whether a RadioButton is checked.)

NOTE Please select the videos for Lesson 5 online at www.wrox .com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

Making Tool Strips and
Status Strips

Not every program needs a tool strip or status strip, but they can make the user’s life easier,
particularly for complicated programs. This lesson explains how to add tool strips and status
strips to your applications.

USING TOOL STRIPS

Usually a tool strip sits below a form’s menu bar and displays a series of small buttons that let
the user easily perform frequently executed tasks. Usually the buttons duplicate functions that
are also available in menus, but placing them on the tool strip makes it easier for the user to
find and use them.

Place only the most frequently used commands in the tool strip so it doesn’t become cluttered.

Recall from Lesson 5 that you should also give most if not all of your menu items accelerators,
and you can give the most important commands shortcuts. That means the user can access
the most important and useful commands in at least four ways: mouse menu navigation,
accelerators, shortcuts, and tool strip buttons.

To create a single tool strip, simply double-click the Toolbox’s Toolstrip tool. By default, the
ToolStrip docks to the top of the form so you don’t need to position it manually.

NOTE Recall from Lesson 3 that docked controls are drawn in their stacking
order, which by default is the same as their creation order. To avoid confusion, if
a form should contain a main menu and a tool strip, create the menu first so the
tool strip appears below it and not above it.

www.it-ebooks.info

http://www.it-ebooks.info/

90 | LESSON 6 MAKING TOOL STRIPS AND STATUS STRIPS

When you select a Toolstrip, the Fprm Designer d1sPlays a ht.- ® ToolAndStatusstrips [=]@I%]
tle icon with a dropdown arrow. Click the arrow to display a list File Format
of items that you might want to add to the Toolstrip, as shown R
in Figure 6-1. Button [
A Label
As you can see from Figure 6-1, you can add the following types @ SplitButton
of objects to a ToolStrip: E1 DropDownButten
| Separator
> Button & ComboBox
TextBox
> Label ED ProgressBar
> SplitButton
> DropDownButton FIGURE 6-1
> Separator
> ComboBox
> TextBox
» progressBar

The splitButton and DropDownButton are new controls that you haven’t seen before in the
Toolbox so they deserve a little explanation.

The splitButton normally displays a button holding an icon and a dropdown arrow. (You can
change its DisplayStyle property to make it display text instead of an image, both, or neither.)
If the user clicks the button, its c1ick event fires. If the user clicks the dropdown arrow, a menu
appears. As is the case with all menus, if the user selects an item, that item’s c1ick event fires.

One way you might use a SplitButton would be to have the menu items perform some action
and then change the button’s icon to match the action. Clicking the button would perform the
action again.

Another way to think of this would be that the button represents a tool and clicking it activates the
current tool. Selecting an item from the dropdown menu selects a new tool and activates it.

Like the splitButton, the DropbownButton normally displays an icon with a dropdown arrow.
(And as is the case with the splitButton, you can use the DropDownButton’s DisplayStyle prop-
erty to make it display an image, text, both, or neither.) If the user clicks the dropdown arrow, a
menu appears. This control is similar to the splitButton except it doesn’t provide a button that the
user can click to repeat the previous command.

Although they can contain many different kinds of controls, Toolstrips look best when they

are not too cluttered and confusing. For example, a ToolStrip that contains only Buttons and
Separators is easy to understand and use. DropDownButtons and SplitButtons are the next easiest
controls to understand in a ToolStrip, and they don’t clutter things up too much so you can add
them if necessary.

Avoid using Labels in a ToolStrip to provide status information. Instead, place status information
in a StatusStrip.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tool Strip Containers | 91

USING TOOL STRIP CONTAINERS

A ToolStripContainer displays areas on a form’s top, left, bottom, and right edges that can
hold Toolstrips. At run time, the user can drag Toolstrips back and forth within and among

these areas.

The center of the ToolStripContainer is a content panel
that can hold one or more other controls.

In a typical configuration for these controls, a form
optionally contains a Menustrip and StatusStrip
docked to the form’s top and bottom, respectively. A
ToolStripContainer is docked to fill the rest of the form,
and its content panel contains the rest of the program’s
controls.

Figure 6-2 shows a form that contains a MenuStrip

at the top, a Statusstrip at the bottom, and a
ToolStripContainer filling the rest of the form. The
ToolStripContainer contains three ToolStrips and a
RichTextBox docked to fill its content panel.

Figure 6-3 shows this program at run time. Here
I have dragged two of the Toolstrips to the
ToolStripContainer’s left and right edges.

Two things in Figure 6-2 are of particular note. First, notice
the thin rectangles holding arrows on the middle of the con-
tent panel’s sides. If you click one of these, the control adds
room on that edge so you can insert another ToolStrip.

The second thing of note in Figure 6-2 is the smart tag
shown as a little square holding an arrow in the control’s
upper-right corner. If you click the smart tag, the smart tag
panel shown in Figure 6-4 appears.

(=l=lE]

g SimpleEdit

ToolStripContainer Tasks
Panel Visibility

Top

Bottom

Left

Right

Re-parent Controls

]
4

FIGURE 6-4

www.it-ebooks.info

o Simplekdit EE‘.
d Eile Edit Format 3-
Ded &
v oo By f B X
=== N0-[J-i=88-F -
) <
FIGURE 6-2
ol SimpleEdit [= [= [
Fle Edit Format
v oo By f B X
O
E &
=
H-
0- &
= @
AB -
F
FIGURE 6-3

http://www.it-ebooks.info/

92 | LESSON 6 MAKING TOOL STRIPS AND STATUS STRIPS

In general, smart tags provide quick ways to perform common tasks for a control. In this example,
the smart tag panel lets you decide which panels the control should allow. If you uncheck one of the
panels, the user cannot drag Toolstrips to that edge of the ToolStripContainer at run time.

NOTE You can also determine which panels are available by setting the
control’s LeftToolStripPanelVisible, RightToolStripPanelVisible,
TopToolStripPanelVisible, and BottomToolStripPanelVisible properties in
the Properties window, but using the smart tag is easier.

After you build the ToolStripContainer, simply place ToolStrips on it and build their items
as usual.

USING STATUS STRIPS

A status strip is normally docked to a form’s bottom and displays labels, status bars, and other con-
trols to give the user a quick summary of the application’s status. This area should be reserved for
status information and should generally not include buttons and other controls that make the appli-
cation perform an action. Those commands belong in menus and tool strips.

NOTE Although the current time is sort of a piece of status information, don’t
add a clock to the status bar. A user who wants a clock can display one in the
system’s taskbar. The taskbar clock is more convenient because it provides
options (such as display format) that you probably don’t want to reproduce in
your program, and it also can’t be hidden by other programs. If the system pro-
vides a convenient tool, there’s no need for you to reproduce it in your program.

To create a status strip, simply double-click the Toolbox’s statusstrip tool. By default, the
StatusStrip docks to the bottom of the form so you don’t need to position it manually.

When you select a statusstrip, the Form Designer displays a little icon with a dropdown arrow
similar to the one it displays for a Toolstrip. Click the arrow to display a list of items that you
might want to add to the statusStrip, as shown in Figure 6-5.

As you can see from Figure 6-5, you can add the following types of objects to a ToolStrip:
> StatusLabel
> ProgressBar
> DropDownButton
> SplitButton

The only new control, StatusLabel, behaves like a normal Label.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 93

ugl SimpleEdit [=][=][x]

File Edit Format

5

=3
B
®
b

O
m 2 &
Ml |
=)
O En
|
&
(1

StatusLabel

ProgressBar

ER
- A
=
=)

DropDownButton

@ SplitButton

FIGURE 6-5

TRY IT

In this Try It, you create a MenuStrip (covered in Lesson 5) and a BE |
.. o - — o
ToolStrip, both containing commands to change a RichTextBox | %= 100lAndStatusStrips
control’s ForeColor and BackColor properties. You also create a e
StatusStrip to show the currently selected colors. (Yes, I know LE‘M——
. . . ite i
this is redundant because the values are shown in the ToolStrip E}Agwoi ok g[;ttlfzhjc:::(e
and in the text itself.) Figure 6-6 shows the program in action. Twail] Light Green '
] LightBlue
Lesson Requirements
In this lesson, you:
> Create the form shown in Figure 6-6.
Text Colors
> i ’ 1 .
Create the Menustrip. The menu’s hierarchy should be: FIGURE 6-6
File
Exit
Format
Text Color
Black
Red
Green
Blue

www.it-ebooks.info

http://www.it-ebooks.info/

94 | LESSON 6 MAKING TOOL STRIPS AND STATUS STRIPS

Background Color
White
Pink
Light Green
Light Blue

> Initially check the Text Color menu’s Black choice and the Background Color menu’s
White choice.

Give the Background Color menu items Images that display samples of the colors.

Create the Toolstrip with buttons that duplicate the menu hierarchy. The Toolstrip
should hold two ToolStripDropDownButtons.

> Name the first tool foreColorButton and make it display the text “A.” Give it the
items Black, Red, Green, and Blue. Each item should have the Forecolor property
set to its color.

> Name the second tool backColorButton and make it initially display a white color
sample. Give it the items White, Pink, Light Green, and Light Blue. Make each of
these display an Tmage showing a sample of the color.

» Give the StatusStrip a ToolStripStatusLabel named colorLabel with Text = Text
Colors.

> Add event handlers.
» Make the File menu’s Exit item close the form.
> Make event handlers for each of the Text Color menu items.
> Make event handlers for each of the Background Color menu items.

> Make the tool strip Buttons use the corresponding menu items’ event handlers.

DUPLICATE CODE

As you will probably notice, this lesson’s Try It includes event handlers that dupli-
cate the same code with minor differences. In general, if large pieces of code do
almost the same things with minor changes, then there’s probably something wrong
with the program’s design.

In cases such as this, you should extract the common code into a method. You can
use if, switch, and other C# statements to let the code take different actions for
different situations, allowing one method to handle multiple situations.

Unfortunately, you don’t know how to do any of that yet, but you will learn.
Lesson 18 describes statements such as if and switch, and Lesson 20 explains how
to write methods. Until then, you’re stuck with some duplicate code.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 95

After you read Lessons 18 and 20, you can revisit this code to remove the redun-
dant code if you like, making it easier to maintain in the future. (The process of
restructuring existing code to make it more reliable, easier to read, easier to main-
tain, or otherwise better without changing its functionality is called refactoring.)

NOTE You can download the code and resources for this lesson from the website
at www.wrox.com/go/csharp24hourtrainer2e.

Hints

> Recall that the Exit menu item can close the program’s form by calling close ().
> Place the RichTextBox inside the ToolStripContainer’s content panel.

> You may be able to save a lot of typing by making one event handler and then copying and
pasting it.

Step-by-Step
> Create the form shown in Figure 6-6.
1. Start a new project.
2. Add aMenustrip to the form.
3. Addastatusstrip to the form.
4. AddaToolStripContainer to the form.

5. Add a RichTextBox named contentRichTextBox inside the ToolStripContainer’s
content panel.

» Create the MenuStrip.

1. Add the indicated menu items to the MenuStrip. Remember to give them good names
and appropriate accelerator keys.

> Initially check the Text Color menu’s Black choice and the Background Color menu’s
White choice.

1. Set the Text Color &> Black menu item’s Checked property to True.
2. Set the Background Color &> White menu item’s Checked property to True.
> Give the Background Color menu items Images that display samples of the color.

1. Set the ITmage properties of these menu items to samples of their colors. (Use Microsoft
Paint or some other graphical editor to make small colored images.)

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

96 | LESSON 6 MAKING TOOL STRIPS AND STATUS STRIPS

>

Create the Toolstrip with buttons that duplicate the menu hierarchy. The Toolstrip
should hold two ToolStripDropDownButtons.

> Name the first tool foreColorButton and make it display the text “A.” Give it the
items Black, Red, Green, and Blue. Each item should have Forecolor property set to its
color.

1. (keatethe'ToolStripDropDownButton.
2. Below that item, add the items Black, Red, Green, and Blue.

3. Set the Forecolor property for each of these items to show its color. (For example, set
the Black item’s ForeColor property to black.)

> Name the second tool backColorButton and make it initially display a white color
sample. Give it the items White, Pink, Light Green, and Light Blue. Make each of these
display an Image showing a sample of the color.

1. Ckeatethe‘ToolStripDropDownButton.

2. Below that item, add the items White, Pink, Light Green, and Light Blue.

3. Set the Image property for each of these items to show samples of their colors.
>

Give the StatusStrip a ToolStripStatusLabel named colorLabel with Text =
Text Colors.

1. Create the ToolstripstatusLabel. Set its Name and Text properties.
> Add event handlers.

> Make the File menu’s Exit item close the form.

1

. Type the bold line of code so the event handler looks like this:

private void fileExitMenulItem Click (object sender, EventArgs e)

{
}

» Make event handlers for each of the Text Color menu items.

Close();

1. For the Text Color = Black menu item, type the bold code so the event handler looks
like this:

private void blackForeColorMenuItem Click (object sender, EventArgs e)

{

contentRichTextBox.ForeColor = blackForeColorButton.ForeColor;
foreColorMenuItem.ForeColor = blackForeColorButton.ForeColor;
foreColorButton.ForeColor = blackForeColorButton.ForeColor;

colorLabel.ForeColor = blackForeColorButton.ForeColor;

blackForeColorMenuItem.Checked = true;
redForeColorMenulItem.Checked = false;

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 97

>

1.

greenForeColorMenuItem.Checked = false;
blueForeColorMenultem.Checked = false;

blackForeColorButton.Checked = true;
redForeColorButton.Checked = false;

greenForeColorButton.Checked = false;
blueForeColorButton.Checked = false;

}

Enter similar code for the other Text Color menu items.
Make event handlers for each of the Background Color menu items.

For the Background Color & White menu item, type the bold code so the event handler
looks like this:

private void whiteBackColorMenuItem Click (object sender, EventArgs e)

{

contentRichTextBox.BackColor = Color.White;

backColorMenultem.Image = whiteBackColorMenultem.Image;
backColorButton.Image = whiteBackColorMenulItem.Image;
colorLabel.BackColor = Color.White;

whiteBackColorMenuIltem.Checked = true;
pinkBackColorMenulItem.Checked = false;
lightGreenBackColorMenuItem.Checked = false;
lightBlueBackColorMenuIltem.Checked = false;

whiteBackColorButton.Checked = true;
pinkBackColorButton.Checked = false;
lightGreenBackColorButton.Checked = false;
lightBlueBackColorButton.Checked = false;

}
Enter similar code for the other Background Color menu items.
Make event handlers for each of the Background Color menu items.

Repeat the steps you used for the Text Color menu items except use BackColor instead
of ForeColor.

Make the tool strip Buttons use the corresponding menu items’ event handlers.

1.
2.

Click the Properties window’s Events button.
For each tool strip button:
a. Click the button in the Form Editor.

b. On the Properties window, select the c1ick event. Then click the dropdown
arrow to the right.

C. Select the appropriate menu event handler. For example, for the blackFore-
ColorButton tool strip button, select the blackForeColorMenuItem Click
event handler.

www.it-ebooks.info

http://www.it-ebooks.info/

98 | LESSON 6 MAKING TOOL STRIPS AND STATUS STRIPS

EXERCISES

1.

2.

[SimpleEdit] Copy the SimpleEdit program you built in - sz [= o S|
. . Ly Impilecdr =
Lesson 5, Exercise 10 (or download Lesson 5’s version — tp
. . rile ar orma
from the book’s website) and add the tool strips, but- NEH RS
tons, and separators shown in Figure 6-7. Hints: ool § B X
> Delete the RichTextBox control, add a === 0-[]-=s-F=-
ToolStripContainer, and then re-add the
RichTextBox inside the ToolStripContainer’s
content panel. Then add the Toolstrips.
> The black button (fourth from the left on the
third tool strip row) is a ToolStripSplitButton
that lets the user pick a text color. It contains the
choices Black, White, Red, Green, and Blue. FIGURE 6-7
» The white button next to the text color button is another ToolStripSplitButton
that lets the user pick a background color. It contains the choices Black, White, Pink,
Light Green, Light Blue, and Yellow.
> The button that says “AB” is a ToolStripDropDownButton that provides the same

options as the Format menu’s Offset submenu: Normal, Superscript, and Subscript.

[WPF, SimpleEdit] Copy the program you built in Lesson 5, Exercise 12 (or download
Lesson 5’s version from the book’s website) and repeat Exercise 1. Hints:

>

>

Dock a ToolBarTray to the top of the DockPanel control below the menus.

Add ToolBars to the ToolBarTray. Set a ToolBar’s Band property to indicate its
row in the ToolBarTray. Set its BandIndex property to indicate its ordering within

the band.
AddButtonsandSeparatorstotheToolBar&

For the split buttons, use ComboBoxes containing ComboBoxItems that hold Tmages.
Set one ComboBoxItem’s IsSelected property to True to set a ComboBox’s initial
selection.

Dock a statusBar at the bottom of the DockPanel. Give it a StatusBarItem
containing a Label.

[SimpleEdit] Copy the SimpleEdit program you built for Exercise 1 and add menu item code
to manage the new tool strip buttons. Add code to synchronize corresponding menu, context
menu, and tool strip button items. For example, the following shows the new code for the
Align Left menu item:

private void formatAlignLeftMenuItem Click (object sender, EventArgs e)

{

formatAlignLeftMenuItem.Checked = true;
formatAlignRightMenuItem.Checked = false;
formatAlignCenterMenulItem.Checked = false;
alignLeftContextMenultem.Checked = true;

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 99

}

alignRightContextMenuItem.Checked = false;
alignCenterContextMenultem.Checked = false;
alignLeftButton.Checked = true;
alignRightButton.Checked = false;
alignCenterButton.Checked = false;
MessageBox.Show ("Align Left");

4. [WPF, SimpleEdit] Repeat Exercise 3 with the WPF application you built for Exercise 2. Hints:

>

>

In WPF Buttons don’t have Checked or IsChecked properties, so you can’t check
and uncheck the alignment toolbar buttons. Instead, make separate images to repre-
sent the checked state. Place checked and unchecked images in Image controls with
the visibility properties set to Collapsed. Then use code similar to the following
to set a Button’s image at run time:

alignLeftImage.Source = alignLeftUncheckedImage.Source;

Use a similar trick for the bullet button. Use code similar to the following to set the
button’s ITmage property. (Sorry but I couldn’t think of a way to handle this easily
without using if-else statements, which you learn about in Lesson 18.)
if (formatBulletMenulItem.IsChecked)

bulletImage.Source = bulletCheckedImage.Source;

else
bulletImage.Source = bulletUncheckedImage.Source;

To handle the offset toolbar items, give names to the offset ComboBoxTItems. Then set
the selected item as in the following code. (You don’t need to set this to false for
the items that are not selected.)

superscriptOffsetComboBoxItem.IsSelected = true;

Handle the indent toolbar comboBox the same way you handle the offset ComboBox.

5. [SimpleEdit] Copy the SimpleEdit program you built for Exercise 3 and attach the tool strip
controls to the corresponding event handlers. (Don’t worry about the color controls just yet.)

6. [WPF, SimpleEdit] Repeat Exercise 5 with the WPF application you built for Exercise 4. Hints:

>

>

Handle the Selected events for the offset and indentation ComboBoxItems.

When the window loads, it raises the selected events for the initially selected
ComboBoxItems. Unfortunately the window hasn’t finished loading all of its

controls yet, and the program crashes if it tries to set values for controls that aren’t
yet loaded. To prevent that, begin the event handlers for the initially selected
ComboBoxItems with the following statement. (The statement basically means, “If the
window isn’t loaded yet, exit the event handler.”)

if (!IsLoaded) return;

You may notice that the comboBoxItem event handlers execute twice if you select one
of the corresponding menu or context menu items. That’s a bit inefficient, but don’t
worry about it for now. We’ll fix it later.

www.it-ebooks.info

http://www.it-ebooks.info/

100 | LESSON 6 MAKING TOOL STRIPS AND STATUS STRIPS

10.

1.

12.

13.

[SimpleEdit] Copy the SimpleEdit program you built for Exercise 5 and add code to display
the appropriate image in the Text Color and Background tool strip buttons. For example, use
code similar to the following for the green text color choice:

private void fgGreenButton Click(object sender, EventArgs e)

{

fgButton.Image = fgGreenButton.Image;
MessageBox.Show ("Text Color Green");

}

[WPF, SimpleEdit] Copy the SimpleEdit program you built for Exercise 6 and add place-
holder code to display message boxes when the user selects a Text Color or Background tool
strip button. For example, use code similar to the following for the green text color choice:

private void greenForeColorComboBoxItem Selected(object sender,
RoutedEventArgs e)

}

[SimpleEdit] Menu items and normal buttons can display text explaining what they do, but
toolbar buttons usually display images that may not be intuitively obvious. To help the user
understand what toolbar buttons do, you should give them tooltips. Copy the SimpleEdit
program you built for Exercise 7. Set each toolbar item’s Text property to a meaningful
name. For example, set the new button’s Text to “New.” That should automatically set each
button’s tooltip to the same value.

MessageBox.Show ("Text Color Green");

[WPF, SimpleEdit] Repeat Exercise 9 with the WPF application you built for Exercise 8.
(Hint: Set the ToolTip properties for the Button, ComboBox, and ComboBoxItem controls.)

[Games] Copy the tic-tac-toe (or naughts-and-crosses) program you built for Exercise 2-3 (or
download Lesson 2’s version from the book’s website). Make these modifications:

» Add a statusStrip with a ToolStripStatusLabel named turnLabel. Set its
initial Text to Xs Turn.

> When the user takes a square for X, hide the little X and O buttons for that square
and make the status label say os Turn.

> When the user takes a square for O, hide the little X and O buttons for that square
and make the status label say xs Turn.

> Add a File menu with two new commands:
> New resets all of the program’s controls to start a new game.
> Exit closes the program.
[WPF, Games] Repeat Exercise 11 with the program you wrote for Exercise 2-4. Hints:
> To hide a control in WPF, set its visibility property to Visibility.Hidden.
> To change the status label’s text, set its Content property.

[Games] Copy the program you built for Exercise 11 and make the following modifications:

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 101

14.
15.

16.

17.
18.

> Initially disable the little O buttons.

» When the user clicks an X button, disable all of the X buttons and enable all of the
O buttons. (Hint: Write the code for one of the X buttons, make sure it’s correct, and
then copy and paste that code for the other X buttons. Copying and pasting code like
this isn’t good programming practice, but we’ll fix it in Lesson 20.)

» When the user clicks an O button, disable all of the O buttons and enable all of the X
buttons. (Hint: Use the technique you used for the X buttons.)

[WPF, Games] Repeat Exercise 13 with the program you wrote for Exercise 12.

[Drawing] Build the Scribbler program shown in Figure 6-8. Give it a ToolStripContainer
and two ToolStrips.

> Give the first ToolStrip buttons representing ! Scribbler [=1 2 B
arrow, line, rectangle, ellipse, curve, and star File
tools. Make these tools exclusive choices so if the h~oov %
user selects one, the others deselect. O"il—
Black
» Give the second ToolStrip two White
ToolStripDropDownButtons to represent |. Red [‘
foreground and background colors. Make the - o=
entries in each dropdown exclusive choices and e B
make the choices display their images on their
ToolStripDropDownButtons. | j
[WPF, Drawing] Repeat Exercise 15 with a WPF FIGURE 6-8
application.

[Drawing] Copy the program you built for Exercise 15 and add tooltips to the toolbar tools.

[WPFE, Drawing] Repeat Exercise 17 with the program you built for Exercise 17.

NOTE Please select the videos for Lesson 6 online at www.wrox .com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using RichTextBoxes

The TextBox control lets the user enter text and that’s about it. It can display its text in
different colors and fonts, but it cannot give different pieces of text different properties. The
TextBox is intended to let the user enter a simple string, like a name or street address, and
very little more.

The RichTextBox is a much more powerful control. It can display different pieces of text with
different colors, fonts, and styles. It can adjust paragraph indentation and make bulleted lists.
It can even include pictures. It’s not as powerful as a full-featured word processor, such as
Microsoft Word or OpenOffice’s Writer, but it can produce a much more sophisticated result
than the TextBox.

In this lesson you learn about the RichTextBox control and how to use it. You have a chance
to experiment with the control, and you use it to add enough functionality to the SimpleEdit
program to finally make the program useful.

USING RICHTEXTBOX PROPERTIES

To change the appearance of the text inside a RichTextBox, you first select the text that you
want to change, and then you set one of the control’s properties.

To select the text, you use the control’s selectionStart and SelectionLength properties to
indicate where the text begins and how many letters it includes. Note that the letters are num-
bered starting with 0. (In fact, almost all numbering starts with 0 in C#.) For example, setting
SelectionStart = 0 and SelectionLength = 1 selects the control’s first letter.

After you select the text, you set one of the RichTextBox’s properties to the value that you
want the selected text to have.

www.it-ebooks.info

http://www.it-ebooks.info/

104

| LESSON 7 USING RICHTEXTBOXES

For example, the following code makes the RichTextBox named contentRichTextBox display some

text and colors the word “red”:

contentRichTextBox.Text = "Some red text";
contentRichTextBox.SelectionStart = 5;
contentRichTextBox.SelectionLength = 3;
contentRichTextBox.SelectionColor = Color.Red;

Table 7-1 lists properties that you can use to change the text’s appearance.

TABLE 7-1

PROPERTY
SelectionAlignment
SelectionBackColor
SelectionBullet

SelectionCharOffset

SelectionColor
SelectionFont

SelectionHangingIndent

SelectionIndent

SelectionProtected

SelectionRightIndent

PURPOSE

Aligns the selection’s paragraph on the left, center, or right.
Sets the selection’s background color.

Determines whether the selection’s paragraph is bulleted.

Determines whether the selection is superscript (offset > 0),
subscript (offset < 0), or normal (offset = 0).

Sets the selection’s color.
Sets the selection’s font.

The first line in the selection’s paragraph is indented normally
and then subsequent lines in the paragraph are indented by this
amount.

All lines are indented by this amount.

Marks the selected text as protected so the user cannot modify
it.

All lines are indented on the right by this amount.

The FontFeatures example program shown in Figure 7-1
demonstrates properties that change the appearance of text
within a paragraph. These include the selectionBackColor,
SelectionCharOffset, SelectionColor, and SelectionFont.

For example, the following code shows how the FontFeatures

program sets the background color behind the word “BackColor™:

contentRichTextBox.SelectionStart = 41;
contentRichTextBox.SelectionLength = 9;
contentRichTextBox.SelectionBackColor = Color.Yellow;

a! FontFeatures

(== |

A RichTextBox can set a piece of
text's:

» BackColor

. CharOﬁset

» Color

. Font

FIGURE 7-1

The ParagraphFeatures program shown in Figure 7-2 demonstrates properties that change the
way paragraphs are displayed. These include SelectionIndent, SelectionHangingIndent,
SelectionRightIndent, SelectionBullet, and SelectionAlignment.

www.it-ebooks.info

http://www.it-ebooks.info/

Giving the User Control | 105

ol ParagraphFeatures I;Ii-

This paragraph has Indent = 20. All lines are indented
by 20 pixels on the left.

This paragraph has Hangingindent = 20. The firstline is
not indented and subsequent lines are indented.

This paragraph has Rightindent = 60. All lines
are indented by 60 pixels on the right.

* These paragraphs are bulleted but they are not
automatically indented.

o [fyou want bulleted paragraphs to be indented, too,
then you have to add indentation yourself.
 Indentation doesn't come for free with bullets.

This paragraph is Centered in the middle of the
RichTextBox control.

FIGURE 7-2

For example, the following code shows how the ParagraphFeatures program gives the second
paragraph a 20 pixel hanging indent:
contentRichTextBox.SelectionStart = 82;

contentRichTextBox.SelectionLength = 1;
contentRichTextBox.SelectionHangingIndent = 20;

Table 7-2 summarizes four additional properties that change the text displayed by the control that
deserve special mention.

TABLE 7-2
PROPERTY PURPOSE
Text Gets or sets the control’s text without any formatting.
RIELE Gets or sets the control’s Rich Text Format (RTF) contents. This includes the
text plus RTF formatting codes that define how the text should be displayed.
SelectedText Gets or sets the selection’s text.
SelectedRtf Gets or sets the selection’s text and RTF codes.

GIVING THE USER CONTROL

Allowing the user to change text settings is easy. When the user selects text in the control, the
RichTextBox sets its SelectionStart and SelectionLength properties accordingly. All you need to
do is set the appropriate property (for example, SelectionColor) and the selected text is updated.

www.it-ebooks.info

http://www.it-ebooks.info/

106 | LESSON 7 USING RICHTEXTBOXES

The SetTextProperties example program shown in
Figure 7-3 uses this technique to let the user control
text color, character offset, and paragraph alignment.
Select some text and then click the tool strip buttons to
change the text’s properties.

For example, the following code shows how the
SetTextProperties program changes the currently selected
text to have a black background and white foreground:

private void reverseColorsButton
Click (object sender, EventArgs e)

{

ad SetTextProperties = [= -

AR aBARa EE

Data is not information, information is not
knowledge, knowledge is not understanding,
understanding is not wisdomiE®liafsls Bl

E = MC2 - Albert Einstein

Sheldon: I'm HyO intolerant.

Tad: I'm obnoxious.
(Finding Nemo)

FIGURE 7-3

contentRichTextBox.SelectionBackColor = Color.Black;
contentRichTextBox.SelectionColor = Color.White;

}

The program’s other buttons work similarly.

USING RICHTEXTBOX METHODS

Lesson 2 briefly described properties, methods, and events. Other lessons have also worked with
many properties and events. In fact, most of the event handlers I’ve discussed in the lessons so far

catch an event and change a property in response.

Although you’ve worked with many properties and events, the only method you’ve seen is the form’s
Close method, which makes the form go away. For example, the following code closes the form that

executes it:

Close();

The RichTextBox provides many new methods that are quite helpful for building a text editing
program. Table 7-3 summarizes some of the most useful of those methods.

TABLE 7-3
METHOD PURPOSE
Clear Clears all text from the control.
Copy Copies the current selection into the clipboard.
Cut Cuts the current selection into the clipboard.

DeselectAll Deselects all text by setting SelectionLength = 0.

LoadFile Loads the control’s text from a file with one of various formats such as RTF or
plaintext.
Paste Pastes whatever is in the clipboard into the current selection. This can be anything

that the RichTextBox understands such as text, RTF formatted text, or an image.

Redo Redoes the previously undone command.

www.it-ebooks.info

http://www.it-ebooks.info/

Using RichTextBox Methods | 107

METHOD PURPOSE
SaveFile Saves the control’s text into a file in one of various formats such as RTF or plaintext.
SelectAll Selects all of the control’s text by setting SelectionStart = 0 and

SelectionLength equal to the text's length.

Undo Undoes the most recent change.

The following code shows how a program can use the LoadFile method:

contentRichTextBox.LoadFile ("Test.rtf", RichTextBoxStreamType.RichText) ;

The first parameter passed into LoadFile gives the name of the file, which can be relative to the
program’s current directory or a full path.

The second parameter gives the type of file. The RichTextBoxStreamType enumeration lists
file types that you can use. The choices you can use to load files are PlainText, RichText, and
UnicodePlainText.

TYPING TIPS

When you type contentRichTextBox.LoadFile (, IntelliSense) and displays the
popup shown in Figure 7-4 to show the parameters that the LoadFile method
expects. (Visual Studio adds red squiggly underlines because the statement isn’t fin-
ished yet. Until I finish typing the statement, Visual Studio flags it as an error.)

contentRichTextBox. LoadFile (I)_v

A 10of 3 v void RichTextBox.LoadFile(string path)
Loads a rich text format (RTF) or standard ASCI| text file into the RichTextBox control.
path: The name and location of the file to load into the control.

FIGURE 7-4

You can choose from three different overloaded versions of the method, each
taking different parameters. Overloaded versions of a method have the same name
but take different parameters. You can use the up and down arrow keys to scroll
through the method’s available versions.

As you enter parameters, IntelliSense updates to describe the next parameter that

it expects. Figure 7-5 shows the LoadFile method after I entered a filename for the
first parameter. IntelliSense shows that the next parameter should be a value of type
RichTextBoxStreamType named f£ileType. IntelliSense even shows a short descrip-
tion of what the value means at the bottom (although it’s not super informative).

contentRichTextBox.LoadFile("Test.rtf" ,IJM

A 2 of 3 w void RichTextBox.LoadFile(string path, RichTextBoxStreamType fileType)
Loads a specific type of file into the RichTextBox control,
fileType: One of the RichTextBoxStreamType values.

FIGURE 7-5

continues

www.it-ebooks.info

http://www.it-ebooks.info/

108 | LESSON 7 USING RICHTEXTBOXES

(continued)

You could type in RichTextBoxStreamType followed by a dot to see a list of avail-
able choices, but there’s an even easier (in other words, better) way to do this: press
Ctrl+Space. That makes IntelliSense display a list of things that you might be trying
to type. At this point, IntelliSense is smart enough to guess that you want to type
RichTextBoxStreamType so it initially selects that type and even displays more
information about it, as shown in Figure 7-6.

contentRichTextBox.loadFile("Test.rtf",)
= RichTextBoxLanguageOptions -
= RichTextBoxScrollBars
& RichTextBoxSelectionAttribute
= RichTextBoxSelectionTypes

enum System.Windows.Forme.RichTextBoxStream Type El RichTextBoxStreamType
Specifies the types of input and output streams used to load and save data in the RichTextBox control. & RichTextBoxWordPunctuations

H /& Right
A F RightToLeft
=) private void normalOffsetButton# RightToleftChanged -

FIGURE 7-6

Now you can press Tab to make IntelliSense fill in the highlighted value
RichTextBoxStreamType for you.

Next, press the “.” key to see the list of choices shown in Figure 7-7, pick one, and
press Tab to add it to the code. Finally, add a semicolon at the end of the line and
you’re done.

contentRichTextBox. LoadFile("Test.rtf",RichTextBoxStreamType.)
PlainText
RichMoOleObjs

EE

=q
RichTextBoxStreamType.RichTexdt = 0| & (SIS
A Rich Text Format (RTF) strearn. & TextTextOleObjs
=q

UnicodePlainText

FIGURE 7-7

I know this sounds like a big mess, but with a little practice it becomes surpris-
ingly quick and easy. Typing everything by hand, I can enter the previous LoadFile
statement in about 30 seconds. With IntelliSense’s help, I can type the same line in
under 10 seconds.

The following code shows how a program can use the saveFile method. As with LoadFile, the
first parameter gives the file’s name and the second gives its type:

contentRichTextBox.SaveFile ("Test.rtf", RichTextBoxStreamType.RichText) ;

USING WPF COMMANDS

A program can use commands to manipulate the contents of a RichTextBox. That control also
provides commands that the user can invoke interactively. For example, the user can press Ctrl+E to
center paragraphs.

www.it-ebooks.info

http://www.it-ebooks.info/

Using WPF Commands | 109

Table 7-4 summarizes the most useful commands. The commands for the Windows Forms and WPF
versions of the control differ slightly.

TABLE 7-4
ACTION WINDOWS FORMS WPF
Align centered Ctrl+E Ctrl+E
Align justified Ctrl+J
Align left Ctrl+L Ctrl+L
Align right Ctrl+R Ctrl+R
Bullet * Ctrl+Shift+L
Copy Ctrl+C Ctrl+C
Cut Ctrl+X Ctrl+X
Decrease font size Ctrl+|
Delete Delete Delete
Delete next word Ctrl+Delete Ctrl+Delete

Delete previous word

Ctrl+Backspace

Ctrl+Backspace

Increase font size Ctrl+]
Numbering * Ctrl+Shift+N
Paste Ctrl+V Ctrl+V
Subscript ** Ctrl++ Ctrl++
Superscript ** Ctrl+Shift++ Ctrl+Shift++
Toggle bold Ctrl+B
Toggle insert Insert Insert
Toggle italic Ctrl+
Toggle underline Ctrl+U Ctrl+U

* In Windows Forms, Ctrl+Shift+L iterates through the available bullet and numbering styles.

** The subscript and superscript sequences are a bit confusing. For subscript, hold the Ctrl key and press +.
For superscript, hold the Ctrl and Shift keys and press +. In WPF, those commands work only for OpenType

fonts that come with subscript and superscript variants. Try the Palatino Linotype font. For more
information on OpenType fonts, see msdn.microsoft.com/library/ms745109.aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

110 | LESSON 7 USING RICHTEXTBOXES

Both controls provide additional navigation commands. For example, Ctrl+Right Arrow moves one
word to the right and Ctrl+Down Arrow moves one paragraph downward.

The WPF control also provides a context menu that contains the Copy, Cut, and Paste commands.

For more information on the WPF control’s commands, including the navigation commands, see
msdn.microsoft.com/library/system.windows.documents.editingcommands.aspx.

TRY IT

In this Try It, you add functionality to some of the SimpleEdit program’s menu items and tool strip
buttons. You use the RichTextBox properties and methods to implement the commands in the Edit
menu: Undo, Redo, Copy, Cut, Paste, Delete, and Select All. (This also makes the corresponding
buttons work at no extra charge.)

Lesson Requirements
In this lesson, you:
> Copy the SimpleEdit program you built in Lesson 6, Exercise 9.
> Replace the program’s TextBox with a RichTextBox named contentRichTextBox.
> Add code to handle the Edit menu’s commands.
> Add Undo code.
Add Redo code.
Add Copy code.
Add Cut code.
Add Paste code.
Add Delete code.
Add Select All code.

Y Y Y Y Y Y

NOTE You can download the code and resources for this lesson from the website
at www .wrox.com/go/csharp24hourtrainer2e.

Hints

> For the Delete menu item, simply set the control’s SelectedText property to an empty string: "".
Step-by-Step

> Copy the SimpleEdit program you built in Lesson 6, Exercise 9 (or download Lesson 6’s
version from the book’s website).

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Try lt | 111

> Replace the program’s TextBox with a RichTextBox named contentRichTextBox.
» Add code to handle the Edit menu’s commands.

1. Open the program’s form in the Form Designer. Click the Menustrip, expand the Edit
menu, and double-click the Undo menu item.

2. Replace the placeholder call to MessageBox . Show with the following line of code so the
event handler looks like this:

private void editUndoMenultem Click (object sender, EventArgs e)

{
}

3. Repeat the previous two steps for the other Edit menu items. The following code shows
the new event handlers:

contentRichTextBox.Undo () ;

private void editUndoMenultem Click (object sender, EventArgs e)

{
}

private void editRedoMenultem Click (object sender, EventArgs e)

{
}

private void editCopyMenultem Click (object sender, EventArgs e)

{
}

private void editCutMenulItem Click (object sender, EventArgs e)

{
}

private void editPasteMenultem Click (object sender, EventArgs e)

{
}

private void editDeleteMenultem Click (object sender, EventArgs e)

{
}

private void editSelectAllMenuItem Click (object sender, EventArgs e)

{
}

When you finish, test the program’s new features. One of the RichTextBox’s more remarkable
features is its ability to paste different kinds of items from the clipboard. For example, copy a
picture to the clipboard and then use the program to paste it into the RichTextBox.

contentRichTextBox.Undo () ;

contentRichTextBox.Redo () ;

contentRichTextBox.Copy () ;

contentRichTextBox.Cut () ;

contentRichTextBox.Paste () ;

contentRichTextBox.SelectedText = "";

contentRichTextBox.SelectAll () ;

www.it-ebooks.info

http://www.it-ebooks.info/

112 | LESSON 7 USING RICHTEXTBOXES

EXERCISES

1.

4.

[WPF, SimpleEdit] Repeat the Try It using the WPF program you built for Lesson 6’s
Exercise 10. Hint: To delete the current selection, use the statement contentRichTextBox
.Selection.Text = "".

[SimpleEdit] Copy the program you built for the Try It and add simple code to handle the
File menu’s New, Open, Save, and Exit commands. For the New command, simply clear the
RichTextBox. (Hint: Use the clear method.)

For the Open and Save commands, just load and save the file Test.rtf. (The program will
create the file the first time you save. If you try to open the file before it exists, the program
will crash so don’t use Open before you use Save.) Lesson 8 explains how to use file open
and save dialogs to let the user pick the file that should be opened or saved.

[WPF, SimpleEdit] Repeat Exercise 2 using the program you built for Exercise 1. Hints:

> One way to clear the control’s contents is to use the following code:

contentRichTextBox.SelectAll () ;
contentRichTextBox.Selection.Text = "";

> The preceding code works but is rather slow if the control contains a lot of text. The
following code is more complicated but more efficient:
TextRange range = new TextRange (
contentRichTextBox.Document .ContentStart,

contentRichTextBox.Document .ContentEnd) ;
range.Text = "";

> To load the saved file, use the following code (sorry, but WPF’s version of the
RichTextBox is a bit more complicated):

TextRange range = new TextRange (
contentRichTextBox.Document.ContentStart,
contentRichTextBox.Document .ContentEnd) ;

using (System.IO.Stream stream =
new System.IO.FileStream("Test.rtf", System.IO.FileMode.Open))

{

}

> To save text into a file, use the following code:

range.Load (stream, DataFormats.Rtf);

TextRange range = new TextRange (
contentRichTextBox.Document .ContentStart,
contentRichTextBox.Document .ContentEnd) ;
using (System.IO.Stream stream =
new System.IO.FileStream("Test.rtf", System.IO.FileMode.Create))
{

}

[SimpleEdit] Copy the SimpleEdit program you built for Exercise 2 and add code to handle
the Format menu’s commands (except for the Font command and color commands, which
are covered in Lesson 8).

range.Save (stream, DataFormats.Rtf);

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 113

Hints:

» To turn bullets on and off, use the statement contentRichTextBox
.SelectionBullet = formatBulletMenultem.Checked.

> Make the indentation commands (None, Hanging, Left, Right, and Both) reset any other
indentations. For example, the Hanging command should set the selectionIndent and
SelectionRightIndent properties to 0 as in the following code:
contentRichTextBox.SelectionIndent = 0;

contentRichTextBox.SelectionRightIndent = 0;
contentRichTextBox.SelectionHangingIndent = 20;

[WPF, SimpleEdit] Copy the WPF SimpleEdit program you built for Exercise 3 and add code
to handle the Format menu’s alignment and bullet commands. Hints:

> To turn bullets on and off, use the statement EditingCommands.ToggleBullets
.Execute (null, contentRichTextBox).

> Use similar EditingCommands methods for the alignment commands.

[SimpleEdit] Copy the SimpleEdit program you built for Exercise 4 and add code to handle
the toolbar’s color commands.

The SimpleEdit program allows only the indentation styles None, Hanging, Left, Right, and
Both. It doesn’t allow other combinations such as Hanging plus Right. Build a program that
uses tool strip buttons to let the user select each of the indentation properties (hanging, left,
and right) individually. Provide a fourth button to clear all of the indentation properties.

Make a program with two menus and a RichTextBox. The File menu should contain the
usual Exit command. The Font menu should contain the items Small, Medium, and Large
and should use small, medium, and large fonts, respectively. When the user selects one of
those items, the program should set the RichTextBox’s selected text to use that item’s font.

[Hard] Make a program with a RichTextBox and a toolbar containing Undo and Redo
buttons. Initially disable the buttons. Whenever the user changes the RichTextBox’s text
(catch the TextChanged event) or clicks one of the buttons, use the RichTextBox control’s
CcanUndo and CcanRedo properties to enable or disable the buttons. Verify that this works as
expected when you click the buttons or press Ctrl+Z or Ctrl+Y. Also make sure it works if
you press Ctrl+V to paste into the RichTextBox.

NOTE Please select the videos for Lesson 7 online at www.wrox .com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using Standard Dialogs

Many applications need to display dialogs to let the user select certain standard pieces of
information. Probably the most common dialogs let the user select a file to open and select a
file to save into. Other dialogs let the user select colors, filesystem folders, fonts, and printers
for printing.

Closely related to the print dialog are the print preview dialog (which lets the user see a
preview of a printout before sending it to the printer, possibly saving paper if the user then
cancels the printout) and the page setup dialog (which lets the user select things like margins
before printing).

You could build all of these dialogs yourself (or you will be able to once you’ve finished read-
ing this book), but why should you? If so many programs need the exact same features, why
shouldn’t someone build standard dialogs that everyone can use?

Happily that’s exactly what Microsoft did.
C# comes with the following standard dialogs that handle these common tasks:

» ColorDialog

PrintPreviewDialog

> FolderBrowserDialog
> FontDialog

> OpenFileDialog

> PageSetupDialog

> PrintDialog

>

>

SaveFileDialog

www.it-ebooks.info

http://www.it-ebooks.info/

116 | LESSON 8 USING STANDARD DIALOGS

NOTE You might remember that in Lesson 1, I said, “Normally you don’t need
to worry about whether a feature is provided by Visual Studio, the C# language,
or the NET Framework.” That’s true here as well, but it’s informative to note
that these dialogs are actually provided by the .NET Framework, not C#. That
doesn’t change the way you use them, but it means they’re the same dialogs used
by all NET languages such as Visual Basic, Visual C++, or [Script.

By building these standard dialogs into the NET Framework, Microsoft lets
programmers using many languages share the same common features.

These dialogs provide some fairly sophisticated features for you automatically with no additional
code. For example, the openFileDialog class lets the user browse through the filesystem to select a
file to open. The dialog can automatically verify that the file actually exists so the user cannot type
in the name of a non-existent file and click Open.

Similarly, the saveFileDialog class automatically prompts the user if the selected file does exist.
For example, if the user selects the existing file Test . txt, the dialog displays the message “Test
.txt already exists. Do you want to replace it?” If the user doesn’t click Yes, the dialog doesn’t close.
By the time the dialog closes, the user must have picked a file that doesn’t yet exist or signed off on
destroying the original file.

In this lesson you learn how to display these standard dialogs. You learn how to initialize them to
show the user the program’s current settings, how to tell which button the user clicked, and how to
use the selections the user made.

NOTE This lesson actually cheats a bit on the printing dialogs. Although it
explains how to display these dialogs, you can’t do anything really useful with
them until you know how to print, which is a much more complicated topic.
Lesson 30 gets into the details of how to print.

USING DIALOGS IN GENERAL

You can use all of the standard dialogs in more or less the same way. The only differences are in
how you initialize the dialogs so they show colors, fonts, files, or whatever and in how you handle
the results.

You can use a standard dialog in Windows Forms applications by following these four steps:
1. Add the dialog to the form.
2. Initialize the dialog to show current settings.
3. Display the dialog and check the return result.
4

Process the results.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Dialogs in General | 117

Adding the Dialog to the Form

You can add a dialog to a form just as you add any other component, such as a Timer. Like other
components, the dialog appears below the form in the Component Tray.

The control Toolbox has a Dialogs tab that contains most of the standard dialogs so they are easy to
find. The printing-related dialogs are contained in the Printing tab so they’re also easy to find (if you
know to look there). Figure 8-1 shows the Toolbox’s Printing and Dialogs tabs.

Toolbox * A X
Search Toolbox P~
4 Printing -

k Pointer

] PageSetupDialeg

& PrintDialeg

& PrintDocument
1 PrintPreviewControl
51 PrintPreviewDialog
4 Dialogs

Pointer
ColorDialog
FolderBrowserDialog
FontDialog
OpenFileDialog

LT EHER

SaveFileDialog
I+ Reperting

FIGURE 8-1

Initializing the Dialog

Most of the standard dialogs start with some initial selection. The FontDialog starts with a font
selected, the colorDialog starts with a color selected, and so forth. Normally you should initialize
the dialog so it shows the user your program’s current settings. For example, a FontDialog should
show the program’s current font.

Usually making these initial selections is easy. Simply set the dialog’s key property (Font, Color,
Filename) to the value you want to display.

For example, the following code sets a ColorDialog’s Color property to the form’s current
BackColor value. (Recall that this means the form or other object that is currently executing
the code.)

backgroundColorDialog.Color = this.BackColor;

The only real trick here is in knowing what properties to set. Table 8-1 lists the key properties for
the different kinds of dialogs.

www.it-ebooks.info

http://www.it-ebooks.info/

118 | LESSON 8 USING STANDARD DIALOGS

TABLE 8-1
DIALOG KEY PROPERTY
ColorDialog Color
FolderBrowserDialog SelectedPath
FontDialog Font
OpenFileDialog FileName
SaveFileDialog FileName

The PageSetupDialog, PrintDialog, and PrintPreviewDialog are a bit different from the others
so [won’t say anything more about them here. Printing is covered in more detail in Lesson 30.

I just said that you should initialize the dialogs to show current values, but the file open and save
dialogs have a special feature that might make you decide to skip this step. When you use them,
they remember the directories they displayed last. That means if the user opens one of these dialogs
again, it starts in the same directory it was in last time. In fact, if the user closes and restarts the
program, the dialogs still remember where they were last.

NOTE If you have several different openFileDialogs (or SaveFileDialogs) in
the same program, they all share the same idea of where they were last.

The only reason you might want to initialize these dialogs is if you want the program to separately
track more than one file. For example, you might want different places to save text files, bitmaps,

and RTF files.

Also note that the openFileDialog and SaveFileDialog remember the same directory, so if you
want to be able to load from one directory and save into another, you might want to initialize the
dialogs.

Displaying the Dialog and Checking the Return Result

You display all of the standard dialogs by calling their showbialog methods. ShowDialog
displays the dialog modally and then returns a value to tell the program whether the user clicked
OK, Cancel, or some other button.

NOTE A modal dialog prevents the user from interacting with the program until
it is closed. It forces the user to make a choice. In contrast, a modeless dialog
would let the user move to the program’s other forms without closing the dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Dialogs in General | 119

NOTE Note that the OK buttons on some of the dialogs don’t actually say
“OK.” The openFileDialog’s OK button says “Open,” the SaveFileDialog’s
OK button says “Save,” and the PrintDialog’s OK button says “Print.” As far
as the program is concerned, however, they’re all OK buttons, and you test for
them all in the same way.

Your code should test the returned result and, if the user clicked OK, it should do something with
the user’s selection.

Unfortunately to make that test, you need to use an if statement, and if statements aren’t covered
until Lesson 18. Luckily this particular use of if statements is quite simple, so I feel only a little
guilty about showing it to you now.

The following code shows how a program can display a ColorDialog named
backgroundColorDialog:

if (backgroundColorDialog.ShowDialog() == DialogResult.OK)

{
}

The code calls the dialog’s showbialog method. It then uses the if statement to compare the value
that ShowbDialog returns to the value Dialogresult.ox. If the values are equal (that’s what ==
means in C#), the program does whatever is inside the braces (which I’'ve omitted here).

If the user clicks the Cancel button, Showbialog returns the value DialogResult.Cancel, so the if
test fails and the program skips the code inside the braces.

NOTE If the user closes the dialog in any way other than clicking the OK but-
ton, the Showbialog method returns DialogResult .Cancel. For example, if the
user presses Alt+F4 or clicks the X button on the dialog’s upper-right corner, the
dialog considers itself canceled.

Processing the Results

Finally, if the user clicked OK, the program should do something with whatever the user selected
in the dialog. Often this means doing the opposite of the step where you initialized the dialog. For
example, suppose a program uses the following code to initialize its ColorDialog:

backgroundColorDialog.Color = this.BackColor;

www.it-ebooks.info

http://www.it-ebooks.info/

120 | LESSON 8 USING STANDARD DIALOGS

Then it would use the following code to set the form’s BackColor property to the color that the user
selected:

this.BackColor = backgroundColorDialog.Color;

Putting It All Together

The following code shows the whole sequence for a colorDialog. The program initializes the
dialog, displays it and checks the return value, and processes the result:

backgroundColorDialog.Color = this.BackColor;
if (backgroundColorDialog.ShowDialog() == DialogResult.OK)

{
}

This looks a bit more complicated than code examples in previous lessons, but it’s not too bad. The
only new part is the if test. The other statements simply set the dialog’s Color property equal to the
form’s BackColor property and vice versa, and you’ve been setting properties for quite a while now.

this.BackColor = backgroundColorDialog.Color;

USING DIALOG PROPERTIES

Table 8-1 earlier in this lesson listed the dialogs’ key properties, but some of the dialogs have other
useful properties, too.

For example, the ColorbDialog has an AllowFullopen property that determines whether the user
can click the dialog’s Define Custom Colors button to show an area on the right where the user can
create new colors. Figure 8-2 shows a ColorDialog displaying this area.

Caolor -
Basic colors:
B T
HEEE NN
HE NN N NN 4
EEEEEEEN
EEEEEENEN
NN .
Custom colors:
Crrrrrrrr
o rr s [z2] Geen
Define Custom Colors > Coloriglid |_J_IITIZ Blge:
Cancel | Add to Custom Colors |

FIGURE 8-2

You can learn more about these extra properties by reading the online help. For example,
Microsoft’s help page for the colorDialog is msdn.microsoft.com/library/system.windows

.forms.colordialog.aspx. You can replace colordialog in this URL with the name of another
dialog to find its web page.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Dialog Properties | 121

Table 8-2 summarizes the ColorDialog’s most useful properties.

TABLE 8-2
PROPERTY

AllowFullOpen
Color

FullOpen

PURPOSE
Determines whether the user can create custom colors.
The selected color.

Determines whether the custom color area is open when the dialog
appears.

Table 8-3 summarizes the FolderBrowserDialog’s most useful properties.

TABLE 8-3

PROPERTY

RootFolder

SelectedPath

PURPOSE

The root folder where the dialog starts browsing. The Properties window
lets you pick from values such as Desktop, Favorites, History, and
MyComputer.

The selected folder.

Table 8-4 summarizes the Fontbialog’s most useful properties.

TABLE 8-4
PROPERTY

FixedPitchOnly

Font

FontMustExist

MaxSize

ShowColor

ShowEffects

PURPOSE

Determines if the dialog allows the user to select only fixed-width fonts.
This is useful, for example, if you are going to use the font to build a report
and you need the characters to all have the same width so columns line up

properly.
The selected font.

Determines whether the dialog raises an error if the selected font doesn't
exist (for example, if the user types “ExtraBold” for the font style and that
style isn't available for the selected font).

The largest allowed size for the font.

Determines whether the dialog lets the user select a font color. If you
set this to True, use the dialog’s Color property to see which color was
selected.

Determines whether the dialog lets the user select underline, strikeout, and
font color. (To select font color, ShowColor and ShowEffects must both
be True.)

www.it-ebooks.info

http://www.it-ebooks.info/

122 | LESSON 8 USING STANDARD DIALOGS

Table 8-5 summarizes the openFileDialog’s most useful properties.

TABLE 8-5

PROPERTY PURPOSE

AddExtension If this is True and the user selects a filename without an extension, the
dialog adds the default extension to the name.

CheckFileExists If this is True, the dialog won't let the user pick a file that doesn't exist.

CheckPathExists If this is True, the dialog won't let the user pick a file path that doesn’t
exist.

DefaultExt The default file extension.

FileName The selected file's name.

Filter The file selection filter. (See the section “Using File Filters” later in this
lesson for details.)

FilterIndex The index of the currently selected filter. (See the section “Using File
Filters” later in this lesson for details.)

InitialDirectory The directory where the dialog initially starts.

ReadOnlyChecked Indicates whether the user checked the dialog’s Read Only box.

ShowReadOnly Determines whether the dialog displays its Read Only box.

migle The text displayed in the dialog's title bar.

The saveFileDialog has many of the same properties as the OpenFileDialog. See Table 8-5 for
descriptions of the properties AddExtension, CheckFileExists, CheckPathExists, DefaultExt,
FileName, Filter, FilterIndex, InitialDirectory, and Title.

Table 8-6 summarizes SaveFileDialog properties that are not shared with the openFilenialog.

TABLE 8-6
PROPERTY PURPOSE
CreatePrompt If this is True, and the user selects a file that doesn't exist, the dialog asks
if the user wants to create the file.
OverwritePrompt If this is True and the user selects a file that already exists, the dialog asks
if the user wants to overwrite it.
ValidateNames Determines whether the dialog verifies that the filename doesn’t contain

any invalid characters.

www.it-ebooks.info

http://www.it-ebooks.info/

Using File Filters | 123

Table 8-7 summarizes the PrintDialog’s most useful property.

TABLE 8-7
PROPERTY PURPOSE
Document You set this property to tell the dialog what document object to print. Lesson 30

has more to say about this.

Table 8-8 summarizes the PrintPreviewDialog’s most useful property.

TABLE 8-8
PROPERTY PURPOSE
Document You set this property to tell the dialog what document object to preview. Lesson

30 has more to say about this.

USING FILE FILTERS

Most of the dialogs’ properties are fairly easy to understand. Two properties that are particularly
confusing and important, however, are the Filter and FilterIndex properties provided by the
OpenFileDialog and SaveFileDialog.

The Filter property is a list of text prompts and file-matching patterns separated by the | character.
The items alternate between text prompts and the corresponding filter. The dialog provides a
dropdown list where the user can select one of the text prompts. When the user selects a prompt,
the dialog uses the corresponding filter to decide which files to display.

For example, consider the following value:
Bitmap Files|*.bmp|Graphic Files|*.bmp;*.gif;*.png;*.jpg|All Files|*.*
This value represents three categories of files:
> The text prompt “Bitmap Files” with filter * . bmp.

» The text prompt “Graphic Files” with filter * .bmp; *.gif; *.png; *.jpg. That filter matches
files ending with .bmp, .gif, .png, or .jpg.
> The text prompt “All Files” with filter *. *.
Figure 8-3 shows an OpenFileDialog. The filter dropdown (just above the Open and Cancel
buttons) has the text prompt “Graphics Files” selected. (The dialog automatically added the filter in

parentheses just to confuse the user.) The dialog is listing the files in this directory that match the
filter. In this case, the directory contains seven .png files.

www.it-ebooks.info

http://www.it-ebooks.info/

124 | LESSON 8 USING STANDARD DIALOGS

L= Open -

i(-) * 4 |l « Figs » 065661figs07 v O| | Search DB5661figs07 P |
Organize = Mew folder EE= g E @
. Writing ~ Mame n Date Type
L Articles

51207 PM PNG
1210 PM PNG
1218 PM PNG

=] 065661f0701.png
| =] 065661f0702.png
=] 063661f0703.png

3
. Books
3
3
|=| 065661f0704.png 3/31/,
3
3
3

\ 24-Hour C# Trainer, 2e

' D
: F_Dc 51233PM PNG
pores B 5] 065661£0705.png 1236 PM PNG
| 085661figsDT7 -
(<] 06566170706.png 1240 PM PNG
|| 085661figsD

|=| 065661f0707.png 12:43 PM PNG

./ Annctations
. Done

. Instructor Material

|l Mss
|, old
I Tests v|[< [[>
File name: v| |Graphic Files (*.bmp:;*.gif:*.png V|
| Qpen \ | v |

FIGURE 8-3

Once you understand the Filter property, the FilterIndex property is simple. FilterIndex is
simply the index of the selected filter, where 1 means the first filter, 2 means the second, and so
forth. (Remember in Lesson 7 when I said, “almost all numbering starts with 0 in C#”? This is one
of the rare exceptions.) You can use FilterIndex to initially select the filter that you think will be
most useful to the user.

The openFilebDialog and SaveFileDialog both use the same type of Filter and FilterIndex
properties. In fact, usually if a program displays both of these dialogs, they should use the same
Filter value. If a program can load .txt and .rtf files, it should probably be able to save .txt
and .rtf files.

NOTE To carry this idea one step further, you could set the SaveFileDialog’s
FilterIndex property to the value selected by the user in the OpenFileDialog
under the assumption that a user who loads a . txt file is later likely to want to
save it as a .txt file.

USING DIALOGS IN WPF

Unfortunately, WPF provides only a PrintDialog and doesn’t include the other standard dialogs.

If you’ve been paying attention, you’re probably saying, “Wait. Earlier in this lesson you said that
the standard dialogs were provided by the .NET Framework. Doesn’t that mean WPF programs can

www.it-ebooks.info

http://www.it-ebooks.info/

Using Dialogs in WPF | 125

use them, too?” (If you said this and are reading this book as part of a programming course, tell
your instructor that you deserve 5 extra points on the next quiz.)

That’s true—WPF programs can use the standard dialogs, but not in the same way a Windows
Forms application does.

WPF normally doesn’t display the common dialogs in the Toolbox, so you can’t add them to a
window and you can’t set their properties in the Properties window at design time. Instead, you
need to create, initialize, and display the dialogs with code.

Before you write any code, you need to tell Visual Studio about the part of the .NET Framework
that contains the dialogs. To do that, open the Project menu and select Add Reference to open the
Reference Manager shown in Figure 8-4.

Reference Manager - Wpf Try 1t 8 _
4 Assemblies Targeting: .MET Framework 4.5 Search Assemblies (Ctrl+E) 2 ~
Framework Name “ Name:
Extensions System.Web.5ervices System.Windows.Forms
System. Windows Created by:
Recent System. Windows.Controls.Ribbon Microsoft Corporation
. Version:
b Projects System. Windows.Forms.DataVisualization 4.0.0.0
b Shared Proiects System. Windows.Forms.DataVisualization.Des File Version:
t System. Windows.Input.Manipulations 4.0.30319.18020 built by:
r COM System.Windows.Presentation FXA5RTMGDR
System. Workflow. Activities
b Browse System. Workflow.ComponentMedel
System. Workflow. Runtime
System. WorkflowServices -
—a [NP V. |
4 4
Browse... ‘ | oK | ‘ Cancel

FIGURE 8-4

On this dialog, check the boxes next to System.Windows.Forms and System.Drawing, and click
OK. (The first reference tells where the dialogs are defined. The second lets the program understand
Color and Font objects, so you need it if you’re working with those two dialogs.)

Now you can use code similar to the following to make a WPF program display an
OpenFileDialog:

// Create the OpenFileDialog.
System.Windows.Forms.OpenFileDialog fileDialog =
new System.Windows.Forms.OpenFileDialog() ;

// Set the Filter.
fileDialog.Filter = "Text Files|*.txt|RTF Files|*.rtf|All Files|*.*";

// Display the dialog and check the result.
if (fileDialog.ShowDialog() == System.Windows.Forms.DialogResult.OK)

{
// Process the selected file.
MessageBox.Show (fileDialog.FileName) ;

www.it-ebooks.info

http://www.it-ebooks.info/

126

| LESSON 8 USING STANDARD DIALOGS

The first statement (which spans two lines because it’s so long) creates a System.Windows . Forms
.OpenFileDialog object. That statement really just creates an OpenFileDialog object. The rest of
the declaration tells Visual Studio that this kind of object is located in the System.Windows . Forms
part of the .NET Framework.

Next the code initializes the dialog. This example just sets the dialog’s Filter property, but you
could set other properties, too, such as FilterIndex, CheckFileExists, and ShowReadoOnly.

The code then displays the dialog by calling its Showbialog method as before and compares the
returned result with System.Windows.Forms.DialogResult .OK. If the user clicked the OK button,
the program processes the result. This example simply displays the selected file’s name in a message
box, but a real application would do something like open the file.

Unfortunately, the results returned by some of the dialogs aren’t directly usable by a WPF program.
For example, the ColorDialog lets the user select a Color but WPF programs use Brushes instead
of colors. Similarly, the FontDialog lets the user pick a Font but WPF programs don’t use Font
objects directly. Some of this lesson’s exercises show how you can work around some of those issues.

TRY IT

In this Try It, you get to try out all of the standard dialogs except the Pagesetupbialog (which is
hard to use until you’re doing actual printing). You initialize, display, and process the results of the
dialogs (if the user clicks the OK button).

Lesson Requirements

In this lesson, you:

» Use Labels, TextBoxes, and Buttons to make < Tylt8 — [
a form similar to the one shown in Figure 8-5.
BackColor =]
> . .
Add colorpialog, FontDialog, - ot e o S, S 2% U] |
FolderBrowserDialog, OpenFileDialog,)
Folder [\ Users Voo \Deskrop | [=]

SaveFileDialog, PrintDialog, and

Cpen e [# Trainer, J2\figs \ 06566 Tigs 08\ 06566 080 prog [. |

PrintPreviewDialog components to the form.

Save fie [aier Z¢\Figs\ D696 Tigs08\ 06566 100 new.ong] [. |

> When the user clicks the BackColor button, i .
display the colorDialog but don’t allow the P =
user to define custom colors. If the user clicks
OK, set the form’s BackColor property to the FIGURE 8-5
dialog’s color value.

> When the user clicks the Font button, display the FontDialog, allowing the user to select the
font’s color. If the user clicks OK, set the form’s Font property to the dialog’s Font value and
its ForeColor property to the dialog’s color property.

> When the user clicks the Folder button, display the FolderBrowserDialog. Make the dialog
start browsing at MyComputer. If the user clicks OK, make the Folder TextBox display the
dialog’s selectedPath property.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 127

> When the user clicks the Open File button, display the openFileDialog. Use a filter
that lets the user select text files, RTF files, or all files. If the user clicks Open, make the
Open File TextBox display the dialog’s FileName property and set the SaveFileDialog’s
FilterIndex equal to the OpenFileDialog’s FilterIndex.

> When the user clicks the Save File button, display the saveFileDialog. Use the same filter
used by the openFileDialog. If the user clicks Save, make the Save File TextBox display
the dialog’s FileName property and set the OpenFileDialog’s FilterIndex equal to the
SaveFileDialog’s FilterIndex.

When the user clicks the Print button, display the PrintDialog and ignore the return result.

When the user clicks the Print Preview button, display the PrintPreviewDialog and ignore
the return result.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox.com/go/csharp24hourtrainer2e.

Hints

> Be sure to initialize each of the dialogs before displaying them.

Step-by-Step
> Use Labels, TextBoxes, and Buttons to make a form similar to the one shown in Figure 8-35.
1. Add and arrange the controls in whatever manner you find easiest.

2. Set the Buttons’ Anchor properties to Top, Right. Set the TextBoxes’ Anchor
properties to Top, Left, Right.

> Add colorbialog, FontDialog, FolderBrowserDialog, OpenFileDialog,
SaveFileDialog, PrintDialog, and PrintPreviewDialog components to the form.

1. Add the dialogs. They appear in the Component Tray, not on the form.
2. Give the dialogs good names.

> When the user clicks the BackColor button, display the colorbDialog but don’t allow the
user to define custom colors. If the user clicks OK, set the form’s BackColor property to the
dialog’s color value.

1. To prevent the user from defining custom colors, set the colorbialog’s
AllowFullOpen property to False.

2. Use code similar to the following:

private void backColorButton Click(object sender, EventArgs e)

{

backgroundColorDialog.Color = BackColor;

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

128 | LESSON 8 USING STANDARD DIALOGS

if (backgroundColorDialog.ShowDialog() == DialogResult.OK)

{
}

BackColor = backgroundColorDialog.Color;

}

When the user clicks the Font button, display the FontDialog, allowing the user to select the
font’s color. If the user clicks OK, set the form’s Font property to the dialog’s Font value and
its ForeColor property to the dialog’s Color property.

1. To allow the user to select the font’s color, set the dialog’s showcolor property
to True.

2. Use code similar to the following:

private void fontButton Click(object sender, EventArgs e)
{

formFontDialog.Font = Font;

formFontDialog.Color = ForeColor;

if (formFontDialog.ShowDialog() == DialogResult.OK)
Font = formFontDialog.Font;
fontTextBox.Text = formFontDialog.Font.ToString() ;

ForeColor = formFontDialog.Color;

}

When the user clicks the Folder button, display the FolderBrowserbDialog. Make the dialog

start browsing at MyComputer. If the user clicks OK, make the Folder TextBox display the
dialog’s selectedpath property.

>

1. To start browsing at MyComputer, use the Properties window to set the dialog’s
RootFolder property to MyComputer.

2. Use code similar to the following:

private void folderButton Click(object sender, EventArgs e)

if (testFolderBrowserDialog.ShowDialog() == DialogResult.OK)

{
}

folderTextBox.Text = testFolderBrowserDialog.SelectedPath;

}

When the user clicks the Open File button, display the openFilebialog. Use a filter

that lets the user select text files, RTF files, or all files. If the user clicks Open, make the
Open File TextBox display the dialog’s FileName property and set the saveFileDialog’s
FilterIndex equal to the OpenFileDialog’s FilterIndex.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 129

1. Use the filter:
Text Files|*.txt|RTF Files|+*.rtf|All Files|*.~*
2. Use code similar to the following:

private void openFileButton Click(object sender, EventArgs e)
{

if (testOpenFileDialog.ShowDialog() == DialogResult.OK)

openFileTextBox.Text = testOpenFileDialog.FileName;
testSaveFileDialog.FilterIndex =
testOpenFileDialog.FilterIndex;

}

When the user clicks the Save File button, display the saveFileDialog. Use the same filter
used by the openFileDialog. If the user clicks Save, make the Save File TextBox display

the dialog’s FileName property and set the OpenFileDialog’s FilterIndex equal to the
SaveFileDialog’s FilterIndex.

1. Use the filter:
Text Files|*.txt|RTF Files|*.rtf|All Files|x.*
2. Use code similar to the following:

private void saveFileButton Click (object sender, EventArgs e)
{

if (testSaveFileDialog.ShowDialog() == DialogResult.OK)

{

saveFileTextBox.Text = testSaveFileDialog.FileName;
testOpenFileDialog.FilterIndex =
testSaveFileDialog.FilterIndex;

}

When the user clicks the Print button, display the PrintDialog. Ignore the return result.
1. Use code similar to the following:

private void printButton Click (object sender, EventArgs e)

{
}

When the user clicks the Print Preview button, display the PrintPreviewDialog. Ignore the
return result.

testPrintDialog.ShowDialog() ;

1. Use code similar to the following:

private void printPreviewButton Click(object sender, EventArgs e)

{
}

testPrintPreviewDialog.ShowDialog() ;

www.it-ebooks.info

http://www.it-ebooks.info/

130 |

LESSON 8 USING STANDARD DIALOGS

EXERCISES

1.

[WPF] Repeat the Try It with a WPF program. Because a WPF program can’t directly use
the values selected by the colorDialog or FontDialog, just display the user’s selections in
TextBoxes. For the ColorDialog, display the dialog’s color.Tostring () value. For the
FontDialog, display the dialog’s Font .ToString () value. (Hint: Don’t worry about setting
the dialogs’ FilterIndex properties.)

[WPF] Copy the program you wrote for Exercise 1 and use the color information. Use code
similar to the following to set the window’s background color:

Color backColor = new Color()
{

= 255,
colorDialog.Color.R,
= colorDialog.Color.G,
= colorDialog.Color.B

oIl =
Il

}i

Background = new SolidColorBrush (backColor) ;

For the font color, use a similar technique to set the foreground color of the font TextBox.
(Setting the foreground color for the entire window is harder.)

0 Wpf SelectFont | = | & -

Font Size: 40 Effects
O Times New Roman
() Courier New

) Arial

[WPF] Make a program similar to the one shown in
Figure 8-6.

Hints:

> If any of the event handlers make the program O Oblique

] k O Mistral &
crash when it starts, add the following state-
ment at the beginning of the event handler to samplz
prevent the program from trying to use controls A Y Z
before they are created. a'Bb q Z
if (!IsLoaded) return;
FIGURE 8-6

» For the font RadioButtons’ Checked events,
use code similar to the following;:

samplelLabel .FontFamily = new FontFamily ("Arial");

> For the slider’s valueChanged event, use code similar to the following:

if (!IsLoaded) return;
sizeGroupBox.Header = "Size: " + gizeSlider.Value.ToString() ;
sampleLabel .FontSize = sizeSlider.Value;

» Give Checked and Unchecked event handlers to the Bold checkBox. Make them set
sampleLabel.FontWeight to FontWeights.Bold or FontWeights.Normal.

> Give Checked event handlers to the Normal, Italic, and Oblique RadioButtons.
Make them set sampleLabel . FontStyle to FontStyles.Normal, FontStyles.
Italic, and FontStyles.Oblique, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 131

[SimpleEdit] Copy the SimpleEdit program you built in Lesson 7, Exercise 6 (or download
Lesson 7’s version from the book’s website) and add the file open and save dialogs for the
File menu’s Open and Save As commands. Use Filter properties that let the user select RTF
files, text files, or all files. Continue using the RichTextBox’s LoadFile and SaveFile meth-
ods even though they don’t work properly for non-RTF files.

[SimpleEdit] Copy the SimpleEdit program you built for Exercise 4 and add a font selection
dialog for the Format menu’s Font item, and the font tool strip button. If the user selects a
font and clicks OK, make the RichTextBox’s selected text use the selected font.

[SimpleEdit] Copy the SimpleEdit program you built for Exercise 5 and modify it so it allows
the user to select a color on the font dialog.

[SimpleEdit] Copy the SimpleEdit program you built for Exercise 6 and add color selection
dialogs for the Format and context menus’ Text Color and Background Color items. (Allow
custom colors.)

NOTE Please select the videos for Lesson 8 online at www.wrox .com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Displaying New
Forms

Most of this book so far has dealt with building forms. Previous lessons explained how to add,
arrange, and handle the events of controls on a form. They explained how to work with
specific kinds of controls such as Buttons, MenuStrips, ContextMenuStrips, and ToolStrips.
Using these techniques, you can build some pretty nice forms that use simple code to manipu-
late properties. So far, however, you’ve only learned how to use a single form.

In this lesson you learn how to display multiple forms in a single program. You see how to
add new forms to the project and how to display one or more instances of those forms. Once
you’ve mastered these techniques, you can make programs that display any number of forms
for all kinds of different purposes.

ADDING NEW FORMS

To add a new form to a project, open the Project menu and select Add Windows Form to see
the dialog shown in Figure 9-1.

Leave the Windows Form template selected, enter a good name for the new type of form,
and click Add. After you click Add, Visual Studio adds the new form type to the project.
Figure 9-2 shows the new form in Solution Explorer.

www.it-ebooks.info

http://www.it-ebooks.info/

134 | LESSON 9 CREATING AND DISPLAYING NEW FORMS

Add New Item - WindowsFormsApplication1 _
4 |nstalled Sort by: | Default - Search Installed Templates (Ctrl+E) -
4 Visual C# ltems 4 Class K Application Manifest File Type: Visual C# Iltems
Code =0 Interface [Assembly Information File A blank Windows Ferm
Data B Windows Form [Bitmap File
General
&1 User Control #3 Class Diagram
E Web
P21 Compenent Class [8] Code Analysis Rule Set
Windows Forms
WPE 24 User Control (WPF) &1 CodeFile
KAML & About Box [% CursorFile
Reporting «8 ADO.NET Entity Data Model %1 Custom Control
S0L Server §3 Application Configuration File g DataSet
Workdflow
Graphics 4 3
b Online Click here to go online and find ternplates.
Mame: |MakeUserForm.cs
FIGURE 9-1

Solutien Explorer * 0 X

@D o-seamlor=f
o~
& Solution ‘WindowsFormsApplication1' (1 project)
4 WindowsFormsApplication1

b J Properties

=B References

¥ App.config

I [E=] Forml.cs
MakelserForm.cs
B Program.cs

Search Solutien Explorer (Ctrl+;)

Solution Explorer

FIGURE 9-2

Team Explorer

Now you can add Labels, TextBoxes, Buttons, MenuStrips, and any other controls you like to the
new form.

NOTE Remember, to open a form in the Form Designer, double-click it in
Solution Explorer.

UNDERSTANDING CLASSES AND INSTANCES

When you add a new form to the project, you're really adding a new type of form, not a new instance
of that type. If you add the MakeUserForm type to a project and then run the program, you still only
see the original startup form (with the catchy name Form1) and MakeUserForm is nowhere to be seen.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Forms | 135

Form types such as Forml and MakeUserForm are classes. They’re like blueprints for making copies
of the class, which are called instances. These are important and sometimes confusing topics so I'm
going to explain them briefly now and explain them again in greater detail later in the book in the
lessons in Section IV.

A class defines the characteristics of any objects from that class. Your code can use the new keyword
to create objects of the class. Once you define the class you can make as many copies (instances) as
you like, and every copy is identical in structure to all of the others. Different instances may have
different property values but their overall features are the same.

NOTE You've actually been working with classes and instances for quite a
while. Form1 is a class. When you create a new project, Visual Studio adds code
to create and display an instance of the Formi class.

Controls are also classes. For example, the Label class defines the behaviors of
labels. When you add Labels to a form, you're adding instances of the Label class
to the form. Those instances can have different property values such as BackColor,
Enabled, Anchor, and Text, but they all follow the rules defined by the Label class.

For a form example, suppose you define a MakeUserForm that has First Name, Last Name, Street,
City, State, and ZIP Labels and TextBoxes. Now suppose your program displays two instances of
this form class. Both of the forms will have the same Labels and TextBoxes, so they have basically
the same structure. However, the user can type different values into the two forms.

Your code can also change different instances in various ways. For example, menu items, buttons,

and other controls could invoke event handlers that modify the form: change its colors, move con-

trols around, resize the form, or whatever. Here’s one of the more potentially confusing features of
classes: the code in the event handlers modify the form that is currently running the code.

For example, suppose you build a form that has three Buttons that change the form’s BackColor property
to red, green, and blue, respectively, and then you display three instances of the form. When the user clicks
the first form’s Red button, the event handler makes the first form red but the other forms are unchanged.
The code in the event handler is running in the first form’s instance so that’s the form it affects.

If you then click the Green button on the second form, the event handler changes that form’s
background color to green. The first form still has its red background and the third form still has
its original background color.

Hopefully by now you think I’ve beaten this topic into the ground and you understand the
difference between the class (MakeUserForm) and the instance (a copy of MakeUserForm visible on
the screen). If so, you’re ready to learn how to actually display forms.

DISPLAYING FORMS

The new keyword creates a new instance of a form. If you want to do anything useful with the form,
your code needs a way to refer to the instance it just created. It can do that with a variable. I'm
jumping the gun a bit by discussing variables (they’re covered in detail in Lesson 11) but, as was the

www.it-ebooks.info

http://www.it-ebooks.info/

136

| LESSON 9 CREATING AND DISPLAYING NEW FORMS

case when I introduced the if statement in Lesson 8, this particular use of the concept is very useful
and not too confusing, so I feel only a little guilty about discussing it now.

In short, a variable is a named chunk of memory that can hold a piece of data. To declare a
variable to refer to a form instance, you enter the form’s type followed by whatever name you want
to give the variable. For example, the following code declares a variable named newUserForm of
type MakeUserForm:

MakeUserForm newUserForm;

At this point, the program has a variable that could refer to a MakeUserForm object but right now
it doesn’t refer to anything. It’s like an empty envelope that could hold a MakeUserForm instance.
At this point the variable contains the special value nu11, which basically means it doesn’t refer to
anything.

You can use the new keyword to create a new instance of the form class. You can then set the vari-
able equal to the new form instance. For example, the following code creates a new MakeNewUser
form and makes the newUserForm variable point to it:

newUserForm = new MakeUserForm() ;

Now the variable refers to the new form. The final step is to display the new form. You can do that
by calling the new form’s showbDialog or Show method.

NOTE Technically the variable doesn’t hold or contain the form. Instead, it
contains a reference to the form. The reference is like an address that points
to where the form really is in memory. When your code says something like
newUserForm.Show (), the program hunts down the actual form instance and
invokes its Show method.

For now the distinction is small and you don’t need to worry too much about
it, but later it will be useful to know that some variables are value types that
actually hold their values (things like int, long, double) and some are reference
types that hold references to their values (things like controls, forms, and, inter-
estingly, string).

Lesson 17 says more about this when it discusses structures.

The showbialog method displays the form modally. That means the form appears on top of the
program’s other forms and the user cannot interact with the other forms until this form closes.

This is the way dialogs normally work. For example, when you open the Project menu and select
Add Windows Form, the Add New Item dialog displays modally so you cannot interact with other
parts of the IDE (such as the Properties window, Solution Explorer, or menus) until you close the
dialog by clicking Add or Cancel.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Forms | 137

The following code displays the form referred to by the variable newUserForm modally:

newUserForm.ShowDialog () ;

The show method displays the form non-modally. That means the form appears and the user can
interact with it or with the program’s other forms.

The following code displays the form referred to by the variable newUserForm non-modally:
newUserForm.Show () ;
The UserForms example program shown in Figure 9-3 displays a main form with a New User

button. Each time you click the button, the program displays a new MakeUserForm non-modally.
Figure 9-3 shows the main form and two MakeUserForms.

o UserForms | = [B| X
o MakeUserForm
o MakeUserForm = | = -

First Name |Mary
Last Name @ First Name: |Mark|.|s |
Strest [1337Lestst | LestName [Handof |
City [Nothfbend || Strest [2819 Place Ter |
State IC City |ngrammaria |
Postal Code (85019 | Sate [ma |

Postal Code [02154] |

B

FIGURE 9-3

The following code shows how the UserForms program displays a new MakeUserForm when you
click its button:

private void newUserButton Click(object sender, EventArgs e)

{

MakeUserForm newUserForm;
newUserForm = new MakeUserForm() ;
newUserForm.Show () ;

}

The code declares a variable to refer to the form, creates the new form instance, and displays the
instance non-modally.

Each time you click the button, the event handler executes again. Each time it runs, the event
handler creates a new version of the variable named newUserForm, makes a new instance of the
MakeUserForm, and displays that instance, so each time you click the button, you get a new form.

www.it-ebooks.info

http://www.it-ebooks.info/

138

| LESSON 9 CREATING AND DISPLAYING NEW FORMS

FLOOD OF FORMS

In Windows Forms applications, the startup form’s type Form1 is just like any other
form type, so a program can make new instances of it. That means you can create
more forms that look just like the startup form if you want.

Although all forms look about the same to the user, the startup form has a special
position in the application. The program keeps running only as long as the startup
form exists. If you close that form, all of the others close, too.

To avoid confusion, you should generally make the startup form look different
from other forms so the user knows that it’s special.

By default, the windows in WPF applications run independently so if you close the
main window, the others keep running. If you want all of the windows to close
when the main window does, execute the following statement when the program
starts, for example, in the main window’s Loaded event handler:

Application.Current.ShutdownMode = ShutdownMode.OnMainWindowClose;

CONTROLLING REMOTE FORMS

When you create a new form and make a variable to refer to it, you can later use that variable to
manipulate the form. There’s just one catch: the techniques described so far don’t keep the new form
variable around long enough to be useful.

For example, the following code defines the newUserForm variable, makes it point to a new form,
and displays the form:

private void newUserButton Click(object sender, EventArgs e)

{

MakeUserForm newUserForm;
newUserForm = new MakeUserForm() ;
newUserForm.Show () ;

}

When the program finishes executing the event handler, the event handler stops running. If the user
clicks the button again, the event handler springs back into action.

Unfortunately, when the event handler stops running, it loses its grip on the newUserForm variable.
The next time the event handler runs, it creates a new variable named newUserForm and works with
that one.

This is bad for a program that wants to manipulate the new form later. Because the variable is gone,
it can’t refer to it so it can’t manipulate the form.

The good news is that this is fairly easy to fix. If you move the variable’s declaration out of the
event handler, the variable exists throughout the program’s lifetime. The event handler can make
the variable point to a new form, and it can then use the variable later to manipulate that form.

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Remote Forms | 139

The RemoteForm example program shown in Figure 9-4 o ColorForm =18 X
uses the following main form code to manage a secondary
ColorForm:

// The remote form we will manipulate.
ColorForm remoteColorForm;

// Create and display the remote form.
private void Forml Load (object sender,
EventArgs e)

{

remoteColorForm = new ColorForm() ;
remoteColorForm. Show () ; FIGURE 9-4

}

// Make the color form red.
private void redButton Click(object sender, EventArgs e)

{

remoteColorForm.BackColor = Color.Red;
remoteColorForm.ForeColor = Color.Pink;

}

The code starts by declaring the variable remoteColorForm outside of any event handler.

When the program displays the main form, its Load event handler creates and displays a new
ColorForm.

When the user clicks the main form’s Red button, its event handler changes the remote form’s
BackColor and ForeColor properties to red and pink, respectively. The startup form also contains
green and blue buttons that have similar event handlers.

The remoteColorForm variable is declared outside of the event handlers, so the event handlers have
access to it. The form’s Load event handler initializes the variable and displays the remote form.
The redButton_click event handler uses it. Because the variable is declared outside of the event
handlers, they can all use it. (Lesson 13 has more to say about when and where variables are
available to the code.)

In addition to modifying a remote form’s properties, you can change the properties of the controls
on that form. You refer to a control by using the form variable, followed by a dot, followed by the
control’s name.

For example, the bold line in the following code accesses the form referred to by the remote
ColorForm variable. It locates that form’s messageLabel control and changes its Text property to
“I'm red!”:

private void btnRed Click(object sender, EventArgs e)
{

color_form.BackColor = Color.Red;

color form.ForeColor = Color.Pink;

color form.lblMessage.Text = "I'm red!";

}

There’s one small catch to this technique: by default the controls on a form are private so the code
in other forms can’t manipulate at them. You can easily fix this by setting a control’s Modifiers

www.it-ebooks.info

http://www.it-ebooks.info/

140 | LESSON 9 CREATING AND DISPLAYING NEW FORMS

property to Public, either in the Form Designer or in code. Now other forms can see the control
and change its properties.

NOTE Controls on a form are private to prevent other pieces of code from
accidentally messing them up. By making a variable public, you remove this
safeguard. In technical terms, you have weakened the form’s encapsulation—its
ability to hide its internal details from the outside world.

In this case, you want to allow access to this label’s Text property so marking
the label as public is reasonable. However, by making the label public you make
all of its properties, methods, and events public, not just its Text property.

A more restrictive approach would be to add a public SetCaption method to the
ColorForm. Then other code would call that method instead of setting the label’s
text directly. You learn how to build those kinds of methods in Lesson 20.

TRY IT

In this Try It, you create an application similar to the one shown in Figure 9-5. When the user clicks
the main form’s buttons, the program displays the other forms non-modally.

o - - O x
= GettingThereForm g LodgingForm =1 15 X

How do you want to get there?

Where do you want to stay?

Er— ¢ IS I [
Aiplane $430.00 Trpletres Hotel $120.00
Space Shuttle s20M Three Seasons $333.33
‘ Getting There ‘
[ok [cn
= | GettngAwound |
l Lodging |
o GettingAroundForm =le[x| o FunStuffForm [= []
How do you want to get around? | FUnSWIMT | \what do you want to do while there?
Shank’s Mare £0.00 Hiking ($0.00)
Skateboard £20.00
i
er Blades Skiing ($85.00)
Palanguin £1,400.00
[] Biking (70.00)
[swosea 51000000
FIGURE 9-5

www.it-ebooks.info

http://www.it-ebooks.info/

Try lt | 141

Lesson Requirements

In this lesson, you:

>

>

Create the forms shown in Figure 9-5.

Declare the form variables outside of any event handler.

In the main form’s Load event handler, add code to create the form instances but don’t
display the forms.

Add code to the main form’s Button event handlers to display the corresponding secondary
forms non-modally.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox .com/go/csharp24hourtrainer2e.

Hints

Step-by-Step

>

Normally every form appears in the taskbar. To avoid cluttering the taskbar with all of the
secondary forms, set their ShowInTaskbar properties to False.

Create the forms shown in Figure 9-5.

1.

Create the main form.

a.

b.

Start a new project. In the Properties window, expand the main form’s Font
property and set its Size subproperty to 12.

Add the Buttons. Center them as a group and set their Anchor properties
to None.

Create the GettingThereForm.

a.

b.

C.

Open the Project menu and select Add Windows Form. Enter the form type name
GettingThereForm and click Add.

Set the form’s ShowInTaskbar property to False.

Add the Label, ListBox, and Buttons. Set the ListBox’s Anchor property to
Top, Bottom, Left. Setthe Buttons’ Anchor properties to Bottom, Right.

Create the GettingAroundForm.

a.

Repeat step 2 for the GettingAroundForm.

Create the LodgingForm.

a.

Repeat step 2 for the LodgingForm.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

142

LESSON 9 CREATING AND DISPLAYING NEW FORMS

>

5. Create the FunstuffForm.

a. Repeat step 2 for the FunstuffForm. Leave the CheckBoxes’ Anchor properties
with their default values Top, Left.

Declare the form variables outside of any event handler.

1. Add the following to the main form’s code module outside of any event handlers:

// The remote forms.
GettingThereForm gettingThereForm;
GettingAroundForm gettingAroundForm;
LodgingForm lodgingForm;
FunStuffForm funStuffForm;

In the main form’s Load event handler, add code to create the form instances but don’t
display the forms.

1. Use code similar to the following:

// Initialize the forms but don't display them.
private void Forml Load (object sender, EventArgs e)

{

gettingThereForm = new GettingThereForm() ;
gettingAroundForm = new GettingAroundForm() ;
lodgingForm = new LodgingForm() ;
funStuffForm = new FunStuffForm() ;

}

Add code to the main form’s Button event handlers to display the corresponding secondary
forms non-modally.

1. Create the Button click event handlers and make each call the corresponding form
variable’s show method:

// Display the getting there form.
private void gettingThereButton Click (object sender, EventArgs e)

{
}

// Display the getting around form.
private void gettingAroundButton Click (object sender, EventArgs e)

{
}

// Display the lodging form.
private void lodgingButton Click (object sender, EventArgs e)

{
}

// Display the fun stuff form.
private void funStuffButton Click(object sender, EventArgs e)

{
}

gettingThereForm.Show () ;

gettingAroundForm.Show () ;

lodgingForm. Show () ;

funStuffForm. Show () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 143

EXERCISES

10.

Build the UserForms application shown in Figure 9-3.

[WPF] Repeat Exercise 1 with a WPF application. (Hint: Don’t forget to make all of the
forms close when you close the main window.)

Build the RemoteForm application shown in Figure 9-4.
[WPF] Repeat Exercise 3 with a WPF application. Hints:

> In WPF, set colors equal to brushes as in Brushes.Red.

> To set the remote window’s background color, set its Background property.
> To set the remote form’s text color, set the Label’s Foreground property.
>

You don’t need to set the Modifiers property in WPF. (WPF controls don’t have
that property.)

Modify the program you wrote for Exercise 3 so the buttons also change the label on the
color form. For example, the Red button should make the label say, “I’'m red!” (Hint: Don’t
forget to set the Label’s Modifiers property to Public.)

[WPF] Repeat Exercise 5 with the WPF application you built for Exercise 4.

[WPF] Repeat the Try It with a WPF application. (Hint: Don’t forget to set the
ShowInTaskbar property.)

Unfortunately the Try It has a major problem. If you close one of the secondary forms and
then click the main form’s button to redisplay that form, the program crashes.

When you close the form, it is destroyed. When you click the button again, the program
tries to display the destroyed form and that won’t work.

To fix the program, give each of the secondary forms a FormClosing event handler similar
to the following;:

private void LodgingForm FormClosing(object sender,
FormClosingEventArgs e)

e.Cancel = true;
Hide () ;

}

The first statement cancels the close so the form stays open. The second statement makes the
form invisible but keeps it alive.

[WPF] Repeat Exercise 8 for the WPF program you built in Exercise 7. (Hint: In WPF you
need to use the Closing event.)

Make a program that displays a Button that says “New Form.” When the user clicks the
Button, display a new non-modal instance of the same kind of form. (What happens when
you click the new form’s button? What happens if you close the new form? What happens if
you make several forms and then close the original one?)

www.it-ebooks.info

http://www.it-ebooks.info/

144 | LESSON 9 CREATING AND DISPLAYING NEW FORMS

1.

12.

13.
14.

15.
16.

[WPF] Repeat Exercise 10 with a WPF application. After you experiment a bit, set
Application.Current.ShutdownMode = ShutdownMode.OnMainWindowClose and test the
program again.

Copy the program you made for Exercise 10 and add a TextBox named valueTextBox to
the form. Before you display the new form, copy the main form’s TextBox value into the new
form’s TextBox. (Hint: You don’t need to set the TextBox’s Modifiers property to Public
because the new form is the same kind as the old one. You need to do this only if a form of
one type wants to peek at the controls on a form of a different type.)

[WPF] Repeat Exercise 12 with the WPF program you made for Exercise 11.

Make a program that displays a TextBox and a “New Form” Button. When the user clicks
the Button, display a new form of type MessageForm modally.

The MessageForm holds two Labels. The first Label says “You entered.” The second is
blank. When it displays the MessageForm, the main program should copy whatever is in
its TextBox into the MessageForm’s second label. (Hint: Now you need to set the label’s
Modifiers property to Public.)

[WPF] Repeat Exercise 14 with a WPF application.

Build the Pick A Picture program shown in Figure 9-6. When the user clicks one of the
thumbnail images on the main form, the program displays a PictureForm showing the image
at full scale. Use whatever images you like.

ug! PictureForm -

ag! PictureForm -

FIGURE 9-6

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 145

17.

18.

19.

Hints:
> Display the thumbnail images in PictureBoxes with ScaleMode set to Zoom.

» Place a PictureBox with Location = (0, 0) on the PictureForm. Set its
SizeMode property to AutoSize.

> Just before you display the PictureForm, use the following code to make it fit the
PictureBox it contains:

newPictureForm.ClientSize = newPictureForm.imagePictureBox.Size
[WPF] Repeat Exercise 16 with a WPF application. Hints:

> On the picturewindow, set the size of the Tmage control to match the size of the
pictures.

» To make the Picturewindow fit the ITmage control, set the window’s SizeToContent
property to WidthAndHeight.

[Bonus] As I’ve mentioned before, redundant code is usually a sign that the program’s
structure can be improved. The Pick A Picture program from Exercise 16 uses four prac-
tically identical event handlers. The only difference is the image that they assign to the
PictureForm’s background.

You can improve this program by making all four PictureBoxes use the same event handler
and making the event handler figure out which image to use.

The event handler’s sender parameter is the control that raised the event, in this case, the
PictureBox that the user clicked. The data type of that parameter is object, but it actually
holds a PictureBox. You can get a variable that refers to that PictureBox by using the as
keyword.

The as keyword tells the program to treat some value (in this case the sender parameter) as
if it were some other type (in this case a PictureBox). The following code shows how you
can get a variable that treats the sender parameter as a PictureBox:

PictureBox selectedPictureBox;
selectedPictureBox = sender as PictureBox;

Copy the program you built for Exercise 16. Modify the first event handler so it uses the

as keyword to get a reference to the PictureBox that the user clicked and then uses that
reference to display the correct picture. Then make all of the PictureBoxes share that event
handler.

[Bonus, WPF| Repeat Exercise 18 for the WPF application you build in Exercise 17.

NOTE Please select the videos for Lesson 9 online at www .wrox .com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10

Building Custom Dialogs

The standard dialogs described in Lesson 8 make it easy to perform typical chores such as
picking files, folders, colors, and fonts. Those dialogs can get you pretty far, but sometimes
you may want a dialog that is customized for your application.

For example, you might want to display a dialog where the user can enter a new customer’s
contact information (name, address, phone number, and hat size). It’s unlikely that any
predefined standard dialog could ever handle that situation.

Fortunately, it’s easy to build custom dialogs. All you need to do is build a new form as
described in Lesson 9, add a few buttons, and set a few properties.

In this lesson you learn how to build custom dialogs and make them as easy to use as the
standard dialogs that come with C#.

MAKING CUSTOM DIALOGS

Building a custom dialog is pretty easy. Simply add a new form to your project as described in
Lesson 9 and give it whatever controls you need.

To allow the user to finish using the dialog, add one or more buttons. Some dialogs have a single
OK button. Others have OK and Cancel buttons or some other combination of buttons. Because
you’re creating the dialog, you can give it whatever buttons you like.

By convention, the buttons should go in the dialog’s lower-
right corner. Figure 10-1 shows a very simple dialog that
contains a single textbox where the user can enter a name.

o Enter Customer Name

Name: |Rud

To make using the dialog easier, you can set the form’s
AcceptButton and CancelButton properties. These deter-
mine which button is triggered if the user presses Enter and
Esc, respectively. Typically the AcceptButton triggers the FIGURE 10-1
dialog’s OK or Yes button and the cancelButton triggers

the Cancel or No button.

www.it-ebooks.info

http://www.it-ebooks.info/

148 | LESSON 10 BUILDING CUSTOM DIALOGS

NOTE Often dialogs set other properties to make them behave more like
standard dialogs. Some of these include:

> Setting FormBorderStyle fo FixedDialog so the user cannot resize the
dialog.

> Setting MinimumSize and MaxiumSize fo keep the dialog a reasonable size.
(If you give the dialog a resizable border.)

> Setting MinimizeBox and MaximizeBox to False so the user cannot
minimize or maximize the dialog.

> Setting ShowInTaskbar fo False so the dialog doesn’t clutter up the
taskbar.

NOTE You can make the dialog even easier to use if you set the tab order so the
focus starts at the top of the form and works its way down. For example, if the
dialog contains Name, Street, City, State, and ZIP textboxes, the focus should
move through them in that order.

The user can press Tab to move between fields and can press Enter or Esc when
all of the values are filled in. An experienced user can fill in this kind of dialog
very quickly.

SETTING THE DIALOG RESULT

A program uses the ShowDialog method to display a dialog. This method returns a value that indi-
cates which button the user clicked. As explained in Lesson 8, the program can check that return
value to see what it should do with the dialog’s results. The examples in Lesson 8 checked that
ShowDialog returned the value DialogResult .0k before processing the user’s selections.

The dialog form’s DialogResult property determines what value the call to showbDialog returns.
For example, you could use the following code to make the dialog’s OK Button set the form’s

DialogResult property to DialogResult.OK to tell the calling program that the user clicked the
OK button:

// Return OK to ShowDialog.
private void okButton Click(object sender, EventArgs e)

{
}

DialogResult = DialogResult.OK;

Setting the form’s DialogResult property not only determines the return result but also closes the
dialog so the call to showDialog returns and the calling code can continue.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Custom Dialogs | 149

That means you can set the dialog’s return result and close the dialog in a single line of code. Typing
one line of code should be no real hardship, but believe it or not, there’s an even easier way to close
the dialog.

If you set a Button’s DialogResult property, the Button automatically sets the form’s DialogResult
property when it is clicked. For example, suppose you set the cancelButton’s DialogResult prop-
erty to DialogResult.Cancel. When the user clicks the Button, it automatically sets the form’s
DialogResult property to DialogResult.Cancel so the form automatically closes. That lets you set
the return value and close the form without typing any code at all.

If you think setting one Button property is still too much work, you can even avoid that, at least
for the Cancel button. When you set a form’s cancelButton property, C# automatically sets that
Button’s DialogResult property to DialogResult.Cancel.

Note that when you set the form’s AcceptButton property, C# does ot automatically set the Button’s
DialogResult property. The assumption is that the OK Button might need to validate the data the
user entered on the form before it decides whether to close the dialog. For example, if the user doesn’t
fill in all required fields, the OK Button might display a message asking the user to fill in the remain-
ing fields instead of closing the dialog.

NOTE Actually these methods hide the dialog so control returns to the calling
code, but they don’t call its Close method. That means the dialog isn’t destroyed
so the calling code can look at values entered on the dialog by the user.

If you don’t want to perform any validation, you can simply set the OK Button’s DialogResult
property to DialogResult.OK.

USING CUSTOM DIALOGS

A program uses a custom dialog in exactly the same way that it uses a standard dialog. It cre-
ates, initializes, and displays the dialog. It checks the return result and takes whatever action
is appropriate.

There’s a slight difference in how the program creates the dialog because you can add standard
dialogs to a form at run time and you can’t do that with custom dialogs. To use a custom dialog,
the code needs to create a new instance of the dialog’s form as described in Lesson 9.

The following code shows how a program might display a new customer dialog:

// Let the user create a new customer.
private void newCustomerButton Click (object sender, EventArgs e)
{
// Create and display a NewCustomerDialog.
NewCustomerDialog newCustomerDialog;
newCustomerDialog = new NewCustomerDialog() ;
if (newCustomerDialog.ShowDialog() == DialogResult.OK)

www.it-ebooks.info

http://www.it-ebooks.info/

150 | LESSON 10 BUILDING CUSTOM DIALOGS

// ... Create the new customer here ...

The code declares a variable to refer to the dialog and makes a new instance of the dialog. It
displays the dialog by using its ShowDialog method and checks the return result. If the user clicks
OK, the program takes whatever steps are needed to create the new customer, such as adding a
record to a database.

TRY IT

In this Try It, you build and use the simple custom dialog shown in Figure 10-2. The dialog lets
you enter a name. If you enter a non-blank value and click OK, the main form adds the name you
entered to a ListBox.

o2 Famous Comedians | = [B] *
Comedians
Robin Wiliams New Comedian
Lucille Ball
Jack Black Delete Comedian
NewComedianDialog
\
-
FIGURE 10-2

This Try It also gives you a little practice using the ListBox control, showing how to add and
remove items.

Lesson Requirements
In this lesson, you:

> Create the main form shown in the upper left in Figure 10-2. Make the New Comedian
Button be the form’s AcceptButton and the Delete Comedian Button be the form’s
CancelButton.

> Create the dialog shown in the lower right in Figure 10-2. Set the AcceptButton and
CancelButton properties in the obvious way.

> Make the New Comedian Button display the dialog. If the dialog returns DialogResult .OX,
add the new comedian’s name to the ListBox.

> Make the Delete Comedian Button remove the currently selected comedian from the
ListBox.

www.it-ebooks.info

http://www.it-ebooks.info/

Try lt | 151

When the user clicks the dialog’s Cancel Button, hide the dialog and return
DialogResult.Cancel.

When the user clicks the dialog’s OK Button, check the entered name’s length. If the length
is 0, display a message asking the user to enter a name. If the length is greater than 0, hide
the dialog and return DialogResult .OK.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox.com/go/csharp24hourtrainer2e.

Hints

>

Use the ListBox’s Items.2Add method to add a new item to the ListBox.

Use the ListBox’s Items.Remove method to remove the selected item (which is identified
by the selectedItem property).

Check nameTextBox.Text .Length == 0 to see whether the name entered on the dialog

is blank. You can use code similar to the following to take one action if the length is 0 and
another if it is not. Notice the new else part of the if statement. If the condition is true, the
statements after the if clause are executed. If the condition is false, the statements after the
else clause are executed. (Lesson 18 covers if and else in more detail.)

if (nameTextBox.Text.Length == 0)

{

Display a message here

Return DialogResult.OK here

}

Don’t forget to set the nameTextBox control’s Modifiers property to Public so the main
form’s code can use it.

Step-by-Step

>

Create the main form shown in the upper left in Figure 10-2. Make the New Comedian
Button be the form’s AcceptButton and the Delete Comedian Button be the form’s
CancelButton.

1. Start a new project and add a Label, ListBox, and two Buttons roughly as shown in
Figure 10-2.

2. Set the ListBox’s Anchor property to Top, Bottom, Left, Right. Set the Buttons’
Anchor properties to Top, Right.

3. Set the form’s AcceptButton property to the New Comedian Button. Set its
CancelButton property to the Delete Comedian Button.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

152

LESSON 10 BUILDING CUSTOM DIALOGS

> Create the dialog shown in the lower right in Figure 10-2. Set the AcceptButton and
CancelButton properties in the obvious way.

1.

Open the Project menu and select Add Windows Form. Enter the name
NewComedianDialog and click Add.

Add a Label, TextBox, PictureBox, and two Buttons roughly as shown in Figure 10-2.

Set the TextBox’s Anchor property to Top, Left, Right. Set the Buttons’ Anchor
properties to Bottom, Right.

Place an image of your choosing in the PictureBox and set its Anchor property to
Top, Bottom, Left. Set its SizeMode property to Zoom.

Set the dialog’s AcceptButton property to the OK Button. Set its CancelButton
property to the Cancel Button.

Set the dialog’s FormBordersStyle property to FixedDialog, set its ControlBox
4 property
property to False, and set its ShowInTaskbar property to False.

NOTE Setting the controls’ Anchor properties makes it easier to size the form so
you like it. Once you have everything arranged, setting FormBordersStyle equal

to FixedDialog prevents the user from resizing the form, so the Anchor proper-

ties don’t really do anything at run time.

> Make the New Comedian Button display the dialog. If the dialog returns DialogResult .OK,
add the new comedian’s name to the ListBox.

1.

Create an event handler for the New Comedian Button. Use code similar to the following:

// Create a new comedian entry.
private void newComedianButton Click (object sender, EventArgs e)
NewComedianDialog newComedianDialog;
newComedianDialog = new NewComedianDialog() ;
if (newComedianDialog.ShowDialog() == DialogResult.OK)
{
// Add the new comedian.
comedianListBox.Items.Add (
newComedianDialog.nameTextBox.Text) ;

}

> Make the Delete Comedian Button remove the currently selected comedian from the ListBox.

1.

Create an event handler for the Delete Comedian But ton. Use code similar to the following:

// Remove the currently selected comedian.
private void deleteComedianButton Click (object sender, EventArgs e)

{
}

comedianListBox.Items.Remove (comedianListBox.SelectedItem) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises |

153

This makes the ListBox remove the currently selected item. Fortunately if there is no
selected item, the ListBox does nothing instead of crashes.

> When the user clicks the dialog’s Cancel Button, hide the dialog and return
DialogResult.Cancel.

1.

You don’t need to do anything else to make this work. When you set the dialog’s
CancelButton property to this Button, C# sets the Button’s DialogResult property
to DialogResult .Cancel so the button automatically sets the return result and closes
the dialog.

> When the user clicks the dialog’s OK Button, check the entered name’s length. If the length
is 0, display a message asking the user to enter a name. If the length is greater than 0, hide
the dialog and return DialogResult.OK.

1.

Create an event handler for the dialog’s OK Button. Use code similar to the following

// Make sure the comedian's name isn't blank.
private void okButton Click(object sender, EventArgs e)

{

if (nameTextBox.Text.Length == 0)

{
}
else

{
}

MessageBox.Show ("Please enter a comedian's name") ;

DialogResult = DialogResult.OK;

EXERCISES

1. [WPF] Repeat the Try It with a WPF application. Hints:

>

Y Y Y VY Y

To see if the user clicked OK on the dialog, see if the Showbialog method returns
True as in this code:

if (newComedianDialog.ShowDialog() .Value)

{
}

To define the Accept Button, set the Button’s IsDefault property to True.
To define the Cancel Button, set the Button’s IsCancel property to True.
To close the dialog, the OK Button’s code should set DialogResult = true.
To prevent the user from resizing the dialog, set ResizeMode to NoResize.

To prevent the dialog from appearing in the taskbar, set ShowInTaskbar to False.

2. It’s usually better to prevent the user from performing invalid actions than to allow the
user to perform the action and then complain. In the Try It, the user can click the Delete
Comedian Button even if no comedian is selected. To fix that, copy the program you built

www.it-ebooks.info

http://www.it-ebooks.info/

154 | LESSON 10 BUILDING CUSTOM DIALOGS

for the Try It and add the following event handler to enable or disable the button when the
ListBox’s selection changes:
// Enable the Delete Comedian button if an entry is selected.

private void comedianListBox SelectedIndexChanged (
object sender, EventArgs e)
{

deleteComedianButton.Enabled =
(comedianListBox.SelectedIndex >= 0);

}

Hint: Don’t forget to disable the Button initially.

[WPF] Repeat Exercise 2 with the WPF program you built for Exercise 1. (Hint: In WPF a
Button has an IsEnabled property instead of an Enabled property.)

Copy the program you built for Exercise 2. To further help the user avoid making mis-
takes, modify the dialog so the OK Button is enabled when the text in the TextBox is
non-blank. Hints:

» Use the TextBox’s TextChanged event handler.

> Because the user can’t click the OK Button when the text is blank, the OK Button
doesn’t need a clicked event handler. Just set its DialogResult property to OK.

[WPF] Repeat Exercise 4 with the WPF program you built for Exercise 3. (Hint: In WPF
Buttons don’t have a DialogResult property. The OK Button still needs a click event
handler, but all it needs to do is set the form’s DialogResult property.)

Make a program that has First Name, Last Name, Street, City, State, and ZIP Labels as shown
on the Contact Information form in Figure 10-3. When the user clicks the Edit Button, the
program should display the Edit Contact dialog shown in Figure 10-3 to let the user change the
values. If the user clicks OK, the copy the new values back into the main form’s Labels.

a5’ Contact Information HEILI ‘

Feilire B Edit Contact

Last Name: Stephens

Strest: 123 Bug Fl First Name: |Rud |

City: Programmeria

Gt co Last Name |Stephen5 |

ZIP: 87654-3210 Strest |123 Bug FI |

= |
Stte [CO |
zIP [87854-3210 |
FIGURE 10-3

[WPF] Repeat Exercise 6 with a WPF application.

Sometimes the standard message box given by MessageBox . Show is almost perfect but you’d
like to change the Buttons’ text. Create a program that defines the message dialog shown in
Figure 10-4.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises |

155

10.

s Custom Message Box | = B | *

Accept Agreement?
Do you agree to this program’s terms of
service? Or are you chicken? Buk, buk,
' buk!
e
FIGURE 10-4

The main program should set the Label’s text, the dialog’s title, and the Buttons’ text.
Make the Accept Button return DialogResult .0k and make the Decline Button return
DialogResult.Cancel. Make the main form display different messages depending on
whether the user clicked Accept or Decline.

Hints:
> The question mark icon is displayed in a PictureBox.

> Set the dialog’s properties: FormBorderStyle = FixedDialog, ControlBox =
False, and ShowInTaskbar = False.

[WPF] Repeat Exercise 8 with a WPF program. Hints:

> To set the dialog’s title, set its Tit1le property.

> The WPF Label control doesn’t support word wrapping. To let the dialog wrap text,

use a TextBlock with TextWrapping set to Wrap.

Create a color selection dialog like the one shown in Figure 10-5. The main program’s Buttons

should display the same dialog to let the user select foreground and background colors. Only

update the main form’s colors if the user clicks OK. Don’t worry about initializing the dialog to
show the current values before displaying it. (Hint: You built a program that lets the user select

colors with scrollbars for Lesson 4’s Try It.)

o Color Selector = [|[=] =
| Fore Color | | Back Color |
Select Calor
Red < >| 185
Green < >| 195
Blue < > 195
FIGURE 10-5

www.it-ebooks.info

http://www.it-ebooks.info/

156 | LESSON 10 BUILDING CUSTOM DIALOGS

11. [WPF] Repeat Exercise 10 with a WPF program. Hints:
> Display the color sample in a Border control.

> Make the scrollBars share the following event handler:

// Display the color sample.

private void redScrollBar Scroll (object sender,
System.Windows.Controls.Primitives.ScrollEventArgs e)

{

redLabel.Content = redScrollBar.Value.ToString("0");
greenLabel.Content = greenScrollBar.Value.ToString("0");
bluelLabel.Content = blueScrollBar.Value.ToString("0");

Color color = Color.FromRgb (
(byte) redScrollBar.Value,
(byte)greenScrollBar.Value,
(byte)blueScrollBar.Value) ;
sampleBorder.Background = new SolidColorBrush (color) ;

}

12. Make a background selection dialog like the one shown in Figure 10-6. When the user
clicks the main form’s Select Background Button, the form displays the dialog. When the
user clicks one of the thumbnail images, the dialog displays a border around that image’s
PictureBox. If the user clicks OK, the dialog closes and the main form displays the selected
image at full scale.

Background Selector 2%

FIGURE 10-6

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 157

Hints:

> When the user clicks an image, set the Borderstyle property to Fixed3D for that
PictureBox and None for the others.

> To remember which image was selected, place a hidden PictureBox on the dialog
and set its Image property equal to that of the clicked PictureBox.

> Use the techniques described for Lesson 9, Exercise 18 to use a single event handler
for all four PictureBoxes.

\

Only allow the user to click the dialog’s OK Button if a picture has been selected.

\

If the user clicks OK, resize the main form to fit its new background image.

> Set the Cancel Button’s TabStop property to False. (To see why, set it equal to
True, run the program, select a picture, and press Enter.)

13. Repeat Exercise 12 with a WPF application. Hints:
> Place an Image control on the main window and display the selected picture in it.
> Don’t worry about sizing the main window to fit the selected picture.

> In WPF Image controls don’t have a Borderstyle property. Indicate the selected
Image control by setting its Opacity property to 1. Set the other Tmage controls’
Opacity properties to 0.5.

NOTE Please select the videos for Lesson 10 online at www .wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION I
Variables and Calculations

You may have noticed that the lessons up to this point haven’t done much with numbers,
dates, text (other than to just display it), or any other pieces of data. They’ve mostly dealt
with controls and their properties, methods, and events.

Although you can do some fairly impressive things with controls alone, most programs also
need to manipulate data. They need to do things like add purchasing costs, calculate sales tax,
sort appointments by time, and search text for keywords.

The lessons in this section explain how to perform these kinds of tasks. They explain
the variables that a program uses to represent data in code, and they show how to manipulate
variables to calculate new results.

» LESSON 11: Using Variables and Performing Calculations
» LESSON 12: Debugging Code

» LESSON 13: Understanding Scope

» LESSON 14: Working with Strings

» LESSON 15: Working with Dates and Times

» LESSON 16: Using Arrays and Collections

» LESSON 17: Using Enumerations and Structures

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11

Using Variables and Performing
Calculations

A variable holds a value in memory so a program can manipulate it. Different kinds of vari-
ables hold different types of data: numbers, text, LOL cat pictures, Halo scores, even complex
groups of data such as employee records.

In this lesson you learn what variables are and how to use them. You learn how to define
variables, put data in them, and use them to perform simple calculations.

WHAT ARE VARIABLES?

Technically speaking a variable is a named piece of memory that can hold some data of a spe-
cific type. For example, a program might allocate 4 bytes of memory to store an integer. You
might name those bytes “payoffs” so you can easily refer to them in the program’s code.

Less technically, you can think of a variable as a named place to put a piece of data. The pro-
gram’s code can use the variables to store values and perform calculations. For example, a
program might store two values in variables, add the values together, and store the result in a
third variable.

DATA TYPES

Every variable has a particular data type that determines the kind of data that it can hold. In
general, you cannot place data of one type in a variable of another. For example, if price is a
variable that can hold a number in dollars and cents, you cannot put the string “Hello” in it.

If you like, you can think of a variable as an envelope (with a name written on the outside)
that can hold some data, but each type of data requires a different shaped envelope. Integers
need relatively small envelopes, floats (which hold numbers with decimal points) need enve-
lopes that are long and thin, and strings need big fat envelopes.

www.it-ebooks.info

http://www.it-ebooks.info/

162 | LESSON 11 USING VARIABLES AND PERFORMING CALCULATIONS

BITS AND BYTES

A bit is a single binary digit of memory that can have the value 0 or 1. (The name
“bit” comes from “BlInary digiT.” Or is it “Binary digI'T?”) Generally, bits are
grouped into bytes and a program doesn’t work with bits directly.

A byte is a chunk of memory holding 8 bits. If you view the bits as digits in a
binary number, then a byte can hold values between 0 (00000000 in binary) and
255 (11111111 in binary). Groups of bytes make up larger data types such as
integers and strings.

A nibble is half a byte. Way back in the old days when memory was expensive and
computers filled warehouses instead of laps, some programs needed to split bytes
and consider the nibbles separately to save space. Now that memory is as cheap

as day-old lottery tickets, the nibble is a historical curiosity mostly useful for
impressing your friends at parties.

Bigger units of memory include kilobyte (KB) = 1,024 bytes, megabyte (MB) =
1,024KB, gigabyte (GB) = 1,024MB, and terabyte (TB) = 1,024GB. These are often
used to measure the size of files, computer memory, flash drives, and disk drives.
(Although in some contexts people use powers of 1,000 instead of 1,024. For
example, most disk drive manufacturers define a gigabyte as 1,000,000,000 bytes,
which in a sense shortchanges you out of 70MB.)

Sometimes the line between two data types is a bit fuzzy. For example, if a variable should hold a
number, you cannot put in the string “ten.” The fact that “ten” is a number is obvious to a human
but not to a C# program.

You can’t even place a string containing the characters “10” in a variable that holds a number. Though it
should be obvious to just about anyone that “10” is a number, C# just knows it’s a string containing two
characters “1” and “0” and doesn’t try to determine that the characters in the string represent a number.

Programs often need to convert a value from one data type to another (particularly switching
between strings and numbers), so C# provides an assortment of data-conversion functions to do just
that. The section “Type Conversions” later in this lesson describes those functions.

Table 11-1 summarizes C#’s built-in data types. The signed types can store values that are positive
or negative, and the unsigned types can hold only positive values.

TABLE 11-1
DATA TYPE MEANING RANGE
byte Byte 0 to 255
sbyte Signed byte -128 to 127
short Small signed integer -32,768 to 32,767

www.it-ebooks.info

http://www.it-ebooks.info/

Data Types | 163

DATA TYPE MEANING RANGE

ushort Unsigned short integer 0 to 65,535

int Integer -2,147,483,648 to 2,147,483,647

uint Unsigned integer 0 to 4,294,967,295

long Long integer -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

ulong Unsigned long integer 0 to 18,446,744,073,709,551,615

float Floating point Roughly —3.4e38 to 3.4e38

double Double-precision floating point Roughly —1.8e308 to 1.8e308

decimal Higher precision and smaller range See the following section, “Float, Double,

than floating-point types and Decimal Data Types."”
char Character A single Unicode character. (Unicode char-

acters use 16 bits to hold data for text in
scripts such as Arabic, Cyrillic, Greek, and
Thai, in addition to the Roman alphabet.)

string Text A string of Unicode characters.
bool Boolean Can be true or false.
object An object Can point to almost anything.

Some of these data types are a bit confusing but the most common data types (int, long, float,
double, and string) are fairly straightforward, and they are the focus of most of this lesson.
Before moving on to further details, however, it’s worth spending a little time comparing the float,
double, and decimal data types.

Float, Double, and Decimal Data Types

The computer represents values of every type in binary using bits and bytes, so some values don’t fit
perfectly in a particular data type. In particular, real numbers such as 1/7 don’t have exact binary
representations, so the float, double, and decimal data types often introduce slight rounding errors.

For example, a float represents 1/7 as approximately 0.142857149. Usually the fact that this is not
exactly 1/7 isn’t a problem, but once in a while if you compare two float values to see if they are
exactly equal, roundoff errors make them appear different even though they should be the same.

The decimal data type helps reduce this problem for decimal values such as 1.5 (but not non-
decimal real values such as 1/7) by storing an exact representation of a decimal value. Instead of
storing a value as a binary number the way float and double do, decimal stores the number’s
digits and its exponent separately as integral data types with no rounding. That lets it hold 28 or 29
significant digits (depending on the exact value) for numbers between roughly =7.9¢28 and 7.9¢28.

www.it-ebooks.info

http://www.it-ebooks.info/

164 | LESSON 11 USING VARIABLES AND PERFORMING CALCULATIONS

NOTE The notation 7.9¢28 means 7.9 x 10%8.

Note that rounding errors can still occur when you combine decimal values. For example, if you
add 1e28 plus 1e-28, the result would have more than the 28 or 29 significant digits that a decimal
can provide so it rounds off to 1e28.

The moral of the story is that you should always use the decimal data type for values where you
need great accuracy and the values won’t get truly enormous. In particular, you should always use
decimal for currency values. Unless you’re Bill Gates’s much richer uncle, you’ll never get close to
the largest value a decimal can represent, and the extra precision can prevent rounding errors dur-
ing some fairly complex calculations.

NOTE Another interesting feature of the decimal type is that, because of the
way it stores its significant digits, it remembers zeros on the right. For example,
if you add the values 1.35 and 1.65 as floats, you get the value 3. In contrast, if
you add the same values as decimals, you get 3.00. The decimal result remem-
bers that you were working with two digits to the right of the decimal point so it
stores the result that way, too.

DECLARING VARIABLES

To declare a variable in C# code, give the data type that you want to use followed by the name

that you want to give the variable. For example, the following code creates a variable named
numMistakes. The variable’s data type is int so it can hold an integer between —2,147,483,648 and
2,147,483,647 (which should be enough for most projects that don’t involve the government):

int numMistakes;

You can use the equals symbol to assign a value to a variable. For example, the following code sets
numMistakes to 1337:

numMistakes = 1337;

As an added convenience, you can declare a variable and give it a value at the same time, as in:

int numMistakes = 1337;

You can declare several variables of the same type all at once by separating them with commas. You
can even initialize them if you like. The following code declares three float variables named x, y,
and z and gives them initial values of 1, 2, and —40, respectively:

float x =1, yv =2, z = -40;

www.it-ebooks.info

http://www.it-ebooks.info/

Literal Values | 165

NOTE The program must assign a value to a variable before it tries to read its
value. For example, C# flags the following code as an error because the second
line tries to use x on the right-hand side of the equals sign to calculate y before x
has been assigned a value:

int x, y;
y =x + 1;

LITERAL VALUES

A literal value is a piece of data stuck right in the code. For example, in the following statement,
numMistakes is a variable and 1337 is a literal integer value:

int numMistakes = 1337;

Usually C# is pretty smart about using the correct data types for literal values. For example, in
the preceding statement C# knows that numMistakes is an integer and 1337 is an integer, so it can
safely put the integer value in the integer variable.

Sometimes, however, C# gets confused and assumes a literal value has a data type other than the
one you intend. For example, the following code declares a f1loat variable named napHours and
tries to assign it the value 6.5. Unfortunately, C# thinks 6.5 is a double and a double won’t fit
inside a float variable, so it flags this as an error:

float napHours = 6.5;
In cases such as this one, you can help C# understand what data type a literal has by adding a suffix

character. For example, the F character in the following code tells C# that it should treat 6.5 as a
float, not a double:

float napHours = 6.5F;

Table 11-2 lists C#’s data type suffix characters. You can use the suffixes in either lower- or uppercase.

TABLE 11-2

DATA TYPE SUFFIX
Uint U

Long L

Ulong UL or LU
Float F
double D
decimal M

www.it-ebooks.info

http://www.it-ebooks.info/

166

| LESSON 11 USING VARIABLES AND PERFORMING CALCULATIONS

The int data type doesn’t have a literal suffix character. C# assumes a literal that looks like an
integer is an int, unless it’s too big, in which case it assumes the value is a 1ong. For example,
it assumes that 2000000000 is an int because that value will fit in an int. It assumes that
3000000000 is a long because it’s too big to fit in an int.

The byte, sbyte, short, and ushort data types also have no literal suffix characters. Fortunately,
you can assign an integer value to these types and C# will use the value correctly, as long as it fits.

You can use double quotes to surround strings and single quotes to surround chars as in the
following code:

string firstName = "William";
string lastName = "Gates";
char middleInitial = 'H';

Sometimes you might like to include a special character such as a carriage return or tab character in
a string literal. Unfortunately, you can’t simply type a carriage return into a string because it would
start a new line of code, and that would confuse Visual Studio.

To work around this dilemma, C# provides escape sequences that represent special characters. An escape
sequence is a sequence of characters that represent a special character such as a carriage return or tab.

Table 11-3 lists C#’s escape sequences.

TABLE 11-3

SEQUENCE MEANING

\a Bell

\b Backspace

\f Formfeed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\! Single quotation mark

\" Double quotation mark

N\ Backslash

\2 Question mark

\000 ASCII character in octal (000 represents the octal code)

\xhh ASCII character in hexadecimal (hh represents the hexadecimal code)
\xhhhh Unicode character in hexadecimal (hhhh represents the hexadecimal code)

www.it-ebooks.info

http://www.it-ebooks.info/

Type Conversions | 167

For example, the following code makes a variable that refers to a string that contains quotes and a
newline character:

string txt = "Unknown value \"ten.\"\nPlease enter a number.";

When you display this string in a MessageBox, the user sees text similar to the following:

Unknown value "ten."
Please enter a number.

NOTE When you display text in a Label (or MessageBox), you can start a new
line by using the newline escape (\n). When you display text in a TextBox, how-
ever, you must start a new line by using the carriage return and newline escapes
together (\r\n). (The \r\n sequence also works for Labels and MessageBoxes.)

C# also provides a special verbatim string literal that makes using some special characters easier.
This kind of value begins with @" and ends with a corresponding closing quote ("). Between the
quotes, the literal doesn’t know anything about escape sequences and treats every character literally.

A verbatim string literal cannot contain a double quote because that would end the string. It
can’t even use an escaped double quote because verbatim string literals don’t understand escape
sequences.

Verbatim string literals are very useful if you need a string that contains a lot of backslashes such
as a Windows directory path (C:\Tools\Binary\Source\C#\PrintInvoices) or that needs to
describe escape sequences themselves ("Use \r\n to start a new line").

You can even type new lines and tab characters inside a string literal, although those may make your
code harder to read.

TYPE CONVERSIONS

C# performs implicit data type conversions where it knows the conversion is safe. For example, the
following code declares a 1ong variable and sets it equal to the int value 6. Because an int can
always fit in a long, C# knows this is safe and doesn’t complain:

long numBananas = 6;

The converse is not always true, however. A 1long value cannot always fit in an int variable. Because
it cannot know for certain that any given long will fit in an int, C# won’t quietly sit by while your
code assigns a long value to an int.

For example, the following code assigns a value to a 1ong variable. It then tries to save that long
value into an int variable. At this point, C# panics and flags the line as an error:

long numBananas = 6;
int numFruits = numBananas;

In cases such as this, you can use three methods to coerce C# into converting data from one type to
another: casting, converting, and parsing.

www.it-ebooks.info

http://www.it-ebooks.info/

168 | LESSON 11 USING VARIABLES AND PERFORMING CALCULATIONS

Casting

To cast a value from one data type to another, you put the target data type inside parentheses in
front of the value. For example, the following code explicitly converts the variable numBananas
into an int:

long numBananas = 6;
int numFruits = (int)numBananas;

Casting works only between compatible data types. For example, because double and int are
both numbers, you can try to cast between them. (When you cast from a double to an int, the
cast simply discards any fractional part of the value with no rounding.) In contrast, the string and
bool data types are not compatible with the numeric data types or each other, so you cannot cast
between them. (What would the statement (int) "platypus" even mean?)

Normally a cast doesn’t check whether it can succeed. If you try to convert a long into an int and
the 1long won’t fit, C# sweeps its mistake under the rug like a politician in an election year, and the
program keeps running. The value that gets shoved into the int may be gibberish, but the program
doesn’t crash.

If the int now contains garbage, any calculations you perform with it will also be garbage so, in
many cases, it’s better to let your program throw a tantrum and crash. (Lesson 21 explains how to
catch errors such as this so you can do something more constructive than merely crash.)

To make C# flag casting errors, surround the cast in parentheses and add the word checked in front
as in the following code:

long worldPopulation = 7309000000;

int peopleInWorld = checked((int)worldPopulation) ;

Now when the code executes at run time, the program will fail on the second statement because the
value is too big to fit in an int.

NOTE If you have several statements that you want to check, you can make a
checked block. In the following code, both of the statements between the braces
are checked:

long worldPopulation = 7309000000;
long asiaPopulation = 4428000000;

checked

{
int peopleInWorld = (int)worldPopulation;
int peopleInAsia = (int)asiaPopulation;

}

The checked keyword also checks integer calculations for overflow. For exam-
ple, if you multiply two huge int variables together, the result won’t fit in an
int. Normally the program keeps running without complaint even though the
result overflowed, so it isn’t what you expect.

If you are working with values that might overflow and you want to be sure the
results make sense, protect the calculations with checked.

www.it-ebooks.info

http://www.it-ebooks.info/

Type Conversions | 169

Converting

Casting only works between compatible types. The convert utility class (which is provided by the
NET Framework) gives you methods that you can use to try to convert values even if the data types
are incompatible. These are shared methods provided by the convert class itself, so you don’t need
to create an instance of the class to use them.

For example, the bool and int data types are not compatible, so C# doesn’t let you cast from one
to the other. Occasionally, however, you might want to convert an int into a bool or vice versa.
In that case you can use the Convert class’s ToBoolean and ToInt32 methods. (You use ToInt32
because ints are 32-bit integers.)

The following code declares two int variables and assigns them values. It uses convert to change
them into bools and then changes one of them back into an int:

int truelnt = -1;

int falseInt = 0;

bool trueBool = Convert.ToBoolean (truelnt) ;
bool falseBool = Convert.ToBoolean (falselnt);
int anotherTrueInt = Convert.ToInt32 (trueBool) ;

NOTE When you treat integer values as booleans, the value 0 is false and all
other values are true. If you convert the bool literal value true into an integer
value, you get —1.

In a particularly common scenario, a program must convert text entered by the user into some other
data type such as an int or decimal. The following uses the convert.ToInt32 method to convert
whatever the user entered in the ageTextBox into an int:

int age = Convert.ToInt32 (ageTextBox.Text) ;

This conversion works only if the user enters a value that can be reasonably converted into an int.
If the user enters 13,914 or -1, the conversion works. If the user enters “seven,” the conversion fails.

Converting text into another data type is more properly an example of parsing than of data type
conversion, however. So although the convert methods work, your code will be easier to read and
understand if you use the parsing methods described in the next section.

Parsing

Trying to find structure and meaning in text is called parsing. All of the simple data types (int,
double, decimal) provide a method that converts text into that data type. For example, the int
data type’s parse method takes a string as a parameter and returns an int. At least it does if the
string contains an integer value.

The following code declares a decimal variable named salary, uses the decimal class’s Parse
method to convert the value in the salaryTextBox into a decimal, and saves the result in the variable:

decimal salary = decimal.Parse (salaryTextBox.Text) ;

www.it-ebooks.info

http://www.it-ebooks.info/

170

LESSON 11 USING VARIABLES AND PERFORMING CALCULATIONS

As is the case with the convert methods, this works only if the text can reasonably be converted
into a decimal. If the user types “12,345.67,” the parsing works. If the user types “ten” or “1.2.3,”
the parsing fails.

NOTE Unfortunately, C#’s conversion and parsing methods get confused by
some formats that you might expect them to understand. For example, they can’t
handle currency characters, so they fail on strings like “$12.34” and “€54.32.”

You can tell the decimal class’s parse method to allow currency values by
passing it a second parameter, as shown in the following code:

decimal salary = decimal.Parse (salaryTextBox.Text,
System.Globalization.NumberStyles.Any) ;

PERFORMING CALCULATIONS

You’ve already seen several pieces of code that assign a value to a variable. For example, the follow-
ing code converts the text in the salaryTextBox into a decimal and saves it in the variable salary:

decimal salary = decimal.Parse (salaryTextBox.Text) ;

You can also save a value that is the result of a more complex calculation into a variable on the

left side of an equals sign. Fortunately, the syntax for these kinds of calculations is usually easy to
understand. The following code calculates the value 2736 + 7281 / 3 and saves the result in the vari-
able result:

double result = 2736 + 7281 / 3;

The operands (the values used in the expression on the right) can be literal values, values stored in
variables, or the results of methods. For example, the following code calculates the sales tax on a

purchase’s subtotal. It multiplies the tax rate stored in the taxRate variable by the decimal value
stored in the subtotalTextBox and saves the result in the variable salesTax:

decimal salesTax = taxRate * decimal.Parse (subtotalTextBox.Text) ;
Note that a variable can appear on both sides of the equals sign. In that case, the value on the right

is the variable’s current value and, after the calculation, the new result is saved back into the same
variable.

For example, the following code takes x’s current value, doubles it, adds 10, and saves the result back
in variable x. If x started with the value 3, then when this statement finishes x holds the value 16:

X =2 * x + 10;

A variable may appear more than once on the right side of the equals sign but it can appear only
once on the left.

The following sections provide some additional details about performing calculations.

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Calculations | 171

Operands and Operators

One issue that confuses some people is the fact that C# uses the data types of an expression’s oper-
ands to determine the way the operators work. If an expression contains two ints, the operators use
integer arithmetic. If an expression contains two floats, the operators use floating-point arithmetic.

Sometimes this can lead to confusing results. For example, the following code tries to save the
value 1/7 in the float variable ratio. The values 1 and 7 are integers so this calculation uses
integer division, which discards any remainder. Because 1/ 7 = 0 with a remainder of 1, ratio is
assigned the value 0, which is probably not what you intended:

float ratio =1 / 7;

To force C# to using floating-point division, you can convert the numbers into the £loat data type.
The following code uses the F suffix character to indicate that 1 and 7 should have the £1cat data
type instead of int. Now the program performs floating-point division, so it assigns ratio the value
0.142857149 (approximately):

float ratio = 1F / 7F;

Instead of using data type suffixes, you can also use casting to make the program treat the values as
floats as in the following code:

float ratio = (float)l / (float)7;

Promotion

If an expression uses two different data types, C# promotes the one with the more restrictive type.
For example, if you try to divide an int by a float, C# promotes the int to a float before it
performs the division.

The following code divides a f1oat by an int. Before performing the calculation, C# promotes the
value 7 to a float. This is sometimes called implicit casting. The code then performs the division
and saves the result 0.142857149 in the variable ratio:

float ratio = 1F / 7;

Operator Summary

C# has many operators for manipulating variables of different data types. The following sections
describe the most commonly used operators grouped by operand type (arithmetic, string, logical,
and so forth).

Remember that some operators behave differently depending on the data types of their operands.

Arithmetic Operators

The arithmetic operators perform calculations on numbers. Table 11-4 summarizes the arithmetic
operators. The Example column shows sample results. For the final examples, assume that x is an
int that initially has value 10.

www.it-ebooks.info

http://www.it-ebooks.info/

172 | LESSON 11 USING VARIABLES AND PERFORMING CALCULATIONS
TABLE 11-4
OPERATOR MEANING EXAMPLE
+ Addition 3 +2is5
- Negation -3 is negative 3
- Subtraction 3 - 2is1
* Multiplication 3 * 2is6
/ Division (integer) 3/ 2is1
/ Division (floating point) 3F / 2Fis1.5
s Modulus 3% 2is1
s Pre-increment ++x: x is incremented to 11 and then the statement
uses the new value 11
++ Post-increment x++: the statement uses the current value of x, 10, and

Pre-decrement

Post-decrement

then x is incremented to 11

—x: x is decremented to 9 and then the statement uses
the new value 9

x—: the statement uses the current value of x, 10, and
then x is decremented to 9

Integer division discards any remainder and returns the integer quotient. The modulus operator,
which applies only to integer data types, does the opposite: it discards the quotient and returns the

remainder. For example, 17 %

5 returns 2 because 17 divided by 5 is 3 with a remainder of 2.

The pre- and post-increment and decrement operators return a value either before or after it is incre-
mented or decremented. For example, the following code sets x equal to 10 + y = 20 and then adds

1 to y. When the code finishes, x = 20andy =

int x, y =
X =

10;

10 + y++;

11:

In contrast, the following code increments y first and then uses the new value to calculate x. When

this code finishes, x = 21andy =

int x, y =
X =

11:

10;

10 + ++y;

The decrement operators work similarly except they subtract 1 instead of add 1.

The increment and decrement operators can be very confusing, particularly when they’re in
the middle of a complex expression. If you have trouble with them, simply don’t use them. For

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Calculations | 173

example, the following code gives you the same result as the previous code but without the pre-
increment operator:

int x, y = 10;
y =y +1;
x =10 + y;

Logical Operators

The logical operators perform calculations on boolean (true or false) values. They let you combine
logical statements to form new ones.

Lesson 18 explains how to use these values to perform tests that let a program take action only
under certain circumstances. For example, a program might pay an employee overtime if the
employee is hourly and worked more than 40 hours in the last week.

Table 11-5 summarizes the boolean operators.

TABLE 11-5
OPERATOR MEANING
& AND
| OR
a XOR
! NOT
&& Conditional AND

[Conditional OR

The & operator returns true if and only if both of its operands are true. For example, you must buy
lunch if it’s lunchtime and you forgot to bring a lunch today:

mustBuyLunch = isLunchTime & forgotToBringLunch;

The | operator returns true if either of its operands is true. For example, you can afford lunch if
either you brought enough money or you have a credit card (or both):

canAffordLunch = haveEnoughMoney | haveCreditCard;

The * operator (the exclusive OR operator) is the most confusing. It returns true if one of its oper-
ands is true and the other is false. For example, you and Ann will get a single lunch check and pay
each other back later if either Ann forgot her money and you brought yours or Ann remembered her
money and you forgot yours. If neither of you forgot your money, you can get separate checks. If you
both forgot your money, you’re both going hungry today:

singleCheck = annForgotMoney * youForgotMoney;

www.it-ebooks.info

http://www.it-ebooks.info/

174 | LESSON 11 USING VARIABLES AND PERFORMING CALCULATIONS

The ! operator returns true if its single operand is false. For example, if the cafeteria is not closed,
you can have lunch there:

canHaveLunch = !cafeteriaIsClosed;

The conditional operators, which are also called short-circuit operators, work just like the regular
ones except they don’t evaluate their second operand unless they must. For example, consider the
following AND statement:

mustBuyLunch = isLunchTime && forgotToBringLunch;

Suppose it’s only 9:00 a.m. so isLunchTime is false. When the program sees this expression, it
evaluates isLunchTime and then encounters the && operator. Because isLunchTime is false, the
program already knows that mustBuyLunch must also be false no matter what value follows the
&& (in this case forgotToBringLunch). In that case, the program doesn’t bother to evaluate
forgotToBringLunch and that saves a tiny amount of time.

Similarly, consider the following OR statement:

canAffordLunch = haveEnoughMoney || haveCreditCard;
If you have enough money, haveEnoughMoney is true, so the program doesn’t need to evaluate
haveCreditCard to know that the result canAffordLunch is also true.

Because the conditional && and | | operators are slightly faster, most developers use them whenever
they can instead of using & and |.

NOTE There is one case where the conditional operators may cause problems. If
the second operand is not a simple value but the result returned from some sort
of method call, then if you use a conditional operator, you cannot always know
whether the method was called. This might matter if the method has side effects:
consequences that last after the method has finished, like opening a

database or creating a file. In that case, you cannot know later whether the data-
base is open or the file is created.

This is seldom a problem and you can avoid it completely by avoiding side effects.

String Operators

The only string operator C# provides is +. This operator concatenates (joins) two strings together.
For example, suppose the variable username contains the user’s name. Then the following code con-
catenates the text “Hello ” (note the trailing space) with the user’s name and displays the result in a
message box:

MessageBox.Show ("Hello " + username) ;

Lesson 14 explains methods that you can use to manipulate strings: find substrings, replace text,
check length, and so forth.

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Calculations | 175

NOTE One very non-obvious fact about string operations is that a string calcu-
lation does not really save the results in the same memory used by the variable
on the left of an assignment statement. Instead it creates a new string holding
the result of the calculation and makes the variable refer to that.

For example, consider the following code:

string greeting = usernameTextBox.Text;
greeting = "Hello " + greeting;

This code looks like it saves a user’s name in the variable greeting and then
tacks “Hello” onto the front. Actually, the second statement creates a whole new
string that holds “Hello” plus the user’s name and then makes greeting refer to
the new string.

For many practical applications, the difference is small, and you can ignore

it. However, if you're performing a huge number of concatenations (perhaps

in one of the loops described in Lesson 19), your program might have perfor-
mance issues. The StringBuilder class can help address this issue, but it’s a
bit more advanced so I'm not going to cover it here. See msdn .microsoft . com/
library/2839d5h5.aspx for more information.

Comparison Operators

The comparison operators compare two values and return true or false depending on the values’
relationship. For example, x < y returns true if x is less than y.

Table 11-6 summarizes the comparison operators.

TABLE 11-6
OPERATOR MEANING EXAMPLE
== Equals 2 == 3is false
L= Not equals 2 I= 3istrue
< Less than 2 < 3istrue
<= Less than or equal to 2 <= 3istrue
> Greater than 2 > 3is false
>= Greater than or equal to 2 >= 3is false

Bitwise Operators

The bitwise operators enable you to manipulate the individual bits in integer values. For example,
the bitwise | operator combines the bits in two values so the result has a bit equal to 1 wherever
either of the two operands has a bit equal to one.

www.it-ebooks.info

http://www.it-ebooks.info/

176

LESSON 11 USING VARIABLES AND PERFORMING CALCULATIONS

For example, suppose x and y are the byte values with bits 10000000 and 00000001. Thenx | vy
has bits 10000001.
This may be easier to understand if you write y below x as in the following:

X: 10000000
y: 00000001

Result: 10000001

Now it’s easy to see that the result has a 1 where either x or y had a 1.

The bitwise operators are fairly advanced so I'm not going to do much with them, but Table 11-7
summarizes them. The shift operators are not “bitwise” because they don’t compare two operands
one bit at a time, but they are bit-manipulation operators so they’re included here.

TABLE 11-7
OPERATOR MEANING EXAMPLE

& Bitwise AND 11110000
& 00111100
= 00110000

Bitwise OR 11110000
00111100

11111100

Bitwise XOR 11110000

00111100
11001100

~ Bitwise complement ~11110000
00001111

<< Left shift 11100111 << 2

10011100

>> Right shift (for signed types) 11100111 >> 2
11111001

=2 Right shift (for unsigned types) 11100111 >> 2
= 00111001

If the operand has a signed type (such as sbyte, int, or long), then >> makes new bits on the left
be copies of the value’s sign bit (its leftmost bit). If the operand has an unsigned type (byte, uint,
ulong), then >> makes the new bits 0.

All of these except ~ also have corresponding compound assignments operators, for example, &=
and <<=. Compound assignment operators are described in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Calculations | 177

Assignment Operators

The assignment operators set a variable (or property or whatever) equal to something else. The
simplest of these is the = operator, which you have seen several times before. This operator simply
assigns whatever value is on the right to the variable on the left.

The other assignment operators, which are known as compound assignment operators, combine the
variable’s current value with whatever is on the right in some way. For example, the following code
adds 3 to whatever value x currently holds:

X += 3;

This has the same effect as the following statement that doesn’t use the += operator:

X =X + 3;

Table 11-8 summarizes the assignment operators. For the examples, assume 1 is an int, x is a
float, and a and b are bools.

TABLE 11-8

OPERATOR MEANING EXAMPLE MEANS

= Assign w o= 10 x = 10;

i Add and assign x += 10; x = x + 10;
-= Subtract and assign x -= 10; x = x - 10;
S Multiply and assign x *= 10; x = x * 10;
/= Divide and assign x /= 10; x =x / 10;
%= Modulus and assign x %= 10; x = x % 10;
&= Logical AND and assign a &= b; a=aé&b;
|= Logical OR and assign a |= b; a=a| b;
= Logical XOR and assign a "= b; a=a’ b;
<<= Left shift and assign i <<= 3; i =1 << 35
>>= Right shift and assign i >>= 5; i=1i>>5;

Precedence

Sometimes the order in which you evaluate the operators in an expression changes the result. For
example, consider the expression 2 + 3 * 5. If you evaluate the + first, you get 5 * 5, which is 25,
but if you evaluate the * first, you get 2 + 15, which is 17.

To prevent any ambiguity, C# defines operator precedence to determine which comes first.

www.it-ebooks.info

http://www.it-ebooks.info/

178

| LESSON 11 USING VARIABLES AND PERFORMING CALCULATIONS

Table 11-9 lists the major operators in order of decreasing precedence. In other words, the opera-
tors listed near the beginning of the table are applied before those listed later. Operators listed at the
same level have the same precedence and are applied in left-to-right order.

TABLE 11-9
CATEGORY OPERATORS
Primary X++, X--
Unary -, 1, 4%, --X
Multiplicative * /%
Additive + -
Relational <, <=, >, >=
Equality ==, fc
Logical AND &
Logical XOR -
Logical OR
Conditional AND &&

Conditional OR [|

The compound assignment operators (+=, *=, “=, and so forth) always have lowest precedence. The
program evaluates the expression on the right, combines it with the original value of the variable on
the left, and then saves the result in that variable.

By carefully using the precedence rules, you can always figure out how a program will evaluate an
expression, but sometimes the expression can be confusing enough to make figuring out the result
difficult. Trying to figure out precedence in confusing expressions can be a great party game (a pro-
grammer’s version of “Pictionary”), but it can make understanding and debugging programs hard.

Fortunately you can always use parentheses to change the order of evaluation or to make the default
order obvious. For example, consider the following three statements:
X = 2
y =2
z = (

The first statement uses no parentheses so you need to use the precedence table to figure out which
operator is applied first. The table shows that * has higher precedence than +, so * is applied first
and the resultis 2 + 15, which is 17.

The second statement uses parentheses to emphasize the fact that the * operator is evaluated first.
The result is unchanged, but the code is easier to read.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 179

The third statement uses parentheses to change the order of evaluation. In this case the + operator is
evaluated first, so the resultis 5 * 5, which is 25.

NOTE Parentheses are a useful tool for making your code easier to understand
and debug. Unless an expression is so simple that it’s obvious how it is evaluated,
add parentheses to make the result clear.

CONSTANTS

A constant is a lot like a variable except you must assign it a value when you declare it and you can-
not change the value later.

Syntactically a constant’s declaration is similar to a variable except it uses the keyword const.

For example, the bold line in the following code declares a decimal constant named taxRate and
assigns it the value 0.09M. The code then uses the constant in a calculation:

const decimal taxRate = 0.09M;

decimal subtotal = decimal.Parse (subtotalTextBox.Text) ;
decimal salesTax = taxRate * subTotal;
decimal grandTotal = subTotal + salesTax;

Constants work just like literal values, so you could replace the constant taxRate with the literal
value 0.09M in the preceding calculation. Using a constant makes the code easier to read, however.
When you see the value 0.09M, you need to remember or guess that this is a tax rate.

Not only can it be hard to remember what this kind of “magic number” means, but it can also make
changing the value difficult if it appears in many places throughout the program. Suppose the code
uses the value 0.09M in several places. If the sales tax rate went up to 0.10M, you would have to hunt
down all of the occurrences of that number and change them. If you miss some of them, you could
get very confusing results. Things could be even more confusing if the program also used 0.09M in
some places to represent other values. If you changed them to 0.10M, you would break the code that
uses those values.

Note that constants can contain calculated values as long as C# can perform the calculation before
the program actually runs. For example, the following code declares a constant that defines the
number of centimeters per inch. It then uses that value to define the number of centimeters per foot:

const double cmPerInch = 2.54;
const double cmPerFoot = cmPerInch * 12;

TRY IT

In this Try It you make some simple calculations. You take values entered by the user, convert them
into numbers, do some multiplication and addition, and display the results.

www.it-ebooks.info

http://www.it-ebooks.info/

180 | LESSON 11 USING VARIABLES AND PERFORMING CALCULATIONS

Lesson Requirements
In this lesson, you:

> Create the form shown in Figure 11-1.

o Sales Tax Calculator =)= -
tem Quartity Price Each ltem Total
o
O
|
T [T
Subtotal
Toc e
Sales Tax
Shipping
Grand Total

FIGURE 11-1

> When the user clicks the Calculate Button, make the program:

> Multiply each item’s Quantity value by its Price Each value and display the result in
the corresponding Item Total TextBox.

Add up the Item Total values and display the result in the Subtotal TextBox.

Multiply the Subtotal value by the entered Tax Rate and display the result in the
Sales Tax TextBox.

> Add the Subtotal, Sales Tax, and Shipping values, and display the result in the Grand
Total TextBox.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox.com/go/csharp24hourtrainer2e.

Hints
> It is often helpful to perform this kind of calculation in three separate phases:
1. Gather input values from the user and store them in variables.
2. Perform calculations.

3. Display results.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Trylt | 181

Use the decimal data type for the variables that represent currency values.

> Lesson 14 has more to say about manipulating and formatting strings, but for this Try It it’s
helpful to know that all data types provide a Tostring method that converts a value into a
string. An optional parameter string indicates the format to use. For this Try It, use the for-
mat "c" (including the quotes) to indicate a currency format, as in:

grandTotalTextBox.Text = grandTotal.ToString("C") ;

> If the program tries to perform the calculations and some of the values it needs are missing
(for example, if one of the Price Each TextBoxes is empty), the program will crash. Don’t
worry about it for now.

Step-by-Step
> Create the form shown in Figure 11-1.
1. Create the controls needed for the program shown in Figure 11-1.
a. The Quantity values are NumericUpDown controls.
b. Al of the other box-like controls are TextBoxes.

C. The output controls (for the Item Total values, Subtotal, Sales Tax, and Grand
Total) are TextBoxes with Readonly set to True.

d. Set the form’s AcceptButton property to the Calculate But ton.

2. Give names to the controls that the program needs to manipulate. That includes the
NumericUpDown controls, all of the TextBoxes, and the Button.

> When the user clicks the Calculate Button, make the program:

> Multiply each item’s Quantity value by its Price Each value and display the result in
the corresponding Item Total TextBox.

Add up the Item Total values and display the result in the Subtotal TextBox.

Multiply the Subtotal value by the entered Tax Rate and display the result in the
Sales Tax TextBox.

> Add the Subtotal, Sales Tax, and Shipping values, and display the result in the Grand
Total TextBox.

This is easy to do in three steps:

1. Gather input values from the user and store them in variables. Because they are already
numeric, the code doesn’t need to parse the values that come from the NumericUpDown
control’s Value properties. The program does need to parse the values in TextBoxes to
convert them into decimal values:

// Get input values.

decimal quantityl = gtylNumericUpDown.Value;
decimal quantity2 = gty2NumericUpDown.Value;
decimal quantity3 = gty3NumericUpDown.Value;
decimal quantity4 = gty4NumericUpDown.Value;

www.it-ebooks.info

http://www.it-ebooks.info/

182 | LESSON 11 USING VARIABLES AND PERFORMING CALCULATIONS

’

decimal priceEachl = decimal.Parse(priceEachlTextBox.Text)
decimal priceEach2 = decimal.Parse (priceEach2TextBox.Text) ;
decimal priceEach3 = decimal.Parse (priceEach3TextBox.Text) ;
decimal priceEach4 = decimal.Parse(priceEach4TextBox.Text)
decimal taxRate = decimal.Parse (taxRateTextBox.Text) ;
decimal shipping = decimal.Parse (shippingTextBox.Text) ;

’

2. Perform calculations. In this Try It, the calculations are pretty simple. To keep the code
simple, the program uses a separate variable for each result instead of tries to add them
all up at once:

// Calculate results.

decimal totall = quantityl * priceEachl;

decimal total2 = quantity2 * priceEach2;

decimal total3 = quantity3 * priceEach3;

decimal totald4 = quantity4 * priceEach4;

decimal subtotal = totall + total2 + total3 + total4;
decimal salesTax = subtotal * taxRate;

decimal grandTotal = subtotal + salesTax + shipping;

3. Display results. The program uses Tostring ("c") to display values in a currency
format:

// Display results.

totallTextBox.Text = totall.ToString("C");
total2TextBox.Text = total2.ToString("C");
total3TextBox.Text = total3.ToString("C")
total4TextBox.Text = total4.ToString("C")
subtotalTextBox.Text = subtotal.ToString("C");
salesTaxTextBox.Text = salesTax.ToString("C");
grandTotalTextBox.Text = grandTotal.ToString("C") ;

7

i

EXERCISES

1. [WPF] Repeat the Try It with a WPF program.

2. When the user changes a value used in a calculation, it can be confusing if the program
displays old calculated values. Copy the program you built for the Try It and make these
modifications:

> Disable the Calculate Button.

> When the user modifies any value used in the calculations, blank the calculated
TextBoxes and enable the Calculate Button.

> After it displays the calculated values, make the Button’s code disable the Button again.

3. [WPF] Repeat Exercise 2 with the program you built for Exercise 1. Hint: When the program
first starts, the TextBoxes will fire their TextChanged events, but not all of the TextBoxes
will have been built yet, so the program can’t clear their text. To avoid crashing, make the
event handlers use the following statement to see if the window has finished loading before it
starts clearing TextBoxes:

if (!IsLoaded) return;

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 183

9.

Copy the program you built for Exercise 2. As it stands, the program crashes if any of
the input values it needs are missing. Modify the program to prevent that by enabling the
Calculate Button only if all of the needed values are present. Hints:

>

In the event handlers, disable the Calculate Button. Then use code similar to the
following for each of the required values before you re-enable the Button:

if (priceEachlTextBox.Text.Length == 0) return;

The program will still crash if the user enters a non-numeric value such as “ten.”
Don’t worry about that for now. You’ll learn how to fix that in Lesson 21.

[WPF] Repeat Exercise 4 with the program you built for Exercise 3.

The program you built for Exercise 4 doesn’t understand currency values. For example, if you
enter $6.00 in a Price Each TextBox and click Calculate, the program crashes. Fix that. Hints:

>

[WPF] Repeat Exercise 6 with the program you built for
Exercise 5. A Lle

Make a program similar to the one shown in Figure 11-2.

Use code similar to the following to allow currency values, thousands separators,
parentheses, leading and trailing signs, and other numeric formats:

decimal priceEachl = decimal.Parse (priceEachlTextBox.Text,
System.Globalization.NumberStyles.Any) ;

Don’t make that change for the quantity values or the tax rate because they’re not

currency values. ; =l
a2 Logical Operat... | =

Inputs

Results

When the user checks or unchecks either of the A or B [
CheckBoxes, the program should check or uncheck the result []AsB
CheckBoxes appropriately. For example, if A and B are both AlB
checked, the A && B checkBox should also be checked. R
[JA==B
Hlnts: 1{(A &8 B) I (1A &8 1B)
> Set a result CheckBox’s Checked property equal to a
boolean expression. For example: FIGURE 11-2
aAndBCheckBox.Checked = aCheckBox.Checked && bCheckBox.Checked;
> To make a CheckBox’s caption display an ampersand, place two in its Text property.
To display two ampersands, use four in the Text property as in “A &&&& B.”
> The last checkBox is checked at the same time as one of the others. Which one? Does

that make sense?

A program can get information about the operating system in many ways. Three useful
values include:

>

>

>

Environment . UserName—The current user’s name.
DateTime.Now.ToShortTimeString () —The current time in short format.

DateTime.Now.ToShortDateString () —The current date in short format.

www.it-ebooks.info

http://www.it-ebooks.info/

184 | LESSON 11 USING VARIABLES AND PERFORMING CALCULATIONS

10.

11.

12.

13.

14.

15.

Make a program that greets the user when it starts by
displaying a message box similar to the one shown in
Figure 11-3. (Hint: You’ll need to concatenate several Hello Rod, It is now 10:43 AM on 4/1/2031.
strings.)

Copy the program you wrote for Exercise 9 and make it
display its greeting in a Label instead of a message box.

. FIGURE 11-3
Make a program to determine whether 12345 * 54321 >

22222 * 33333. In three Labels, display the result of 12345 * 54321, the result of 22222 *

33333, and the boolean value 12345 * 54321 > 22222 * 33333. The final value should be
true or false. (Hint: Use Tostring to convert the boolean result into a string.)

Make a program that converts degrees Celsius to degrees Fahrenheit. It should have two
TextBoxes with associated But tons. When the user enters a value in the Celsius TextBox and
clicks its Button, the program converts the value into degrees Fahrenheit and displays the result
in the other TextBox. Make the other Button convert from Fahrenheit to Celsius. Hints:

> °F=°C*9/5+32and°C=("F-32)*5/09.
> What’s special about the temperature —40° Celsius?

Make a currency converter that converts between U.S. dollars, British pounds, Euros,
Japanese yen, Indian rupees, and Swiss francs. Make constants for the following conversion
factors (or go online and look up the current exchange rates):

// Exchange rates in USD.

const decimal eurPerUsd = 0.68M;

const decimal gbpPerUsd = 0.63M;

const decimal jpyPerUsd = 89.16M;
const decimal inrPerUsd = 47.24M;
const decimal chfPerUsd = 1.03M;

To make the constants usable by every event handler in the program, place these declara-
tions outside of any event handler. (Right after the end of the Form1 method would work.)

Make a TextBox and Button for each currency. When the user clicks the Button, the pro-
gram should:

> Get the value in the corresponding TextBox.

> Convert that value into U.S. dollars.

> Use the converted value in U.S. dollars to calculate the other currency values.
> Display the results.

Make a program similar to the one you made for Exercise 13 but make this one convert
between inches, feet, yards, miles, centimeters, meters, and kilometers.

[Games] Make a program that contains a PictureBox (holding a picture of something that
flies) and a Timer (with Interval = 50).

Inside the code but outside of any event handler, declare two double variables named Theta
and Dtheta initialized to 0 and Math.PT / 30, respectively. (System.Math contains several
useful mathematical values and methods including sin and cos, which you’ll use in a moment.)

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 185

16.

17.

When the user clicks the pPictureBox, enable or disable the Timer.

In the Timer's Tick event handler, move the PictureBox to the point: (100 + 100 *
Math.Cos (Theta), 100 + 75 * Math.Sin(Theta)) Then add Dtheta to Theta. (Convert
data types if necessary.)

[Games] Copy the program you built for Exercise 15 and add an HScrollBar with
Minimum = 1, Maximum = 10, and LargeChange = 1. In its Scroll event handler, display
the new value in a read-only TextBox and set the Timer’s Interval property to:

110 - 10 * speedScrollBar.Value.

[Games, Advanced] One way to handle projectile motion is to use variables vx and vy to
represent an object’s velocities in the X and Y directions, respectively. At every tick of a
Timer, you add vx and vy to the object’s current X and Y coordinates, respectively. For pro-
jectile motion, you then add a downward acceleration due to gravity to vy.

For this exercise, build a program similar to the one shown in Figure 11-4 to simulate pro-
jectile motion. To keep the program simple for the user, the angle is in degrees, the speed is
in feet per second, and the scale is 1 pixel = 1 foot.

adl Projectile Motion = | = -

Q

FIGURE 11-4

Hints:

> Build the form as shown in Figure 11-4. The cannonball is an image displayed in a
PictureBox. Also add a Timer named moveTimer and set its Interval property to 50.

> QOutside of any event handler, create six float variables named TicksPerSecond, X,
Y, Vx, Vy, and Ay.

» When the user clicks the Fire Button:

» Use the form’s clientSize and the PictureBox’s Size to move the
PictureBox to the form’s lower-left corner.

> Parse the angle and speed entered by the user.

> Convert the angle from degrees to radians by using the formula:
radians =degrees * Math.PI / 180.

www.it-ebooks.info

http://www.it-ebooks.info/

186 | LESSON 11 USING VARIABLES AND PERFORMING CALCULATIONS

> Calculate the number of Timer ticks per second by using the formula:
TicksPerSecond = 1000 / moveTimer.Interval.

> Use the following equations (converting data types as necessary) to calculate
the ball’s initial velocities vx and vy in feet per tick:

Vx = speed * Math.Cos(radians) / TicksPerSecond
Vy = speed * Math.Sin(radians) / TicksPerSecond

> Use the following equation to calculate the ball’s acceleration due to gravity
in feet per tick per tick:

Ay = 32 / TicksPerSecond / TicksPerSecond
> Enable the Timer.
> Disable the Fire Button.
> Enable the Stop Button.
> When the user clicks the Stop Button:
> Disable the Timer.
> Enable the Fire Button.
> Disable the Stop Button.
> When the Timer’s Tick event fires:

> Move the cannonball by adding vx to the PictureBox’s Left property
and subtracting vy from the PictureBox’s Top property. (You subtract vy
because Y coordinates on the form decrease upward.)

> Add the downward acceleration due to gravity to vy by subtracting Ay

> If all goes well, then for a 60° angle and a speed of 120 feet per second, the cannon-
ball should take around 8.5 seconds to drop off the bottom of the form. (It may seem
like a long time, but the ball travels more than 400 feet horizontally during that time.)

NOTE Please select the videos for Lesson 11 online at www.wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

12

Debugging Code

A bug is a programming error that makes a program fail to produce the correct result. The
program might crash, display incorrect data, or do something completely unexpected such as
delete the wrong file.

In this lesson you learn how to use the excellent debugging tools provided by Visual Studio’s
IDE to find bugs in C#. You learn about different kinds of bugs and you get to practice debug-
ging techniques on some buggy examples that you can download from the book’s website.

DEFERRED TECHNIQUES

Unfortunately, at this point in the book you don’t know enough about writing code to be
able to understand and fix certain kinds of bugs. For example, a program crashes if it tries
to access an array entry that is outside of the array, but you won’t learn about arrays until
Lesson 16.

So why does this lesson cover debugging when you don’t even know all of the techniques you
need to cause and fix certain kinds of bugs? It makes sense for two reasons.

First, the previous lesson was the first part of the book where you were likely to encounter
bugs. Whenever I teach beginning programming, students start seeing bugs as soon as they
write code that performs calculations like those covered in Lesson 11. These kinds of bugs are
easy to fix if you know just a little bit about debugging, but they can be extremely frustrating
if you don’t.

Second, it turns out that you don’t need to know more advanced techniques to learn simple
debugging. Once you learn how to track down simple bugs, you can use the same techniques
to find more advanced bugs. (If you learn to swim in 3 feet of water, you can later use the
same techniques to swim in 10 feet or 100 feet of water.)

Later, when you know more about C# programming and can create more advanced bugs, that
same knowledge will help you fix those bugs. When you know enough to have array indexing
errors, you'll also know enough to fix them.

www.it-ebooks.info

http://www.it-ebooks.info/

188

| LESSON 12 DEBUGGING CODE

DEBUGGING THEN AND NOW

Back in the bad old days, programmers often fixed bugs by staring hard at the code, making a
few test changes, and then running the program again to see what happened. This trial-and-error
approach could be extremely slow because the programmer didn’t really know exactly what was
going on inside the code. If the programmer didn’t have a good understanding of what was really
happening, the test changes often didn’t help and may have even made the problem worse.

Visual Studio’s IDE provides excellent tools for debugging code. In particular, it lets you stop a
program while it’s running and see what it’s doing. It lets you follow the program as it executes its
code one line at a time, look at variable values, and even change those values while the program is
still running.

The following sections describe some of Visual Studio’s most useful debugging tools.

SETTING BREAKPOINTS

A breakpoint stops code execution at a particular statement. To set a breakpoint, open the Code
Editor and click the gray margin to the left of the line of code where you want to stop. Alternatively,
you can place the cursor on the line and press F9.

The IDE indicates the breakpoint by displaying a red circle in the left margin and highlighting the
line of code in red. Figure 12-1 shows a breakpoint set on the following line of code:

decimal grandTotal = subtotal + salesTax + shipping;

Dd Sales Tax Calculator

Forml.es & X

Sales Tax Calculator ~ iz Sales_Tax_Calculator.Form™ = ‘3'5 calculateButton_Click(ohje -
decimal subtotal = totall + total? + total3 + totald; %
decimal salesTax = subtotal * taxRate; ~

o
// Display results.
totallTextBox.Text = totall.TeString{"{"); -1
totallTextBox.Text = totall.ToStri B H -
tntaliTeviRny Tevt = +ntald TnStrd "y

89 % ~ 4 »

FIGURE 12-1

If you run the program now, execution stops when it reaches that line. You can then study the code
to see what it’s doing.

The debugger provides an edit-and-continue feature that lets you modify a stopped program’s
code. You can add new statements, remove existing statements, declare new variables, and so forth.
Unfortunately, the debugger gets confused if you make certain changes, and you’ll have to restart
your program. But sometimes you can make small changes without restarting.

To remove a breakpoint, click the red breakpoint circle or click the line and press F9 again.

www.it-ebooks.info

http://www.it-ebooks.info/

Reading Variables | 189

SPONTANEOUS STOP

If you need to stop a program while it is running and you haven’t set any
breakpoints, you can select the Debug menu’s Break All command or press
Ctrl+Alt+Break. The debugger will halt the program in the middle of whatever it is
doing and enter break mode.

If the Break All command isn’t in the Debug menu (it may not be for some versions
of Visual Studio), you can still use the shortcut Ctrl+Alt+Break.

This technique is particularly useful for interrupting long tasks or infinite loops.

READING VARIABLES

It’s easy to read a variable’s value while execution is stopped.

Simply hover the mouse over a variable and its value appearsina | &' Sales Tax Calculator [=[= [T
popup window. Subtotal: | 519.95 | Caleuate |
For example, consider the order summary program shown in el
Figure 12-2. The program is supposed to add a subtotal, 9% ST
sales tax, and shipping costs to get a grand total. You don’t To TEE g
have to be Neil deGrasse Tyson to realize that something’s wrong

FIGURE 12-2

in Figure 12-2. If you’re really paying a total of $204.50 for a
$19.95 purchase, you need to find a new place to shop.

To debug this program, you could place a breakpoint on a line of code near where you know the bug
occurs. For example, the line of code containing the breakpoint in Figure 12-1 calculates the grand
total. Because the total displayed in Figure 12-2 is wrong, this seems like a good place to begin the
bug hunt. (You can download the Sales Tax Calculator program from the book’s website and follow
along if you like.)

When the code is stopped, you can hover the mouse over a variable to learn its value. If you hover
the mouse over the variables in that line of code, you’ll find that subTotal is 19.95 (correct), ship-
ping is 5 (correct), and salesTax is 179.55 (very much incorrect). Figure 12-3 shows the mouse
hovering over the salesTax variable to display its value.

Dd Sales Tax Calculator - Form1.cs

Forml.es & X

Sales Tax Calculator - *12 Sales_Tax_Calculator.Form1 ~| @, calculateButton_Click(objec ~

decimal shipping = decimal.Parse{ +

shippingTextBox.Text, ~
System.Globalization.NumberStyles.Any);

/f Calculate results.
decimal salesTax = subtotal * taxRate;

[=] decimal grandTotal = subtotal + splesTax + shipping;
@ salesTax| 179.535

// Display the results. .
salesTaxTextBox.Text = salesTax.ToString("C");
grandTotalTextBox.Text = grandTotal.ToString("C");

}

5
89 % -~ 4 b

FIGURE 12-3

www.it-ebooks.info

http://www.it-ebooks.info/

190 | LESSON 12 DEBUGGING CODE

Now that you know the bug is lurking in the variable salesTax, you can hover the mouse over other
variables to see how that value was calculated. If you hover the mouse over the variables in the pre-
vious line of code, you’ll find that subTotal is 19. 95 (still correct) and taxRate is 9.

You may need to think about that for a bit to realize what’s going wrong. To apply a tax rate such as
9%, you divide by 100 and then multiply. In this case, taxRate should be 0.09, not 9.

Having figured out the problem, you can stop the program by opening the Debug menu and select-
ing the Stop Debugging command, by clicking the Stop Debugging button on the toolbar, or by
pressing Shift+FS5.

Now you can fix the code and run the program again to see if it works. The following line shows the
incorrect line of code (I scrolled it out of view in Figure 12-3 so it wouldn’t be a complete giveaway):

const decimal taxRate = 9M;

When you run the program again, you should get the correct sales tax ($1.80) and grand total
($26.75). In a more complicated program, you would need to perform a lot more tests to make sure
the program behaved properly for different inputs, including weird ones such as when the user enters
“ten dollars” for the subtotal or leaves the shipping cost blank. This example isn’t robust enough to
handle those problems.

STEPPING THROUGH CODE

Once you’ve stopped the code at a breakpoint, you can step through the execution one statement at
a time to see what happens. The Debug menu provides four commands that control execution:

> Continue (F5)—Makes the program continue running until it finishes or it reaches another
breakpoint. Use this to run the program normally after you’re done looking at the code.

> Step Into (F11)—Makes the program execute the current statement. If that statement calls a
method, execution stops inside that method so you can see how it works.

> Step Over (F10)—Makes the program execute the current statement. If that statement calls
another piece of executable code, the program runs that code and returns without stopping
inside that code (unless there’s a breakpoint somewhere inside that code).

> Step Out (Shift+F11)—Makes the program run the current routine until it finishes and
returns to the calling routine (unless it hits another breakpoint first).

NOTE When it is stopped, the debugger highlights the next line of code that it
will execute in yellow.

In addition to using the Debug menu or shortcut keys, you can invoke these commands from
the toolbar.

Normally the program steps through its statements in order, but there is a way to change the order
if you feel the need. Right-click the line that you want the code to execute next and select Set Next

www.it-ebooks.info

http://www.it-ebooks.info/

Using Watches | 191

Statement from the context menu. Alternatively, you can place the cursor on the line and press
Ctrl+Shift+F10. When you let the program continue, it starts executing from this line.

Setting the next statement to execute is useful for replaying history to see where an error occurred,
re-executing a line after you change a variable’s value (described in the “Using the Immediate
Window” section later in this lesson), or to jump forward to skip some code.

Note that you can jump to only certain lines of code. For example, you can’t jump to a comment
or other line of code that doesn’t actually do anything (you can’t set a breakpoint there either), you
can’t jump to a different method, you can’t jump at all if an error has just occurred, you can’t jump
to a variable declaration unless it also initializes the variable, and so forth. C# does its best, but it
has its limits.

USING WATCHES

Sometimes you may want to check a variable’s value frequently as you step through the code one
line at a time. In that case, pausing between steps to hover over a variable could slow you down,
particularly if you have a lot of code to step through.

To make monitoring a variable easier, the debugger provides watches. A watch displays a variable’s
value whenever the program stops.

To create a watch, break execution, right-click a variable, and select Add Watch from the context
menu. The bottom of Figure 12-4 shows a watch set on the variable subtotal. Each time the pro-
gram executes a line of code and stops, the watch updates to display the variable’s current value.

Dd Sales Tax Calculator - Form1.cs

Forml.cs & X
Sales Tax Calculator

+ #iz Sales_Tax_Calculator.Forn + @a calculateButton_Click(obj ~
77 GET the INpOts.
decimal subtotal = decimal.Parse(
subtotalTextBox.Text,
System.Globalization.Numberstyl
(=3 decimzl shipping = decimzl.Parse(=
shippingTextBox.Text,
System.Globalization.NumberStyles.Any);

=
+
-

/f Calculate results.
decimal salesTax = subtotal * taxRate;

decimal grandTotal = subtotal + salesTax + shipping;|

Type
@ subtotal 19.95 decimal

LLEUGRE Output Call Stack Immediate Window

FIGURE 12-4

The Watch window also highlights variables that have just changed in red. If you’re tracking a lot of
watches, this makes it easy to find the values that have just changed.

www.it-ebooks.info

http://www.it-ebooks.info/

192

| LESSON 12 DEBUGGING CODE

NOTE The Locals window is similar to the Watch window except it shows
the values of all of the local variables (and constants). This window is handy if
you want to view many of those variables all at once. It also highlights recently
changed values in red so you can see what’s changing.

USING THE IMMEDIATE WINDOW

While the program is stopped, the Immediate window lets you execute simple commands. The four
most useful commands that this window supports let you view variable values, evaluate expressions,
set variable values, and call methods.

NOTE If you can’t find the Immediate window, open the Debug menu, expand
the Windows submenu, and select Immediate.

To view a variable’s value, simply type the variable’s name and press Enter. (Optionally, you can
type a question mark in front if it makes you feel more like you’re asking a question.)

The following text shows the Immediate window after I typed in the name of the variable subtotal
and pressed Enter:

subtotal
19.95

To evaluate an expression, simply type in the expression and press Enter. You can include literal
values, variables, properties, constants, and just about anything else that you can normally include
inside an expression in the code.

The following text shows the Immediate window after I typed an expression and pressed Enter:

taxRate * subtotal
179.55

To set a variable’s value, simply type the variable’s name, an equals sign, and the value that you
want to give it. The new value can be a literal value or it can be the result of an expression. After
you press Enter, the Immediate window evaluates whatever is on the right of the equals sign, saves
it in the variable, and then displays the variable’s new value.

NOTE The same technique lets you set new values for properties. For example,
you can change a control’s Location, Text, Visible, BackColor, and other
properties on the fly.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 193

The following text shows the Immediate window after I typed a statement to give the grandTotal
variable a new value and pressed Enter:

grandTotal = subtotal + salesTax
199.50

Finally, to call a method, simply type the method call into the Immediate window and press Enter.
Don’t forget to add parentheses to the method call even if the method takes no parameters. The
Immediate window calls the method and displays any returned result. If the method has no return
value, the Immediate window displays “Expression has been evaluated and has no value.”

The following text shows the Immediate window after I executed the grandTotalTextBox’s
Clear method:

grandTotalTextBox.Clear ()
Expression has been evaluated and has no value

NOTE You must type commands in the Immediate window just as you would
in the Code Editor. In particular, you must use the correct capitalization or the
window will complain.

TRY IT a2 Banquet Planner | = | & -
If you look closely at Figure 12-5, you’ll see that this program Eizze Gy R Bace
has a serious problem. One tofu dinner at $13.95 each probably Ccken (s1595) [9]
shouldn’t add up to $142.65. If you look a little more closely, you’ll T
also see that the grand total doesn’t add up properly. (L)
In this Try It, you debug this program. You set breakpoints and use Total
the debugger to evaluate variable values to figure out where the code
is going wrong. FIGURE 12-5

NOTE The downloads for this chapter, which are available at wvww .wrox .com/
go/csharp24hourtrainer2e, include buggy and debugged versions of the Try It
and exercises. For example, the initial flawed version of the Try It is called “Try
It 127 and the fixed version is called “Try It 12 Fixed.”

Lesson Requirements
In this lesson, you:

> Use the debugger to fix this program. To follow along in the debugger, download this les-
son’s material from the book’s website and open the “Try It 12” solution.

> Run the program and experiment with it for a bit to see what seems to work and what seems
to be broken. This should give you an idea of where the problem may lie.

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

194 | LESSON 12 DEBUGGING CODE

> Set a breakpoint in the code near where you think there might be a problem. In this case, the
tofu dinner cost calculation is wrong so you might set a breakpoint on this line:

decimal priceTofu = tofuCost * numTofu;

> Run the program so it stops at that breakpoint. Hover the mouse over different variables to
see whether their values make sense.

> Step through the code, watching each line closely to see what’s wrong.
> Fix the error.

> Run the program again and test it to make sure the change you made works. Try setting two
of the quantities to 0 and the third to 1 to see if the program can correctly calculate the non-
zero value.

> Repeat these steps until you can’t find any more problems.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox .com/go/csharp24hourtrainer2e.

Step-by-Step

The first two lesson requirements for this Try It are fairly straightforward so they aren’t repeated
here. The following paragraphs discuss the solution to the mysterious problem, so if you want to try
to debug the program yourself, do so before you read any further.

Ready? Let’s go.

The following code shows how the program works. The bold line is where I set my breakpoint. If
you stare at the code long enough, you’ll probably find the bug, so don’t look too closely or you’ll
spoil the surprise. Remember, the point is to practice using the debugger (which will be your only
hope in more complicated programs), not to simply fix the program.

// Calculate the prices for each entree and the total price.
private void calculateButton Click(object sender, EventArgs e)
{

const decimal chickenCost = 15.85M;

const decimal steakCost = 18.95M;

const decimal tofuCost = 13.95M;

// Get inputs.

int numChicken = int.Parse(chickenQuantityTextBox.Text) ;
int numSteak = int.Parse(steakQuantityTextBox.Text) ;

int numTofu = int.Parse(tofuQuantityTextBox.Text) ;

// Calculate results.
decimal total = 0;

decimal priceChicken = chickenCost * numChicken;
total += priceChicken;

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Trylt | 195

decimal priceSteak = steakCost * numSteak;
total += priceSteak;

decimal priceTofu = tofuCost * numTofu;
total += priceTofu;

// Display results.

chickenPriceTextBox.Text = priceChicken.ToString("C");
steakPriceTextBox.Text = priceSteak.ToString("C");
tofuPriceTextBox.Text = priceChicken.ToString("C") ;
totalTextBox.Text = total.ToString("C");

Run the program so it stops at that breakpoint. Hover the mouse over different variables to
see whether they look like they make sense.

1. If you run to the breakpoint and hover the mouse over the variables, you’ll find that
most of them make sense; the values numChicken = 9, priceChicken = 142.65, and
so forth.

Step through the code, watching each line closely to see what’s wrong.

1. While the program is stopped on the breakpoint, the variable priceTofu has value 0
because the code hasn’t yet executed the line that sets its value. Press F10 to step over
that line and you’ll see that priceTofu is 13.95 as it should be. So far, you haven’t
found the bug.

If you continue stepping through the code, watching each line carefully, you’ll eventu-
ally see the problem in this line:

tofuPriceTextBox.Text = priceChicken.ToString("C");

Here the code is making the tofu price TextBox display the value pricechicken!

NOTE This is a fairly typical copy-and-paste error. The programmer wrote
one line of code, copied and pasted it several times to perform similar tasks
(displaying the values in the TextBoxes), but then didn’t update each pasted line
correctly.

Fix the error.
1. This bug is easy to fix. Simply change the offending line to this:
tofuPriceTextBox.Text = priceTofu.ToString("C") ;

Run the program again and test it to make sure the change you made works. Try setting two
of the quantities to 0 and the third to 1 to see if the program can correctly calculate the non-
zero value.

1. If you run the program again, all should initially look fine. If you reproduce some cal-
culations by hand, however, you may find a small discrepancy in the chicken prices.

www.it-ebooks.info

http://www.it-ebooks.info/

196 | LESSON 12 DEBUGGING CODE

2. You can see the problem more easily if you set the quantities of steak and tofu to 0 and
the quantity of chicken to 1. Then the program calculates that the price of one chicken

dinner (at $15.95 each) is $15.85.

If the program still has problems, run through these steps again.

1. Having found another bug, run through the debugging process again. Set a breakpoint
on the line that calculates pricechicken and hover over the variables to see if their

values make sense.

If you’re paying attention, you’ll see that the value of the constant costChicken is

15.85, not 15.95 as it should be.

2. Fix the constant declaration and test the program again.

NOTE I¢’s extremely common for a program to contain more than one bug. In
fact, it’s an axiom of software development that any nontrivial program contains

at least one bug.

A consequence of that axiom is that, even after you fix the program’s “last” bug,
it still contains another bug. Sometimes fixing the bug introduces a new bug.
(That’s not as uncommon as you might think in a complex program.) Other
times more bugs are hiding; you just haven’t found them yet.

5.«

In complex projects, the goal is still to eradicate every single bug, but the reality
is that often the best you can do is fix as many as you can find until the odds of
the user finding one in everyday use are extremely small.

EXERCISES

Putting debugging exercises in a book can be a bit strange. If the book includes the code, you can
stare at it until you see the bugs without using the debugger, and that would defeat the purpose.

For that reason, this section only describes the programs containing the bugs and you’ll
have to download the buggy programs from the book’s website at www.wrox.com/go/
csharp24hourtrainer. The corrected versions are named after their exercises, for example,

“Exercise 12-1 Fixed.” Modified lines are marked with comments.

1.

2.

Debug the Temperature Converter program shown in Figure 12-6. (Hint: 0° Celsius = 32°

Fahrenheit and 100° Celsius = 212° Fahrenheit.)

o [= =[]

Debug the Distance Converter program shown in i I Gracia L=
Figure 12-7. (After you fix this one, notice that using o A
constants instead of magic numbers would make fixing | 2 | 21
these bugs easier and might have avoided them from the e | T
start. Also note again that duplicated code is a bad thing.
You learn how to fix that in Lesson 20.)

FIGURE 12-6

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

Exercises | 197

10.

1.

12.

The Picture Resizer program is supposed to zoom in on +~Distance Converter | = | & S|
a picture when you adjust its TrackBar. Unfortunately,} oo
when you move the TrackBar, the picture seems to shrink bt
and move to a new location. Debug the program. e
Debug the Tax Form program, which performs a ficti- fce
tious tax calculation based on a real one. It’s an ugly little

program, but it’s probably the most realistic one in this FIGURE 12-7

lesson. (Hint: For the program’s initial inputs, the tax due should be $290.00.)

The Play Tone program is supposed to let the user play tones between 1000 Hz and 10,000
Hz for durations between 0.1 and 2.0 seconds. Unfortunately, for durations of 1.0 seconds
or longer, the program plays a short click, and for durations under 1.0 seconds the program
crashes. Download and debug the program.

[Games] When you scroll the Orbit program’s scrollbar from 0 to 359 degrees, the program
moves an image of the Earth around an image of the sun. Unfortunately, the Earth jumps all
over the place and it sometimes falls off the bottom and right edges of the form. Download
and debug the program.

[Games] The Satellite program uses a Timer to make a picture of a satellite orbit the Earth.
Unfortunately, the satellite sometimes moves off the bottom of the form. Download and
debug the program.

[Games, WPF| The Rotate Image program lets the user load and rotate an image. (The code
shows how to load an image at run time and prevent WPF from resizing it, so it’s worth
looking at for that alone.) Unfortunately, when the user changes the slider’s value from 0 to
359 degrees, the image rotates only a tiny amount. Download and debug the program.

[Graphics] The Draw Star program is supposed to draw a five-pointed star. (This book
doesn’t have enough room to say a lot about drawing graphics, but this example can help
you get started.) Unfortunately, the program draws an upside-down pentagon. Download
and debug the program.

The Equal Shares program takes as inputs a money amount and a number of people. It then
calculates the amount of money you should give each person to divide the money evenly.
Unfortunately, the program crashes. Download and debug the program so it doesn’t crash
and so it displays the shares as a currency value.

The Interest Calculator program uses the formula F = P * (1 + R)N to calculate the future
value of a savings account where F is the future value, P is the initial principle, R is the
annual interest rate, and N is the number of years. Unfortunately, the program has two
problems. First, it won’t compile because of some data type errors. Second, once you get it to
compile, it indicates that a $1,000 investment at 5% interest for 10 years ends with a total
value of more than $60 billion. (If you know of an investment that can turn my $1,000 into
$60 billion in 10 years, please let me know!) Download and debug the program.

In finance, the Rule of 72 lets you approximate the number of years it takes to double an
investment at a particular interest rate. If the annual interest rate is R, then the rule says it
will take approximately T = 72 / R years to double an investment. (The Rule of 70 and the

www.it-ebooks.info

http://www.it-ebooks.info/

198 | LESSON 12 DEBUGGING CODE

Rule of 69.3 are similar except they use values other than 72. Different versions are closest
for different interest rates.)

The exact formula for calculating doubling time is T = Ln(2) / Ln(1 + R). The advantage of
the Rules is that you can approximate them in your head. (I would have a harder time divid-
ing into 69.3 than 70 or 72, but at least you can divide into 69.3 with a simple accounting
calculator that doesn’t do logarithms.)

The Doubling Time program takes as input an interest rate and calculates the results of
the Rules of 72, 70, and 69.3, plus the exact formula. The results for a 6% interest rate are
12.00, 11.67, 115.50, and 0.36 years, respectively. Download and debug the program.

NOTE Please select the videos for Lesson 12 online at www.wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

13

Understanding Scope

A variable’s scope is the code that can “see” or access that variable. It determines whether a
piece of code can read the variable’s value and give it a new value.

In this lesson you learn what scope is. You learn why restricting scope is a good thing and how
to determine a variable’s scope.

SCOPE WITHIN A CLASS

A C# class (and note that Form types are classes, too) contains three main kinds of scope:
class scope, method scope, and block scope. (If you have trouble remembering what a class is,
review Lesson 9’s section “Understanding Classes and Instances.”)

Variables with class scope are declared inside the class but outside of any of its methods. These
variables are visible to all of the code throughout the instance of the class and are known as fields.

Variables with method scope are declared within a method. They are usable by all of the code
that follows the declaration within that method.

Variables with block scope are declared inside a block defined by curly braces {} nested inside
a method. The section “Block Scope” later in this lesson says more about this.

For example, consider the following code that defines the form’s constructor (Form1), a field,
and some variables inside event handlers:

namespace VariableScope

{

public partial class Forml : Form

{

public Forml ()

{
}

// A field.
int a = 1;

InitializeComponent () ;

www.it-ebooks.info

http://www.it-ebooks.info/

200 | LESSON 13 UNDERSTANDING SCOPE

private void clickMeButton Click(object sender, EventArgs e)

{
// A method variable.
int b = 2;
MessageBox.Show("a = " + a.ToString() +
"\nb = " + b.ToString());

}

private void clickMeTooButton Click (object sender, EventArgs e)

{
// A method variable.
int ¢ = 3;
MessageBox.Show("a = " + a.ToString() +
"\nc = " + c.ToString());

The field a is declared outside of the three methods (Form1, clickMeButton Click, and
clickMeTooButton_ Click) so it has class scope. That means the code in any of the methods can see
and use this variable. In this example, the two c1ick event handlers can each display the value.

The variable b is declared within clickMeButton Click so it has method scope. Only the code
within this method that comes after the declaration can use this variable. In particular, the code in
the other methods cannot see it.

Similarly, the code in the clickMeTooButton Click event handler that comes after the c
declaration can see that variable.

Two variables with the same name cannot have the same scope. For example, you cannot create

two variables named a at the class level nor can you create two variables named b inside the same
method.

Same Named Variables

Although you cannot give two variables the same name within the same scope, you can give them
the same name if they are in different methods or one is a field and the other is declared inside a
method. For example, the following code defines three variables all named count:

// A field.
int count = 0;

private void clickMeButton Click (object sender, EventArgs e)

{
// A method variable.
int count = 1;
MessageBox.Show (count . ToString ()) ;

}

private void clickMeTooButton Click (object sender, EventArgs e)

www.it-ebooks.info

http://www.it-ebooks.info/

Scope within a Class | 201

// A method variable.
int count = 2;
MessageBox.Show (count . ToString ()) ;

}

In this example, the method-level variable hides the class-level variable with the same name. For
example, within the clickMeButton Click event handler, its local version of count is visible and
has the value 1. The class-level field with value o is hidden.

NOTE You can still get the class-level value if you prefix the variable with the
executing object. Recall that the special keyword this means “the object that is
currently executing this code.” That means you could access the class-level field
while inside the clickMeButton Click event handler like this:

private void clickMeButton Click (object sender, EventArgs e)

{

// A method variable.

int count = 1;
MessageBox.Show (count . ToString()) ;
MessageBox.Show (this.count.ToString()) ;

}

Usually it’s better to avoid potential confusion by giving the variables different
names in the first place.

Method Variable Lifetime

A variable with method scope is created when its method is executed. Each time the method is
called, a new version of the variable is created. When the method exits, the variable is destroyed.
If its value is referenced by some other variable, it might still exist, but this variable is no longer
available to manipulate it.

One consequence of this is that the variable’s value resets each time the method executes. For
example, consider the following code:

private void clickMeButton Click(object sender, EventArgs e)

{

// A method variable.

int count = 0;

count++;
MessageBox.Show (count . ToString ()) ;

}

Each time this code executes, it creates a variable named count, adds 1 to it, and displays its value.
The intent may be to have the message box display an incrementing counter but the result is actually
the value 1 each time the user clicks the button.

www.it-ebooks.info

http://www.it-ebooks.info/

202

| LESSON 13 UNDERSTANDING SCOPE

To save a value between method calls, you can change the variable into a field declared outside of
any method. The following version of the preceding code displays the values 1, 2, 3, and so on when
the user clicks the button multiple times:

// A field.
int count = 0;

private void clickMeButton Click(object sender, EventArgs e)

{

count++;
MessageBox. Show (count . ToString()) ;

}

Note that a parameter declared in a method’s declaration counts as having method scope. For
example, the preceding event handler has two parameters named sender and e. That means you
cannot declare new variables within the method with those names.

Block Scope

A method can also contain nested blocks of code that define other variables that have scope limited
to the nested code. This kind of variable cannot have the same name as a variable declared at a
higher level of nesting within the same method.

Later lessons explain some kinds of nesting used to make decisions (Lesson 18), loops (Lesson 19),
and error handlers (Lesson 21).

One type of nested block simply uses braces to enclose code. The scope of a variable declared within
this kind of block includes only the block, and the variable is usable only later in the block.

For example, consider the following code:

private void clickMeTooButton Click (object sender, EventArgs e)

{
// A method variable.
int count = 1;
MessageBox.Show (count . ToString ()) ;

// A nested block of code.

{
int i = 2;
MessageBox.Show (i.ToString()) ;

}

// A second nested block of code.

{
int i = 3;
MessageBox.Show (i.ToString()) ;

}

This method declares the variable count at the method level and displays its value.

The code then makes a block of code surrounded by braces. It declares the variable 1 and displays
its value. Note that the code could not create a second variable named count inside this block
because the higher-level method code contains a variable with that name.

www.it-ebooks.info

http://www.it-ebooks.info/

Accessibility | 203

After the first block ends, the code creates a second block. It makes a new variable i within that
block and displays its value. Because the two inner blocks are not nested (neither contains the other),
it’s okay for both blocks to define variables named 1.

ACCESSIBILITY

A field’s scope determines what parts of the code can see the variable. So far I’ve focused on the fact
that all of the code in a class can see a field declared at the class level, outside of any methods. In
fact, a field may also be visible to code running in other classes depending on its accessibility.

A field’s accessibility determines which code is allowed to access the field. For example, a class
might contain a public field that is visible to the code in any other class. It may also define a private
field that is visible only to code within the class that defines it.

Accessibility is not the same as scope, but the two work closely together to determine what code can

access a field.

Table 13-1 summarizes the field accessibility values. Later when you learn how to build properties and
methods, you’ll be able to use the same accessibility values to determine what code can access them.

TABLE 13-1
ACCESSIBILITY VALUE
public
private

protected

internal

protected internal

MEANING
Any code can see the variable.
Only code in the same class can see the variable.

Only code in the same class or a derived class can see the variable.
For example, if the Manager class is derived from the pPerson class, a
Manager object can see a Person object’s protected variables. (You
learn more about deriving one class from another in Lesson 23.)

Only code in the same assembly can see the variable. For example, if
the variable's class is contained in a library (which is its own assembly),
a main program that uses the library cannot see the variable.

The variable is visible to any code in the same assembly or any derived
class in another assembly.

If you omit the accessibility value for a field, it defaults to private. You can still include the
private keyword, however, to make the field’s accessibility obvious.

NOTE You may remember from earlier lessons that you needed to set a control’s
Modifiers property to public to allow a program’s main form to get and set the
values of that control’s properties. For example, suppose you build a custom
dialog with a TextBox where the user can enter a name. Now you know why
you need to set the TextBox’s Modifiers property to public. If you don’t, the
main form can’t see the TextBox’s Text property.

www.it-ebooks.info

http://www.it-ebooks.info/

204 | LESSON 13 UNDERSTANDING SCOPE

There’s one aspect of private accessibility that sometimes confuses people. A private field is
visible to any code in any instance of the same class, not just to the same instance of the class.

For example, suppose you build a Person class with a private field named salary. Not only can all
of the code in an instance see its own Salary value, but any Person object can see any other Person
object’s salary value.

NOTE Note that public fields are considered to be bad programming style. It’s
better to make a public property instead. Lesson 23 explains why and tells how
to make properties. Public fields do work, however, and are good enough for this
discussion on accessibility.

RESTRICTING SCOPE AND ACCESSIBILITY

It’s a good programming practice to restrict scope and accessibility as much as possible to limit

the code that can access it. For example, if a piece of code has no business using a particular field,
there’s no reason to give it the opportunity. This not only reduces the chances that you will use the
variable incorrectly but also removes the variable from IntelliSense so it’s not there to clutter up your
choices and confuse things.

If you can use a variable declared locally inside an event handler or other method, do so. In fact, if
you can declare a variable within a block of code inside a method, such as in a loop, do so. That gives
the variable very limited scope so it won’t get in the way when you’re working with unrelated code.

If you need multiple methods to share the same value or you need to keep track of a value between
method calls, store the value in a private field. Only make a variable public if code in another form
(or other class) needs to use it.

TRY IT

In this Try It, you build the program shown in Figure 13-1. You use fields to allow two forms to
communicate and to perform simple calculations. You also get to try out a new control: ListView.

ol Try It 13 =|o] x
ttem Price Each Quantity Total Price |
Notebook $1.95 2 $3.90
Penci s0.10 12 $1.20 New ltem
FYl Rubber Stamp 5250 1 5250
ftem ‘ Paper (ream)
Fres
umrty
]
Grand Total S7.60)
FIGURE 13-1

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 205

Lesson Requirements
In this lesson, you:
> Create the NewItemForm shown on the right in Figure 13-1.
> Provide public fields to let the main form get the data entered by the user.

> When the user clicks the OK button, copy the item name, price each, and quantity
values into the public fields.

Create the main form shown on the left in Figure 13-1.

When the user clicks the main form’s Add Item button, make the program display the
NewItemForm. If the user enters data and clicks the OK button, display the entered values in
the main form’s Listview control and update the grand total.

NOTE You can download the code and resources for this lesson from the web-
site at www .wrox.com/go/csharp24hourtrainer2e.

Hints

> Remember to set the NewItemForm’s AcceptButton, CancelButton, FormBorderStyle, and
ControlBox properties appropriately.

> Because the main form’s grand total must retain its value as the user adds items, it must be

a field.

> To allow the main form to see the values entered by the user on the NewItemForm, use

public fields.

Step-by-Step
> Create the NewItemForm shown on the right in Figure 13-1.
1. Arrange the controls as shown in Figure 13-1.

2. Set the form’s AcceptButton property to the OK button and its CancelButton
property to the Cancel button. The OK button will always close the form so set its
DialogResult property to OK.

3. Set the form’s FormBorderStyle property to FixedDialog. Set its ControlBox prop-
erty to False.

> Provide public fields to let the main form get the data entered by the user.

a. Declare public fields for the program to use in its calculations. Use code similar to
the following placed outside of any methods:

// Public fields. (They should really be properties.)
public string ItemName;
public decimal PriceEach, Quantity;

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

206 | LESSON 13 UNDERSTANDING SCOPE

> When the user clicks the OK button, copy the item name, price each, and quantity
values into the public fields.

a. Copy the values entered by the user into the fields you created in the preceding
step.

> Create the main form shown on the left in Figure 13-1.

1. Create the ListView, Button, Label, and TextBox. Set their Anchor properties and
make the TextBox read-only.

2. To make the ListView display its items in a list as shown:
a. Setits View property to Details.

b. Select its columns property and click the ellipsis to the right to open the
ColumnHeader Collection Editor shown in Figure 13-2. Click the Add button
four times to make the four columns. Use the property editor on the right to set
each column’s Name and Text properties and to set TextAlign to Right for the
numeric columns.

ColumnHeader Collection Editor _

Members: colPriceEach properties:

0 -
4 Behavior
-
Displaylndex 1

4 Data

I (ApplicationSetting
Tag

4 Design
(Mame) colPriceEach
GenerateMember True
Modifiers Private

4 Misc
Imagelndex l:l (none)
ImageKey l:l (none)
Text Price Each —

Add || erase TextAlign Right

0] colltem

|>

2| colQuantity
3| colTotalPrice

| 0K | | Cancel

FIGURE 13-2

> When the user clicks the main form’s Add Item button, make the program display a
NewItemForm. If the user enters data and clicks OK, display the entered values in the main
form’s Listview control and update the grand total.

1. The button’s click event handler should use code similar to the following:

// A private field to keep track of grand total
// across multiple calls to the event handler.
private decimal GrandTotal = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Try lt | 207

// Let the user add a new item to the list.
private void addItemButton Click(object sender, EventArgs e)
{
NewItemForm frm = new NewItemForm() ;
if (frm.ShowDialog() == DialogResult.OK)
{
// Get the new values.
decimal priceEach = frm.PriceEach;
decimal quantity = frm.Quantity;
decimal totalPrice = priceEach * quantity;

// Add the values to the ListView.

ListViewItem 1lvi = itemsListView.Items.Add(frm.ItemName) ;
1vi.SubItems.Add (priceEach.ToString("C")) ;
lvi.SubItems.Add (quantity.ToString()) ;

lvi.SubItems.Add (totalPrice.ToString("C")) ;

// Add to the grand total and display the new result.
GrandTotal += totalPrice;
grandTotalTextBox.Text = GrandTotal.ToString("C");

NOTE If one form’s code tries to directly access a field in another form and do
something with the value in the same statement, you may get a design time error.
For example, suppose the Try It’s main form uses the following code:

MessageBox.Show (frm.Quantity.ToString()) ;

Here frm is the variable referring to an instance of the NewItemForm dialog and
Quantity is a field in the dialog. In that case Visual Studio issues the following
warning at design time:

Accessing a member on ‘NewltemForm.Quantity’ may cause
a runtime exception because it is a field of a marshal-by-
reference class

The problem here is obscure and happens only if the program is using the dialog
across process or machine boundaries, for example, if your program tries to
display a dialog defined on another programming thread.

This warning may not be as important as a low oil pressure warning in your

car, but it’s generally not good to ignore warnings. Fortunately it’s easy to make
this warning go away. Simply copy the returned result into a local variable and
then manipulate that variable instead of work with the dialog’s field directly. For
example, you could use the following code:

decimal quantity = frm.Quantity;
MessageBox.Show (quantity.ToString()) ;

www.it-ebooks.info

http://www.it-ebooks.info/

208 | LESSON 13 UNDERSTANDING SCOPE

EXERCISES

1.

2.

Copy the program you built for the Try It and modify the New Item form so its OK button is
enabled only if its three TextBoxes contain non-blank text.

[Hard] Copy the program you built for Exercise 1 and add a new Delete Item button to the
main form that deletes the currently selected item. Hints:

> Set the ListView control’s MultiSelect property to False and set its
FullRowSelect property to True.

Enable the button Only when an item is selected in the ListVview control.

The Listview control’s SelectedIndices property is a collection of the items that
are currently selected. Use the collection’s count property to determine whether any
items are selected.

> Use the following code to remove the selected item from the ListView control:

// Delete the selected item.
private void deleteItemButton Click (object sender, EventArgs e)

{

// Get the selected item.
ListViewItem item = itemsListView.SelectedItems[0];

// Get the item's Total Price.
decimal totalPrice =
decimal.Parse(item.SubItems[2] .Text, NumberStyles.Any) ;

// Subtract from the grand total and display the new result.
GrandTotal -= totalPrice;
grandTotalTextBox.Text = GrandTotal.ToString("C") ;

// Remove the item from the ListView.
itemsListView.Items.Remove (item) ;

}

If you typed the code shown for Exercise 2 correctly, then your program contains a bug.
(To see it, add an item and then delete it.) Use the debugger to fix the program.

Use a design similar to the one used in Exercise 3 to let the user fill out an appointment
calendar. The main form should contain a Listview with columns labeled Subject, Date,
Time, and Notes. The NewAppointment Form should provide TextBoxes for the user to

enter these values and should have public fields AppointmentSubject, AppointmentDate,
AppointmentTime, and AppointmentNotes to let the main form get the entered values.
Instead of a grand total, the main form should display the number of appointments. Enable
the New Appointment form’s OK button Only if the Subject, Date, and Time are non-blank.

Build a form that contains a ListBox, TextBox, and Button. When the user clicks the
Button, display a dialog that lets the user enter a number. Give the dialog a public field to
return the value to the main form.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 209

If the user enters a value and clicks OK, the main form should add the number to its ListBox.
It should then display the average of its numbers. To do that, use a private field containing the
numbers’ total. Add the new number to the total and divide by the number of values.

[WPF] Repeat Exercise 5 with a WPF program.

Copy the program you wrote for Exercise 5 and add a Delete Item Button to the main form.
Enable the button Only when an item is selected in the list. When the user clicks the button,
remove the selected item from the list and display the new average.

[WPF] Repeat Exercise 7 with the program you built for Exercise 6.

[Hard] Build the conference schedule designer shown in Figure 13-3.

o Conference Schedule = | =] 2 \

TT0-25T |G'Emhiﬂg ‘ I: Session 3:00 - 4:50

10:00 - 11:50 |\rnroduction to Algorithms ‘ |: Title Room Speaker ~
Document Design Room 136 Amy Sanford

100-250 [issues in Medical Biling | (=] | Grapnics Room 230-A/8 Shawn Lockis
Introduction to Algorithms East Ballroom Rod Stephens -

3:00-4:50 |Debugg|ng for Fun and Proft ‘ |: Issues in Medical Biling Lower Balroom (Roundtable discuss... -
Lab Demos Lab (Technician on duty)

FIGURE 13-3

Give the main form (on the left in Figure 13-3) the following features:

> Create private fields named sessionIndex1, SessionIndex2, and so forth to hold
the indexes of the user’s choices.

> When the user clicks an ellipsis button, display the session selection dialog shown on
the right in Figure 13-3.

> After creating the dialog but before displaying it, set its Text property to indicate the
session time as shown in the figure.

> Also before displaying the dialog, use code similar to the following to tell the
dialog about the user’s previous selection for this session. (The SessionIndex and
SessionTitle variables are public fields defined by the dialog and discussed shortly.)

frm.SessionIndex = SessionIndexl;
> If the user clicks OK, use code similar to the following to save the index of the user’s
choice and to display the session’s title:

// Save the new selection.
SessionIndexl = frm.SessionIndex;
choicelTextBox.Text = frm.SessionTitle;

www.it-ebooks.info

http://www.it-ebooks.info/

210 |

LESSON 13 UNDERSTANDING SCOPE

10.

Give the dialog the following features:

> Set the ListView’s FullRowSelect property to True and set its MultiSelect
property to False.

> Use the Properties window to define the Listview’s column headers. Select the
ListView, click its columns property, click the ellipsis to the right, and use the editor
to define the headers.

> Use the Properties window’s editors to define the ListVview’s items. Select the
ListView, click its Ttems property, click the ellipsis to the right, and use the
editor to define the items. Set the Text property to determine an item’s text. Click
the subItems property and then click the ellipsis to the right to define the sub-items
(Room and Speaker).

> Use the following code to create public fields to communicate with the main form:

// Public fields to communicate with the main form.
public int SessionIndex;
public string SessionTitle;

> Create a Load event handler that uses the following code to initialize the dialog. This
code selects the proper session in the Listview control and then makes the control
scroll if necessary so that session is visible:

// Initialize the selection.
private void PickSessionForm Load(object sender, EventArgs e)

{

sessionsListView.SelectedIndices.Add (SessionIndex) ;

// Ensure that the selection is visible.
sessionsListView.SelectedItems [0] .EnsureVisible () ;

}

> In the OK button’s click event handler, use the following code to save the selected
item’s index and title for the main form to use:

// Save the user's selection.
private void okButton Click (object sender, EventArgs e)

{

SessionIndex = sessionsListView.SelectedIndices[0];
SessionTitle = sessionsListView.SelectedItems[0].Text;

}

[WPF, Hard] Repeat Exercise 9 with a WPF application. It’s harder to use a ListVview in
WPF than it is in Windows Forms, so for this exercise use a ListBox instead.

NOTE Please select the videos for Lesson 13 online at www.wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

14

Working with Strings

Previous lessons provided a sneak peek at some of the things that a C# program can do with
strings. Lesson 11 explained how you can use a data type’s Parse method to convert a string
into a number and how to use the + operator to concatenate two strings. Several lessons show
how to use the Tostring method to convert numeric values into strings that you can then
display to the user.

In this lesson, you learn a lot more about strings. You learn about string class methods that
let you search strings, replace parts of strings, and extract pieces of strings. You also learn new
ways to format numeric and other kinds of data to produce strings.

STRING METHODS

The string class provides a lot of useful methods for manipulating strings. For example, the
EndsWith method returns true if a string ends with a particular substring. The following
code determines whether a string ends with the substring dog:

string str = "The quick brown fox jumps over the lazy dog";
MessageBox.Show ("Ends with \"dog.\": " + str.EndsWith("dog")) ;

Table 14-1 summarizes the string class’s most useful methods.

www.it-ebooks.info

http://www.it-ebooks.info/

212

LESSON 14 WORKING WITH STRINGS

TABLE 14-1

METHOD
Contains
EndsWith
IndexOf

IndexOfAny

Insert

LastIndexOf

LastIndexOfAny

PadlLeft

PadRight

Remove

Replace

Split

StartsWith
Substring
ToLower
ToUpper

Trim

TrimEnd

TrimStart

PURPOSE

Returns true if the string contains a target string.

Returns true if the string ends with a target string.

Returns the index of a target character or string within the string.

Returns the index of the first occurrence of any of a set of characters in the
string.

Inserts text in the middle of the string.

Returns the index of the last occurrence of a target character or string
within the string.

Returns the index of the last occurrence of any of a set of characters in the
string.

Pads the string to a given length by adding characters on the left if
necessary.

Pads the string to a given length by adding characters on the right if
necessary.

Removes a piece of the string.

Replaces occurrences of a string or character with new values within the
string.

Splits the string apart at a delimiter (for example, commas) and returns an
array containing the pieces.

Returns true if the string starts with a target string.
Returns a substring.

Returns the string converted to lowercase.

Returns the string converted to uppercase.

Removes leading and trailing characters from the string. The version that takes
no parameters removes whitespace characters (space, tab, newline, and so on).

Removes trailing characters from the string.

Removes leading characters from the string.

NOTE Remember that string indexing starts with 0 so the first letter has
index 0, the second has index 1, and so forth.

www.it-ebooks.info

http://www.it-ebooks.info/

Format and ToString | 213

In addition to all of these methods, the string class provides a very useful Length property. As you
can probably guess, Length returns the number of characters in the string. (Previous lessons have
used Length to determine whether a string is empty.)

The string class also provides the useful static (shared) methods Format and Join. A static method
is one that is provided by the class itself rather than by an instance of the class. You invoke a static
method using the class’s name instead of a variable’s name.

The Format method formats a series of parameters according to a format string and returns a new
string. For example, the following code uses the string class’s Format method to display the values
in the variables x and y surrounded by parentheses and separated by a comma:

int x = 10, y = 20;
string txt = string.Format (" ({0}, {1})", x, v);
The following text shows the result:

(10, 20)

The next section says more about the Format method.

The Join method does the opposite of the sp1it method: it joins a series of strings, separating
them with a delimiter. Lesson 16 says more about arrays and provides some examples that use
Split and Join.

FORMAT AND TOSTRING

The string class’s Format method builds a formatted string. Its first parameter is a format string
that tells how the method should display its other parameters. The format string can contain literal
characters that are displayed as they appear. It can also contain formatting fields.

Each formatting field has the following syntax:

{index[,alignment] [:formatString] }

The curly braces are required. The square brackets indicate optional pieces.
The key pieces of the field are:

> index—The zero-based index of the Format method’s parameters that should be displayed
by this field.

> alignment—The minimum number of characters that the field should use. If this is negative,

the field is left-justified.

> formatString—The format string that indicates how the field’s value should be formatted.
The following format sections describe some of the many values that you can use here in
addition to literal characters.

For example, the following code defines a string and two decimal values. It then uses console
.WriteLine to display a string built by string.Format in the Output window:

string itemName = "Fiendishly Difficult Puzzles";
decimal quantity = 2M;

www.it-ebooks.info

http://www.it-ebooks.info/

214 | LESSON 14 WORKING WITH STRINGS

decimal price each = 9.99M;

Console.WriteLine (
string.Format ("You just bought {1} {0} at {2:C} each.",
itemName, quantity, price each));

The format string is "You just bought {1} {0} at {2:C} each."

The first field is {1}. This displays parameter number 1 (the second parameter—remember they’re
zero-based).

The second field is {0}. This displays the first parameter.

The third field is {2:c}. This displays the third parameter with the format string ¢, which formats
the value as currency.

The result is:

You just bought 2 Fiendishly Difficult Puzzles at $9.99 each.

The following code shows an example that uses field widths to make values line up in columns.
Before the code executes, assume that itemName1, quantityl, and the other variables have already
been initialized:

Console.WriteLine (

string.Format ("{0,-20}{1,5}{2,10}{3,10}",

"Item" , lth-y", llEachll, |lTotalll)
)i
Console.WriteLine (

string.Format ("{0,-20}{1,5}{2,10:C}{3,10:C}",

itemNamel, quantityl, priceEachl, quantityl * priceEachl)
)
Console.WriteLine (

string.Format ("{0,-20}{1,5}{2,10:C}{3,10:C}",

itemName2, quantity2, priceEach2, quantity2 * priceEach2)
)
Console.WriteLine (

string.Format ("{0,-20}{1,5}{2,10:C}{3,10:C}",

itemName3, quantity3, priceEach3, quantity3 * priceEach3l)
)i

Notice that the code begins with a line that defines the column headers. Its formatting string uses
the same indexes and alignment values as the other formatting strings so the headers line up with
the values below.

The following text shows the result:

Item oty Each Total
Pretzels (dozen) 4 $5.95 $23.80
Blue laser pointer 1 $149.99 $149.99
Titanium spork 2 $8.99 $17.98

NOTE Because the format string is just a string, you could define it in a con-
stant or variable and then use that variable as the first argument to the Format
method. That way you are certain that all of the Format statements use the same
string. This also makes it easier to change the format later if necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Format and ToString | 215

Every object provides a Tostring method that converts the object into a string. For simple data
types such as numbers and dates, the result is the value in an easy-to-read string.

The Tostring method for some objects can take a format parameter that tells how you want the
item formatted. For example, the following statement displays the variable cost formatted as a
currency value in the Output window:

Console.WriteLine (cost.ToString("C")) ;

The following sections describe standard and custom format strings for numbers, dates, and times.
You can use these as arguments to the Tostring method or as the formatString part of the
string.Format method’s format strings.

Standard Numeric Formats

Formatting characters tell string.Format and ToString how to format a value. For the characters
discussed in this section, you can use either an uppercase or a lowercase letter. For example, you can
use C or c for the currency format.

Table 14-2 summarizes the standard numeric formatting characters.

TABLE 14-2

CHARACTER MEANING EXAMPLE

c Currency with a currency symbol, thousands sepa- $12,345.67
rators, and a decimal point.

D Decimal. Integer types only. 12345

E Scientific notation. 1.234567E+004

F Fixed-point. 12345.670

G General. Either fixed-point or scientific notation, 12345.67
whichever is shorter.

N Similar to currency except without the currency 12,345.67
symbol.

P Percent. The number is multiplied by 100 and a 123.45 %
percent sign is added appropriately for the com-
puter’s locale. Includes thousands separators and a
decimal point.

R Round trip. The number (double or float only) is 1234.567
formatted in a way that guarantees it can be parsed
back into its original value.

X Hexadecimal. 3A7

www.it-ebooks.info

http://www.it-ebooks.info/

216 | LESSON 14 WORKING WITH STRINGS

NOTE In programming, a computer’s locale defines the computer’s couniry,
language, and formats such as how numbers and currency values should be for-
matted. For example, the value $1,234.56 in the United States would be written
as

1 234,56 € in France and as 1.234,56 € in Germany.

Locale codes consist of a language code with an optional country code. For
example, en represents English and en-GB represents English as spoken in Great
Britain. The capitalization doesn’t matter but people often write the country
code in all caps. For a list of locale codes, see msdn.microsoft.com/library/
ee825488 (v=cs.20) .aspx.

You can follow several of these characters with a precision specifier that affects how the value is
formatted. How this value works depends on the format character that it follows.

For the D and x formats, the result is padded on the left with zeros to have the length given by
the precision specifier. For example, the statement 123 .ToString ("D10") produces the result
0000000123. (Yes, C# is smart enough to let you call the Tostring method for the integer 123.)

For the ¢, E, F, N, and P formats, the precision specifier indicates the number of digits after the
decimal point. For example, the statement 1.23.ToString ("N5") produces the result 1.23000.
(Yes, C# can handle this one, too.)

NOTE In general, you should use the standard format specifiers whenever
possible so the result makes sense for the computer’s locale. For example,
suppose you use the following code to display a monetary amount:

decimal garageSaleProceeds = 1234.56m;
MessageBox.Show (string.Format ("${0:N}", garageSaleProceeds)) ;

If the user’s computer is localized for the United States, then the program
displays $1,234.56, which is correct. Unfortunately if the user’s computer is
German, the program displays $1.234,56, which isn’t right in either the United
States or Germany.

The following statement uses the standard currency formatting specifier:
MessageBox.Show (string.Format ("{0:C}", garageSaleProceeds)) ;

In the United States, the computer produces $1,234.56 as before. In Germany, it
produces 1.234,56 €, which is what the user expects.

If you use standard format specifiers as much as possible, the computer will use
its localization settings to display numbers, dates, and times in the appropriate
formats.

www.it-ebooks.info

http://www.it-ebooks.info/

Format and ToString | 217

Custom Numeric Formats

If the standard numeric formatting characters don’t do what you want, you can use a custom
numeric format. Table 14-3 summarizes the custom numeric formatting characters.

TABLE 14-3

CHARACTER

0

E+0

'ABC'

MEANING

Digit or zero. A digit is displayed here or a zero if there is no corresponding digit in
the value being formatted.

Digit or nothing. A digit is displayed here or nothing if there is no corresponding
digit in the value being formatted.

Decimal separator. The decimal separator goes here. Note that the actual separator
character may not be a period depending on the computer’s locale, although you
still use the period in the format string.

Thousands separator. The thousands separator goes here. The actual separator
character may not be a comma depending on the computer’s locale, although you
still use the comma in the format string.

Percent. The number is multiplied by 100 and the percent sign is added at this
point. For example, %0 puts the percent sign before the number and 0% puts it
after.

Scientific notation. The number of Os indicates the number of digits in the expo-
nent.

If + is included, the exponent always includes a + or - sign. If + is omitted, the expo-
nent only includes a sign if the exponent is negative. For example, the statement
1234.56.ToString ("#.##E+000") produces the result 1.23E+003.

Escape character. Whatever follows the \ is displayed without any conversion. For
example, the format 0.00\% would add a percent sign to a number without scaling
it by 100 as the format 0.00% does. Note that you must escape the escape charac-
ter itself in a normal (non-verbatim) string. For example, a format string might look
like {0:0.00\\%} in the code.

Literal string. Characters enclosed in single or double quotes are displayed without
any conversion.

Section separator. See the following text.

You can use a section separator to divide a formatting string into two or three sections. If you use
two sections, the first applies to values greater than or equal to zero, and the second section applies
to values less than zero. If you use three sections, they apply to values that are greater than, less
than, and equal to zero.

www.it-ebooks.info

http://www.it-ebooks.info/

218 | LESSON 14 WORKING WITH STRINGS

For example, Table 14-4 shows the result produced by the three-section custom formatting string

w{0:$#, ##0.00; (S#,##0.00) ;— zero —}" for different values.
TABLE 14-4
VALUE FORMATTED RESULT
12345.678 $12,345.68
-12345.678 ($12,345.68)
0.000 — Zero —

Standard Date and Time Formats
Just as numeric values have standard and custom formatting strings, so too do dates and times.

Table 14-5 summarizes the standard date and time formatting patterns. The examples are those
produced for 1:23:45.678 PM April 5, 2063 on my computer set up for US English. Your results will
depend on your computer’s locale. Note that for many of the characters in this table, the uppercase

and lowercase versions have different meanings.

TABLE 14-5

CHARACTER
d

D

Morm

Rorr

MEANING

Short date

Long date

Full date, short time

Full date, long time

General date/time, short time
General date/time, long time
Month day

Round trip

RFC1123

Sortable date/time

Short time

Long time

Universal sortable short date/time

www.it-ebooks.info

EXAMPLE

4/5/2063

Thursday, April 5, 2063
Thursday, April 5, 2063 1:23 PM
Thursday, April 5, 2063 1:23:45 PM
4/5/2063 1:23 PM

4/5/2063 1:23:45 PM

April 5
2063-04-05T13:23:45.6780000
Thu, 05 Apr 2063 13:23:45 GMT
2063-04-05T13:23:45

1:23 PM

1:23:45 PM

2063-04-05 13:23:45Z

http://www.it-ebooks.info/

Format and ToString | 219

CHARACTER MEANING EXAMPLE
8) Universal sortable full date/time Thursday, April 5, 2063 7:23:45 PM
Yory Year month April, 2063

NOTE The result given by the U format may seem a bit surprising because it
gives the time as 7:23:45 PM instead of 1:23:45 PM. The reason is the U speci-
fier automatically converts a local time into Coordinated Universal Time (UTC)
before formatting. (UTC is the time at 0° longitude. It’s basically the same as
Greenwich Mean Time or GMT.) On April 5, 2063, the time 1:23 PM in my
time zone will be 7:23 PM in Greenwich.

The DateTime class also provides several methods that return the date’s value as a string formatted
in the most common date and time formats. Table 14-6 summarizes the most useful of these
methods and shows the results on my computer set up for US English. Your results will depend on
how your computer is configured.

TABLE 14-6
METHOD FORMAT EXAMPLE
ToLongDateString Long date (D) Thursday, April 5, 2063
ToLongTimeString Long time (T) 1:23:45 PM
ToShortDateString Short date (d) 4/5/2063
ToShortTimeString Short time (t) 1:23 PM
ToString General date and time (G) 4/5/2063 1:23:45 PM

NOTE As is the case with number formats, you should use the standard
specifiers or the standard methods (such as ToLongDateString)whenever
possible so your computer can display dates and times in the formats used by the
computer’s locale.

Custom Date and Time Formats

If the standard date and time formatting characters don’t do the trick, you can use a custom
format. Table 14-7 summarizes the custom date and time formatting strings. Note that for many of
the characters in this table, the uppercase and lowercase versions have different meanings.

www.it-ebooks.info

http://www.it-ebooks.info/

220 | LESSON 14 WORKING WITH STRINGS

TABLE 14-7
CHARACTER MEANING
a Day of month between 1 and 31.
ad Day of month between 01 and 31.
ddd Abbreviated day of week (Mon, Tue, and so on).
dddd Full day of week (Monday, Tuesday, and so on).
£ Digits after the decimal for seconds. For example, ffff means use four digits.
F Similar to £ but trailing zeros are not displayed.
g Era specifier. For example, A.D.
h Hours between 1 and 12.
hh Hours between 01 and 12.
H Hours between 0 and 23.
HH Hours between 00 and 23.
m Minutes between 1 and 59.
mm Minutes between 01 and 59.
M Month between 1 and 12.
MM Month between 01 and 12.
MMM Month abbreviation (Jan, Feb, and so on).
MMMM Month name (January, February, and so on).
s Seconds between 1 and 59.
ss Seconds between 01 and 59.
t First character of AM/PM designator.
tt AM/PM designator.
y One- or two-digit year. If the year has fewer than two digits, is it not
zero padded.
vy Two-digit year, zero padded if necessary.
yYy Three-digit year, zero padded if necessary.
YYYy Four-digit year, zero padded if necessary.
YYYyy Five-digit year, zero padded if necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Format and ToString | 221

CHARACTER

4

ZZ

Z2Z22Z

'ABC'

MEANING

Signed time zone offset from UTC.

Signed time zone offset from UTC in two digits.

Signed time zone offset from UTC in hours and minutes.
Hours, minutes, and seconds separator.

Date separator.

Literal string. Characters enclosed in single or double quotes are displayed
without any conversion.

that date.

NOTE The time zone offset values depend on whether daylight savings is in
effect. For example, for Pacific Standard Time the zzz specifier returns either
—-08:00 or —07:00 depending on whether daylight savings is in effect on

NOTE The date and time formatting methods assume that a single character is a
standard format. For example, the date.ToString ("d") would give you a short
date format, not the day of the month.

When a single character specifier is inside a longer string, the formatting
methods treat it like a custom specifier. For example, date.ToString ("M/d")
gets you the month and day numbers.

If you need to use a customer specifier alone, place a % symbol in front of it. For
example, date.ToString ("$d") returns the day number by itself.

Table 14-8 shows some example formats and their results. The date used was 1:23:45.678 PM
April 5,2063 on my computer set up for US English. Your results will depend on how your com-

puter is configured.

TABLE 14-8
FORMAT
M/d/yy
d MMM yy

HH:mm 'hours'

RESULT
4/5/63

5 Apr 63
13:23 hours

continues

www.it-ebooks.info

http://www.it-ebooks.info/

222 | LESSON 14 WORKING WITH STRINGS

TABLE 14-8 (continued)

FORMAT RESULT
h:mm:ss.ff, M/d/y 1:23:45.67, 4/5/63
dddd 'at' h:mmt Thursday at 1:23P
ddd 'at' h:mmtt Thu at 1:23PM

TRY IT agl Current Date and Time ==

In this Try It, you build a program that displays the Itis 1:37PM on Thu, Apr 05, 2063
current date and time in a Label when it starts as shown in
Figure 14-1. FIGURE 14-1

Lesson Requirements
In this lesson, you:
> Start a new project and add a Label to its form.

> Give the form a Load event handler that sets the Label’s text as shown in Figure 14-1.

NOTE You can download the code and resources for this lesson from the web-
site at www .wrox. com/go/csharp24hourtrainer2e.

Hints

> The DateTime.Now property returns the current date and time.

> Either use string.Format or the value’s Tostring method to format the result.

Step-by-Step
> Start a new project and add a Label to its form.
1. Create the new project and its Label.

2. Set the Label’s AutoSize property to False and set its font size to 12. Then position
and anchor or dock it on the form.

3. Set the Label’s TextAlign property to MiddleCenter.
> Give the form a Load event handler that sets the Label’s text as shown in Figure 14-1.

1. Use code similar to the following:

// Display the current date and time.
private void Forml Load (object sender, EventArgs e)

{

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Exercises | 223

greetingLabel.Text = DateTime.Now.ToString (
"It is' h:mmtt 'on' ddd, MMM dd yyyy"):

EXERCISES

1.

Exercise 13-3 reads and displays currency values, but it displays quantities without thousands
separators. If you ordered 1,200 pencils, the program would display 1200.

Copy the corrected version of that program (or download it from the book’s website) and
modify it so quantities are displayed with thousands separators.

Make a program that displays the time every second. Hint: Use a Timer control with
Enabled set to True, and Interval set to 1000. Update a Label’s Text property in the
Timer’s Tick event.

Write a program that lets the user enter an integer value. When the user clicks the Format
button, parse the value and use a standard format specifier to redisplay it with thousands
separators but no digits after the decimal point.

Write a program that lets the user enter text in the following format:
1200/Gummy slugs/.02/24

Use string methods to split the string apart, parse the numeric values, and then display a
result similar to the following:

1,200 Gummy slugs @ $0.02 each = $24.00

Remember to allow the input to contain formatted values such as $24.00. Hint: Use
string.Split, which returns an array of values. We’ll talk more about arrays in Lesson 16.
For now, just use brackets and an index to get one of the values. For example, the following
statement saves the first field in a string:

string quantityString = text.Split('/') [0];
[Hard] Write a program that lets the user enter text in the following format:
1,200 Gummy slugs @ $0.02 each = $24.00

Use the string methods Index0f, Last IndexOf, Substring, and Trim to parse the string
into item name, quantity, price each, and total price pieces. Convert the numbers into
numeric data types and display the results in TextBoxes. Hints:

> Use Index0f to find the position of the first space (which comes after the quantity).

» Use LastIndexOf to find the delimiters “@,” “each,” and “=" in case the item’s
name contains those strings.

> Calculate the length of the pieces of text between the delimiters. For example, the
length of the name is [@ location] — [first space location] — 1.

> Use substring to get the pieces. Trim the name and parse the numeric values.

www.it-ebooks.info

http://www.it-ebooks.info/

224 |

LESSON 14 WORKING WITH STRINGS

10.

[Hard] Copy the program that you built for Exercise 1 and modify it so the main form
displays items in a ListBox instead of a ListView. Make the program use string.Format
to add items to the ListBox in a format similar to the following;:

1,200 Gummy slugs at $0.02 each = $24.00

Hint: When you remove an item from the list, you need to subtract its total cost from the
grand total. Use the item’s Tostring method to convert it into a string. Then use the meth-
ods you used for Exercise 5 to parse the string and find the item’s total cost.

Make a program that replaces all occurrences of the letter E (uppercase and lowercase) in a
string entered by the user with the character -.

Make a program that lets the user enter an input string, a string to replace, and a replace-
ment string. When the user clicks the Replace button, make the replacement and display the
result in the same TextBox as the original string so the user can make several replacements
easily. To make using the program even easier, also make the button clear the string to
replace and the replacement string and set focus to the string to replace.

Write a program that lets the user enter a string such as, “The 6th sheik’s 6th sheep’s sick.”
When the user clicks the Replace button, replace numerals with their spelled out equivalents
as in, “The sixth sheik’s sixth sheep’s sick.” Don’t worry about punctuation (like capitalizing
if the sentence begins with a numeral), numbers bigger than 9 (so “10” will become
“onezero”), or special cases (like converting 3rd into third). (Then try to say “The sixth
sheik’s sixth sheep’s sick” as quickly as you can.)

Write a program that lets the user enter a number. When the user clicks the Format button,
use a customer format specifier with three sections to format the number. If the number is
positive, display it as in +1,234.56 (two digits after the decimal point). If the number is
negative, display it as in —1,234.56 (again two digits after the decimal point). If the number is
zero, display ZERO.

NOTE Please select the videos for Lesson 14 online at www .wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

15

Working with Dates and Times

One of C#’s more confusing data types is DateTime. A DateTime represents a date, a time, or
both. For example, a DateTime variable might represent Thursday April 1, 2020 at 9:15 AM.

In this lesson, you learn how to work with dates and times. You learn how to create DateTime
variables, find the current date and time, and calculate elapsed time.

CREATING DATETIME VARIABLES

C# doesn’t have DateTime literal values so you can’t simply set a DateTime variable equal to a
value as you can with some other data types. Instead you can use the new keyword to initialize
a new DateTime variable, supplying arguments to define the date and time.

For example, the following code creates a DateTime variable named aprilFools and
initializes it to the date April 1, 2020. It then displays the date using the short date format
described in Lesson 14 and by calling the variable’s ToshortDatestring method:

DateTime aprilFools = new DateTime (2020, 4, 1);
MessageBox.Show (aprilFools.ToString ("d")) ;
MessageBox.Show (aprilFools.ToShortDateString()) ;

The preceding code uses a year, month, and day to initialize its DateTime variable, but the
DateTime type lets you use many different kinds of values. The three most useful combina-
tions of arguments specify (all as integers):

> Year, month, day
> Year, month, day, hour, minute, second

> Year, month, day, hour, minute, second, milliseconds

www.it-ebooks.info

http://www.it-ebooks.info/

226 | LESSON 15 WORKING WITH DATES AND TIMES

You can also add a kind parameter to the end of the second and third of these combinations to
indicate whether the value represents local time or UTC time. (Local and UTC times are explained
in the next section.) For example, the following code creates a DateTime representing 12 noon on
March 15, 2020 in the local time zone:

DateTime idesOfMarch =
new DateTime (2020, 3, 15, 12, 0, 0, DateTimeKind.Local) ;

LOCAL AND UTC TIME

Windows has several different notions of dates and times. Two of the most important of these are
local time and Coordinated Universal Time (UTC).

Local time is the time on your computer as it is configured for a particular locale. It’s what you and
a program’s user typically think of as time.

UTC time is basically the same as Greenwich Mean Time (GMT), the time at the Royal Academy in
Greenwich, London.

For most everyday tasks, local time is fine. If you need to compare data on computers running in
different time zones, however, UTC time can make coordination easier. For example, if you want
to know whether a customer in New York created an order before another customer created an
order in San Salvador, UTC lets you compare the times without worrying about the customers’
time zones.

A DateTime object has a Kind property that indicates whether the object represents local time,
UTC time, or an unspecified time. When you create a DateTime, you can indicate whether you are
creating a local or UTC time. If you do not specify the kind of time, C# assumes you are making
an unspecified time.

After you create a DateTime, its ToLocalTime and ToUniversalTime methods convert between
local and UTC times.

NOTE The ToLocalTime and ToUniversalTime methods don’t affect a
DateTime if it is already in the desired format. For example, if you call
ToLocalTime on a variable that already uses local time, the result is the same as
the original variable.

DATETIME PROPERTIES AND METHODS

The DateTime type provides many useful properties and methods for manipulating dates and times.
Table 15-1 summarizes some of DateTime’s most useful methods. Static methods are indicated with
an asterisk. You invoke static methods by using the type name rather than a variable name, as in
DateTime.IsLeapYear (2020).

www.it-ebooks.info

http://www.it-ebooks.info/

DateTime Properties and Methods | 227

TABLE 15-1

METHOD PURPOSE

Add Adds a TimeSpan to the DateTime. The following section
describes TimeSpan.

AddDays Adds a specified number of days to the DateTime.

AddHours Adds a specified number of hours to the DateTime.

AddMinutes Adds a specified number of minutes to the DateTime.

AddMonths Adds a specified number of months to the DateTime.

Addseconds Adds a specified number of seconds to the DateTime.

AddYears Adds a specified number of years to the DateTime.

IsDaylightSavingsTime Returns true if the date and time is within the Daylight Savings
Time period for the local time zone.

IsLeapYear® Returns true if the indicated year is a leap year.

Parse* Parses a string and returns the corresponding DateTime.

Subtract Subtracts another DateTime from this one and returns a
TimeSpan. The following section says more about TimeSpan.

ToLocalTime Converts the DateTime to a local value.

ToLongDateString Returns the DateTime in long date format.

ToLongTimeString Returns the DateTime in long time format.

ToShortDateString Returns the DateTime in short date format.

ToShortTimeString Returns the DateTime in short time format.

ToString Returns the DateTime in general format.

ToUniversalTime Converts the DateTime to a UTC value.

Table 15-2 summarizes the DateTime’s most useful properties.

TABLE 15-2
PROPERTY PURPOSE
Date Gets the DateTime's date without the time.
Day Gets the DateTime's day of the month between 1 and 31.
DayOfWeek Gets the DateTime's day of the week, as in Monday.

continues

www.it-ebooks.info

http://www.it-ebooks.info/

228

| LESSON 15 WORKING WITH DATES AND TIMES

TABLE 15-2 (continued)

PROPERTY PURPOSE

DayOfYear Gets the DateTime's day of the year between 1 and 366. (Leap years have
366 days.)

Hour Gets the DateTime's hour between 0 and 23.

Kind Returns the DateTime's kind: Local, Utc, or Unspecified.

Millisecond Gets the DateTime's time’s millisecond.

Minute Gets the DateTime's minute between 0 and 59.

Month Gets the DateTime’s month between 1 and 12.

Now* Gets the current date and time.

Second Gets the DateTime's second between 0 and 59.

TimeOfDay Gets the DateTime's time without the date.

Today* Gets the current date without a time.

UtcNow* Gets the current UTC date and time.

Year Gets the DateTime's year.

TIMESPANS

A DateTime represents a point in time (July 20, 1969 at 20:17:40). A TimeSpan represents an
elapsed period of time (1 day, 17 hours, 27 minutes, and 12 seconds).

One of the more useful ways to make a TimeSpan is to subtract one DateTime from another to find
the amount of time between them. For example, the following code calculates the time that elapsed
between the first and last manned moon landings:

DateTime firstLanding = new DateTime (1969, 7, 20, 20, 17, 40);

DateTime lastLanding = new DateTime (1972, 12, 11, 19, 54, 57);

TimeSpan elapsed = lastLanding - firstLanding;
Console.WritelLine (elapsed.ToString()) ;

The code creates DateTime values to represent the times of the two landings. It then subtracts
the last date from the first to get the elapsed time and uses the resulting TimeSpan’s ToString
method to display the duration. The following text shows the result in the format days
.hours:minutes:seconds:

1239.23:37:17

Table 15-3 summarizes the TimeSpan’s most useful properties and methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Try lt | 229

TABLE 15-3

PROPERTY MEANING

Days The number of days.

Hours The number of hours.

Milliseconds The number of milliseconds.

Minutes The number of minutes.

Seconds The number of seconds.

ToString Converts the TimeSpan into a string in the format days
.hours:minutes:seconds.fractionalSeconds.

TotalDays The entire TimeSpan represented as days. For a 36-hour duration, this
would be 1.5.

TotalHours The entire TimeSpan represented as hours. For a 45-minute duration,
this would be 0.75.

TotalMilliseconds The entire TimeSpan represented as milliseconds. For a 1-second dura-
tion, this would be 1,000.

TotalMinutes The entire TimeSpan represented as minutes. For a 1-hour duration,
this would be 60.

TotalSeconds The entire TimeSpan represented as seconds. For a 1-minute

TimeSpan, this would be 60.

Note that you can use the + and — operators to add and subtract TimeSpans, getting a new TimeSpan
as a result. This works in a fairly obvious way. For example, a 90-minute TimeSpan minus a 30-
minute TimeSpan gives a 60-minute TimeSpan.

TRY IT

In this Try It, you use DateTime and TimeSpan variables to build the stopwatch application shown
in Figure 15-1. When the user clicks the Start Button, the program starts its counter. When the user
clicks the Stop Button, the program stops the counter.

ad Stopwatch = [= -

03:14:15.92

FIGURE 15-1

www.it-ebooks.info

http://www.it-ebooks.info/

230 | LESSON 15 WORKING WITH DATES AND TIMES

Normally the TimeSpan’s Tostring method displays a value in the format d.hh:mm:ss.f££££££. In
this example, you use string.Format to display the elapsed time in the format hh:mm:ss. ££.

Lesson Requirements
In this lesson, you:

> Create the form shown in Figure 15-1. In addition to the controls that are visible, give the
form a Timer with Interval = 10. Initially disable the Stop button.

» When the user clicks the Start button, start the Timer, disable the Start button, and enable
the Stop button.

> When the user clicks the Stop button, stop the Timer, enable the Start button, and disable the
Stop button.

> When the Timer’s Tick event fires, display the elapsed time in the format hh:mm:ss. ff.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox .com/go/csharp24hourtrainer2e.

Hints

> TimeSpan doesn’t use the same formatting characters as a DateTime, so, for example, you
can’t simply use a format string such as hh:mm:ss. ££. Instead use the TimeSpan properties
to get the elapsed hours, minutes, seconds, and milliseconds and then format those values.

Step-by-Step

> Create the form shown in Figure 15-1. In addition to the controls that are visible, give the
form a Timer with Interval = 10. Initially disable the Stop button.

1. Add the Start and Stop buttons and a Labe1 to the form as shown in Figure 15-1. Set
the Stop button’s Enabled property to False.

2. Adda Timer and set its Interval property to 10 milliseconds.

» When the user clicks the Start button, start the Timer, disable the Start button, and enable
the Stop button.

1. To remember the time when the user clicked the Start button, create a DateTime field
named StartTime:
// The time when the user clicked Start.

private DateTime StartTime;

2. Add the following code to the Start button’s click event handler:

// Start the Timer.
private void startButton Click (object sender, EventArgs e)

{

StartTime = DateTime.Now;

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Exercises | 231

startButton.Enabled = false;
stopButton.Enabled = true;
updatelLabelTimer.Enabled = true;

}

> When the user clicks the Stop button, stop the Timer, enable the Start button, and disable the
Stop button.

1. Add the following code to the Stop button’s click event handler:

// Stop the Timer.
private void stopButton Click(object sender, EventArgs e)

{

startButton.Enabled = true;
stopButton.Enabled = false;
updateLabelTimer.Enabled = false;

}

> When the Timer’s Tick event fires, display the elapsed time in the format hh:mm:ss. f£.

1. Use code similar to the following. Notice that the code divides the number of
milliseconds by 10 to convert it into hundredths of seconds:

// Display the elapsed time.
private void updateLabelTimer Tick (object sender, EventArgs e)

{

// Subtract the start time from the current time
// to get elapsed time.
TimeSpan elapsed = DateTime.Now - StartTime;

// Display the result.
elapsedTimelLabel.Text = string.Format (
"{0:00}:{1:00}:{2:00}.{3:00}",

elapsed.Hours,
elapsed.Minutes,
elapsed.Seconds,
elapsed.Milliseconds / 10);

EXERCISES

1. The system.Diagnostics.Stopwatch class acts like a stopwatch. It provides methods to
start, reset, and stop timing. Copy the program you built for the Try It and modify it so it
uses the Stopwatch class instead of a DateTime. Hints:

> Use the stopwatch’s Elapsed property to see how long it’s been since the watch was
started.

Make the Start button call the watch’s start method.

Make the Stop button call the watch’s Reset method to stop timing and reset the
watch’s elapsed time to 0.

2. [Hard] Copy the program you built for Exercise 1 and add a Reset button. The Start button
should start the stopwatch, the Stop button should pause it, and the Reset button should

www.it-ebooks.info

http://www.it-ebooks.info/

232 | LESSON 15 WORKING WITH DATES AND TIMES

10.

reset the stopwatch to 0. Because the purpose of the Stop button has changed, you should
change its text to Pause. Change the name of the button and its event handler to match.
Only enable the Reset button when the stopwatch is stopped and has non-zero elapsed time.
(There’s no need to reset it if the elapsed time is already 0.)

Make a program with a Birth Date TextBox and a Calculate Button. When the user enters
a birth date and clicks the Button, calculate the person’s current age and add items to a
ListBox that display the age converted into each of days, hours, minutes, and seconds.
Format all of the values with thousands separators and two digits after the decimal place.

Copy the program you wrote for Exercise 3 and modify it to also display the user’s age in
years and months. Hint: The DateTime class doesn’t have TotalYears or TotalMonths
properties (probably because Microsoft didn’t want to figure out how to handle leap years).
Calculate the number of years by dividing the number of days by 365.2425. Calculate the
number of months by multiplying the number of years by 12.

Make a program that lets the user enter a birth date, heart rate, and respiration rate. When
the user clicks the Calculate button, display the number of heartbeats and breaths since birth.
(Typical adult rates range from 12 to 20 breaths per minute and 60 to 100 heartbeats per
minute.) Display the results in millions as in “988 million.”

Make a program that lets you enter a birth date and then displays the date including the
weekday for that date and the next nine birthdays.

Make a program with two TextBoxes for dates and a Button. When the user clicks the
Button, the program should display the time between the dates.

Modify the program you built for Exercise 7 to use DateTimePicker controls instead of
TextBoxes. To keep things simple, just display the total number of days between the dates
using the NO format specifier. Use the controls’ value properties to get the selected dates.
(This control prevents users from entering invalid dates such as April 45.)

Write a program that takes the user’s birth date as an input and displays the user’s age in
years on the different planets in our solar system. Hint: The orbital periods for the planets in
Earth years are Mercury = 0.24, Venus = 0.62, Earth = 1.00, Mars = 1.88, Jupiter = 11.86,
Saturn = 29.46, Uranus = 84.01, Neptune = 164.8, and (if you want to consider Pluto a
planet) Pluto = 247.7.

Make a countdown timer. When the program starts, it should display a custom dialog where
the user can enter a date and time. Then the main program should display the number of
days, hours, minutes, and seconds until that time, updated every second.

NOTE Please select the videos for Lesson 15 online at www .wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

16

Using Arrays and Collections

Each of the data types described in previous lessons holds a single piece of data. A variable
might hold an integer, string, or point in time.

Sometimes it’s convenient to work with a group of related values all at once. For example,
suppose you’re the CEO of a huge company that just posted huge gains. In that case, you
might want to give each hourly employee a certificate of appreciation and give each executive
a 15 percent bonus.

In cases like this, it would be handy to be able to store all of the hourly employees’ data in one
variable so you could easily work with it. Similarly you might like to store the executives’ data
in a second variable so it’s easy to manage.

In this lesson, you learn how to make variables that can hold more than one piece of data.
You learn how to make arrays and different kinds of collections such as a List, Dictionary,
Stack, and Queue.

This lesson explains how to build these objects and add and remove items from them.
Lesson 19 explains how to get the full benefit of them by looping through them to perform
some action on each of the items they contain.

ARRAYS

An array is a group of values that all have the same data type and that all share the same
name. To pick a particular item in the array, the program uses an index, which is an integer
greater than or equal to 0.

An array is similar to the mailboxes in an apartment building. The building has a single bank
of mailboxes that all have the same street address (the array’s name). You use the apartment
numbers to pick a particular cubbyhole in the bank of mailboxes.

Figure 16-1 shows an array graphically. This array is named values. It contains eight entries
with indexes 0 through 7.

www.it-ebooks.info

http://www.it-ebooks.info/

234 | LESSON 16 USING ARRAYS AND COLLECTIONS

Indexes

o)
N

values:

FIGURE 16-1

NOTE An array’s smallest and largest indexes are called its lower bound and
upper bound, respectively. In C#, the lower bound is always 0, and the upper
bound is always one less than the length of the array.

Creating Arrays

The following code shows how you can declare an array of integers. The square brackets indicate an
array so the first part of the statement int [] means the variable’s data type is an array of integers:

int [] values;

After you declare an array variable, you can assign it to a new uninitialized array. The following
code initializes the variable values to a new integer array that can hold eight elements:

values = new int[8];
Remember that an array’s lower bound is always 0 in C# so this array has indexes 0 through 7.

As is the case with other variables, you can declare and initialize an array in a single step. The
following code declares and creates the values array in a single statement:

int [] values = new int[8];

After you have created an array, you can access its members by using the array’s name followed by
an index inside square brackets. For example, the following code initializes the values array by
setting the Nth entry equal to N:

1}
<N oUW N o

E I I I T

<N oUW N o

NOTE Most programmers pronounce values [5] as “values of 5,” “values sub
5,7 or “the 5th element of values.”

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays | 235

After you have placed values in an array, you can read the values using the same square bracket
syntax. The following code displays a message box that uses one of the array’s values:

MessageBox.Show ("7 * 7 is " + values[7].ToString());

To make initializing arrays easier, C# provides an abbreviated syntax that lets you declare an array
and set its values all in one statement. Simply set the variable equal to the values you want separated
by commas and surrounded by braces as shown in the following code:

int[] values = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 };
When you use this syntax, C# uses the number of values you supply to define the array’s size. In the

preceding code, C# would give the values array 10 entries because that’s how many values the code
supplies.

A Fibonacci Example

Here’s a slightly more interesting example that uses an array. The Fibonacci sequence is defined by
the following three rules:

Fibonacci[0] = 0
Fibonacci[l] = 1
Fibonacci[n] = Fibonacci[n - 1] + Fibonacci[n - 2]

NOTE The Fibonacci sequence, which was described by the Italian mathemati-
cian Fibonacci, is the infinite sequence the numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, ...
Each value in the sequence after the first two is the sum of the two previous val-
ues. For example, 3 + 5 = 8.

The Fibonacci sequence pops up in several strange and interesting mathematical
and natural systems. For example, they appear in flower petal arrangements and
the number of seeds in a sunflower. You can even use them to convert between
miles and kilometers (although that’s basically a coincidence). For more informa-
tion, see www.mathsisfun.com/numbers/fibonacci-sequence.html, math
.stackexchange.com/questions/381/applications-of-the-fibonacci-
sequence or mathworld.wolfram.com/FibonacciNumber.html.

o Fibonac | =10 [
The Fibonacci program shown in Figure 16-2 (and available as part et [KEAE
of this lesson’s code download) uses an array to display Fibonacci
- ~
numbers. Use the NumericUpDown control to select a number and click
Calculate to see the corresponding Fibonacci number. | =

When the user clicks Calculate, the program executes the following code:
FIGURE 16-2

// Calculate and display the desired Fibonacci number.
private void calculateButton Click(object sender, EventArgs e)
{

int [] values = new int[21];

values[0] = 0;

values[1l] = 1;

www.it-ebooks.info

http://www.mathsisfun.com/numbers/fibonacci-sequence.html
http://www.it-ebooks.info/

236 | LESSON 16 USING ARRAYS AND COLLECTIONS

values[2] = values[0] + values[1];
values[3] = values[1l] + values[2];
values[4] = values[2] + values[3];

values [20] = values[18] + values[19];

int index = (int)numberNumericUpDown.Value;

resultsTextBox.Text = values[index] .ToString() ;

}

The code starts by initializing the values array to hold the first 21 Fibonacci numbers.

After initializing the array, the program gets the value selected by the NumericUpDown control and
converts it from a decimal to an int. It then uses that value as an index into the values array and
displays the result in resultTextBox.

Multi-Dimensional Arrays

The arrays described in the previous section hold a single row of items, but C# also lets you define
multi-dimensional arrays. You can think of these as higher-dimensional sequences of apartment
mailboxes.

Figure 16-3 shows a graphic representation of a two-dimensional array with four rows and eight
columns.

Columns

o)
~J

Rows <

3
-
FIGURE 16-3

The following code shows how you could declare, allocate, and initialize this array to hold a multi-
plication table with values up to 4 times 7:

int[,] values = new int[5, 7];
values[0, 0] = 0 * O;
values [0, 1] = 0 * 1;

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays | 237

values [0, 2]

Il

o
*

[\S)

values[1l, 1] = 1 * 1;
values[1l, 2] = 1 * 2;

values[4, 7]

1}
IS

*
oy

The following code shows the C# syntax for quickly defining and initializing a two-dimensional array:

int[,] cell =
{
{o, 1, 2},
{3, 4, 5},
{6, 7., 8},

This syntax basically assigns the array variable equal to an array containing one-dimensional arrays
of values.

NOTE Notice that the definition of the array’s final row of data ends with a
comma. You don’t need this comma because nothing follows this last row,
but C# allows you to include it to give the rows a more uniform format. The
commas after the other rows are required because more rows follow them.

You can use similar syntax to make and initialize higher-dimensional arrays, although they’re harder
to visualize graphically. For example, the following code makes a four-dimensional array of strings:

string[, , ,] employeeData = new string[10, 20, 30, 40];

Array Properties and Methods

All arrays have a Length property that your code can use to determine the number of items in the
array. Arrays all have lower bound 0, so for one-dimensional arrays, Length - 1 gives an array’s
upper bound.

Arrays also have GetLowerBound and GetUpperBound methods that return the lower and upper
bounds for a particular dimension in an array.

For example, the following code creates a 5-by-10 two-dimensional array. It then displays the lower
and upper bounds for the first dimension. (Like an array’s indexes, the dimension numbers start at 0.)

int[,] x = new int[5, 10];
MessageBox.Show ("The first dimension runs from " +
x.GetLowerBound (0) + " to " + x.GetUpperBound(0)) ;

The array class also provides several useful static methods that you can use to manipulate arrays.
For example, the following code sorts the array named salaries:

Array.Sort (salaries) ;

www.it-ebooks.info

http://www.it-ebooks.info/

238

LESSON 16 USING ARRAYS AND COLLECTIONS

NOTE To sort an array, the array must contain things that can be compared in a
meaningful way. For example, int and string data have a natural order, so it’s
easy to say that the string “Jackson” should come before the string “Utah.”

If an array holds Employee objects, however, it’s unclear how you would want
to compare two items. In fact, it’s likely that you couldn’t define an order that
would always work because sometimes you might want to sort employees by
name and other times you might want to sort them by employee ID or salary.

You can solve this problem in a couple of ways including the 1Comparer inter-
face (mentioned briefly in Lesson 27’s Exercise 2) and making the Employee
class implement IComparable (mentioned in Lesson 28). These are slightly more
advanced topics, so they aren’t covered in great depth here.

The sort method has many overloaded versions that perform different kinds of sorting. For example,
instead of passing it a single array you can pass it an array of keys and an array of items. In that case
the method sorts the keys, moving the items so they remain matched up with their corresponding keys.

The Table 16-1 summarizes the most useful methods provided by the array class.

TABLE 16-1
METHOD PURPOSE
BinarySearch Uses binary search to find an item in a sorted array.
Clear Resets a range of items in the array to the default value for the array’s data
type (0, false, or null).
Copy Copies a range of items from one array to another.
IndexOf Returns the index of the first occurrence of a particular item in the array.
LastIndexOf Returns the index of the last occurrence of a particular item in the array.
Resize Resizes the array, preserving any items that fit in the new size.
Reverse Reverses the order of the items in the array.
Sort Sorts the array’s items.

COLLECTION CLASSES

An array holds a group of items and lets you refer to them by index. The .NET Framework used by
C# also provides an assortment of collection classes that you can use to store and manipulate items
in other ways. For example, a Dictionary stores items with keys and lets you very quickly locate an

item from its key.

www.it-ebooks.info

http://www.it-ebooks.info/

Collection Classes | 239

For example, you could use a Dictionary to make an employee phone book. It could store phone
numbers using names as the keys. Then given someone’s name, you could use the dictionary to very
quickly look up that person’s phone number.

Generic Classes

The following sections describe some particular kinds of classes that come pre-built by the NET
Framework. These are generic classes, so before you learn about them you should know a little
about what a generic class is.

A generic class is one that is not tied to a particular data type. For example, suppose you build
a StringList class that can store a list of strings. Now suppose you decide you wanted an
IntegerList class to store lists of integers. The two classes would be practically identical; they
would just work with different data types.

I’ve mentioned several times that duplicated code is a bad thing. Having two nearly identical classes
means debugging and maintaining two different sets of code that are practically the same.

One solution to this situation is to make a more general AnythingList class that uses the general
object data type to store items. An object can hold any kind of data, so this class could hold lists
of integers, strings, or Customer objects. Unfortunately that has two big problems.

First, you would need to do a lot of work converting the items with the general object data type
stored in the list into the int, string, or Customer type of the items that you put in there. This is
annoying because it gives you more work to do and makes your code more complicated and harder
to read.

A bigger problem is that a list that can hold anything can hold anything. If you make a list to
hold customer data, it could still hold ints, strings, and PurchaseoOrder objects. Your code
would need to do a lot of work to prevent you from accidentally adding the wrong kind of item
to the list.

A much better approach is to use generic classes. These classes take data type parameters in their
declarations so they know what kind of data they will manipulate. That lets them automatically
store and retrieve items using the correct data type. It also lets them perform type checking so you
can’t accidentally add a Bicycle object to a list of Employees.

Using this kind of class, you can build a list of integers, strings, or what have you.

List is one of the generic collection classes defined by the .NET Framework. The following code
declares and initializes a List:

List<string> names = new List<string>();

The <strings part of the declaration indicates that the class will work with strings. You can put
strings into the list and take strings out of it. You cannot add an integer to the list, just as you can’t
set a string variable equal to an integer. Visual Studio knows that the list works with strings and
won’t let you use anything else.

Note that IntelliSense knows about generic classes and provides help. If you begin a declaration with
List, IntelliSense displays List<> to let you know that it is a generic class.

www.it-ebooks.info

http://www.it-ebooks.info/

240

| LESSON 16 USING ARRAYS AND COLLECTIONS

Now if you type the opening pointy bracket, IntelliSense displays a list of the class’s type parameters
and even describes them as you type. (The List class has only one type parameter but some, such

as Dictionary, have more.) After you finish the declaration, the class knows what data types it will
manipulate, and it can behave as if it were designed with that data type in mind.

Now, with some understanding of generic classes, you’re ready to look at some generic collection
classes.

Lists

A List is a simple ordered list of items. You can declare and initialize a List as in the following code:

List<string> names = new List<string>();

The vist class provides several methods for manipulating the items it contains. The three most
important are Add, Remove, and RemoveAt:

> The add method adds a new item to the end of the list, automatically resizing the List if neces-
sary. This is easier than adding an item to an array, which requires you to resize the array first.

> The Remove method removes a particular item from the list. Note that you pass the target
item to Remove, not the index of the item that you want to remove. If you know that the
string zaphod is in the list names, the following code removes the first instance of that name
from the list:

names.Remove ("Zaphod") ;

NOTE The Remove method removes only the first occurrence of an item from
the List.

> The Removeat method removes an item from a particular position in the list. It then com-
pacts the list to remove the hole where the item was. This is much easier than removing an
item from an array, which requires you to shuffle items from one part of the array to another
and then resize the array to reduce its size.

In addition to these methods, you can use square brackets to get and set a List’s entries much as
you can with an array. For example, the following code sets and then displays the value of the first
entry in a list:

names [0] = "Mickey";
MessageBox.Show ("The first name is " + names[0]);

Note that this works only if the index you use exists in the list. If the list holds 10 names and you try
to set the 14th, the program crashes.

SortedLists

A sortedList stores a list of key/value pairs, keeping the list sorted by the keys. The types of the
keys and values are generic parameters, so, for example, you could make a list that uses numbers
(such as employee IDs) for keys and strings (such as names) for values.

www.it-ebooks.info

http://www.it-ebooks.info/

Collection Classes | 241

Note that the list will not allow you to add two items with the same key. Multiple items can have the
same value, but if you try to add two with the same key, the program crashes.

Table 16-2 summarizes useful methods provided by the sortedrist class.

TABLE 16-2
METHOD PURPOSE
Add Adds a key and value to the list.
Clear Empties the list.
Contains Returns true if the list contains a given value.
ContainsKey Returns true if the list contains a given key.
ContainsValue Returns true if the list contains a given value.
GetKeyList Returns a list holding the keys.
GetValueList Returns a list holding the values.
Remove Removes the item with a specific key from the list.

In addition to these methods, you can use square brackets to index into the list, using the items’ keys
as indexes.

The following code demonstrates a SortedList:

SortedList<string, string> addresses =
new SortedList<string, strings();

addresses.Add ("Dan", "4 Deer Dr, Bugville VT, 01929");
addresses.Add ("Bob", "8273 Birch Blvd, Bugville VT, 01928");

addresses ["Cindy"] = "32878 Carpet Ct, Bugville VT, 01929";
addresses["Alice"] = "162 Ash Ave, Bugville VT, 01928";
addresses["Bob"] = "8273 Bash Blvd, Bugville VT, 01928";

MessageBox.Show ("Bob's address is " + addresses["Bob"]) ;
The code starts by declaring and initializing a list to use keys and values that are both strings. It
uses the Add method to add some entries and then uses square brackets to add some more.

Next the code uses the square bracket syntax to update Bob’s address. Finally the code displays
Bob’s new address.

You can’t see it from this example, but unlike the List class, SortedList actually stores its items
ordered by key. For example, you could use the cetkeyList and GetvalueList methods to get the
list’s keys and values in that order.

www.it-ebooks.info

http://www.it-ebooks.info/

242

| LESSON 16 USING ARRAYS AND COLLECTIONS

Dictionaries

The Dictionary and SortedDictionary classes provide features similar to the SortedList class,
manipulating key/value pairs. The difference is in the data structures the three classes use to store
their items.

Without getting into technical details, the results are that the three classes use different amounts
of memory and work at different speeds. In general, SortedList is the slowest but takes the least
memory. Dictionary is the fastest but takes the most memory.

For small programs, the difference is insignificant. For big programs that work with thousands of
entries, you might need to be more careful about picking a class. (Personally I like Dictionary for
most purposes because speed is nice, memory is relatively cheap, and the name is suggestive of the
way you use the class: to look up something by key.)

Queues

A gueue is a collection that lets you add items at one end and remove them from the other. It’s like
the line at a bank where you stand at the back of the line and the teller helps the person at the front
of the line until eventually it’s your turn.

NOTE Because a queue retrieves items in first-in-first-out order, queues are
sometimes called FIFO lists or FIFOs. (“FIFO” is pronounced fife-o.)

Table 16-3 summarizes the Queue’s most important methods.

TABLE 16-3
METHOD PURPOSE
Clear Removes all items from the Queue.
Dequeue Returns the item at the front of the Queue and removes it.
Enqueue Adds an item to the back of the Queue.
Peek Returns the item at the front of the Queue without removing it.
Stacks

A stack is a collection that lets you add items at one end and remove them from the same end. It’s
like a stack of books on the floor: you can add a book to the top of the stack and remove a book
from the top, but you can’t pull one out of the middle or bottom without risking a collapse.

www.it-ebooks.info

http://www.it-ebooks.info/

Try lt | 243

The top

NOTE Because a stack retrieves items in last-in-first-out order, stacks are some-
times called LIFO lists or LIFOs. (“LIFO” is pronounced life-o.)

called its tail.

of a stack is also sometimes called its head. The bottom is sometimes

Table 16-4 summarizes the Stack’s most important methods.

TABLE 16-4
METHOD
Clear
Peek
Pop

Push

TRY IT

PURPOSE

Removes all items from the stack.

Returns the item at the top of the stack without removing it.
Returns the item at the top of the stack and removes it.

Adds an item to the top of the stack.

In this Try It, you use a Dictionary to build the order lookup program shown in Figure 16-4.
When the user clicks the Add button, the program adds a new item with the given order ID and
items. If the user enters an order ID and clicks Find, the program retrieves the corresponding items.
If the user enters an order ID and some items and then clicks Update, the program updates the

order’s items.

gl

Order List

Order ID: 363641

ttems: 5 light cycle
BARC speeder
EPM3

FIGURE 16-4

Lesson Requirements

In this lesson, you:

> Create the form shown in Figure 16-4.

> Add code that creates a Dictionary field named orders. Set its generic type parameters to
int (for order ID) and string (for items).

www.it-ebooks.info

http://www.it-ebooks.info/

244 | LESSON 16 USING ARRAYS AND COLLECTIONS

Add code to the Add button that creates the new entry in the dictionary.
Add code to the Find button that retrieves the appropriate entry from the dictionary.

> Add code to the Update button to update the indicated entry.

WARNING This program will be fairly fragile and will crash if you don’t enter
an order ID, enter an ID that is not an integer, try to enter the same ID twice,
try to find a nonexistent 1D, and so on. Don’t worry about these problems. You
learn how to handle them later, notably in Lessons 18 and 21.

NOTE You can download the code and resources for this lesson from the web-
site at www .wrox.com/go/csharp24hourtrainer2e.

Step-by-Step
» Create the form shown in Figure 16-4.

1. This is relatively straightforward. The only tricks are to set the Ttems TextBox’s
MultiLine and AcceptsReturn properties to true.

> Add code that creates a Dictionary named Orders. Set its generic type parameters to int
(for order ID) and string (for items).
1. Use code similar to the following to make the orders field:
// The dictionary to hold orders.
private Dictionary<int, string> Orders =
new Dictionary<int, string>();
>»

Add code to the Add button that creates the new entry in the dictionary.

1. This code should call the Dictionary’s Add method passing it the order ID and items
entered by the user. The Dictionary’s order ID must be an integer so use int.Parse
to convert the value entered by the user into an int.

Optionally you can add code to clear the TextBoxes to get ready for the next entry.
The code could be similar to the following:

// Add an order.
private void addButton Click(object sender, EventArgs e)

{

// Add the order data.
Orders.Add (int.Parse (orderIdTextBox.Text), itemsTextBox.Text) ;

// Get ready for the next one.
orderIdTextBox.Clear () ;

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Exercises | 245

itemsTextBox.Clear() ;
orderIdTextBox.Focus () ;

}
> Add code to the Find button that retrieves the appropriate entry from the dictionary.

1. Use code similar to the following:

// Look up an order.
private void findButton Click (object sender, EventArgs e)

{
}

> Add code to the Update button to update the indicated entry.

itemsTextBox.Text = Orders[int.Parse (orderIdTextBox.Text)];

1. Use code similar to the following:

// Update an order.
private void updateButton Click(object sender, EventArgs e)

{
}

Orders[int.Parse (orderIdTextBox.Text)] = itemsTextBox.Text;

EXERCISES

1. Make a program similar to the Fibonacci program that looks up factorials in an array. When
the program starts, make it create the array to hold the first 20 factorials. Use the following
definition for the factorial (where N! means the factorial of N):

0! =1
N! =N * (N - 1)!

Hint: For testing purposes, make sure the program can calculate 0! and 20! without
crashing.

2. Make a program that demonstrates a Stack of strings. The program should display a
TextBox and two Buttons labeled Push and Pop. When the user clicks Push, add the current
text to the stack. When the user clicks Pop, remove the next item from the stack and display
it in the TextBox.

3. Copy the program you wrote for Exercise 2 and modify it so the Pop button is disabled when
the stack is empty. Hint: Use the Stack’s Count property.

4. Copy the program you wrote for Exercise 3 and modify it so it displays the stack’s contents
in a ListBox with the most recently added item at the top of the ListBox. Hint: Use the
ListBox’s Insert and RemoveAt methods to update its contents as you add and remove
items from the Stack.

5. Make a program similar to the one you built for Exercise 4 except demonstrating a Queue
instead of a stack. Give the Buttons the captions Enqueue and Dequeue instead of Push and
Pop. Make the ListBox display the items with the most recently added item at the bottom.

www.it-ebooks.info

http://www.it-ebooks.info/

246 | LESSON 16 USING ARRAYS AND COLLECTIONS

6. Make a program similar to the one you built for this lesson’s Try It except make it store
appointment information. The Dictionary should use the DateTime type for keys and the
string type for values. Let the user pick dates from a DateTimePicker.

Hint: When the DateTimePicker first starts, it defaults to the current time, which may
include fractional seconds. After the user changes the control’s selection, however, the value
no longer includes fractional seconds. That makes it hard to search for the exact same date
and time later, at least if the user enters a value before changing the control’s initial value.

To avoid this problem, when the form loads, initialize the DateTimePicker to a value that
doesn’t include fractional seconds. Use the properties provided by DateTime.Now to create a
new DateTime and set the DateTimePicker’s Value property to that.

7. Make a day planner application. The code should make an array of 31 strings to hold each
day’s plan. Initialize the array to show fake plans such as “Day 1.”

Use a comboBox to let the user select a day of the month. When the comboBox’s value
changes, display the corresponding day’s plan in a large TextBox on the form.

Hint: Use the ComboBox’s SelectedIndex property as an index into the array. Note that this
program doesn’t let the user enter or modify the plan, it just displays hardcoded values. To
let the user modify the plan, you would need Find and Update buttons similar to those used
in other exercises.

8. [Games] Copy the program you wrote for Exercise 6-13 (or download the version available
on the book’s website) and add a two-dimensional array of characters to track the board’s
position. Initially set the entries to a space character.

To test the code, set a breakpoint at the beginning of the code that handles the File menu’s
New command. Run the program and select all of the squares. Then invoke the New menu
item and use the debugger to view the array.

Hint: Use code similar to the following to reset the array when the user starts a new game:

Board = new char/([,]

9. [Games, WPF] Repeat Exercise 7 with the program you wrote for Exercise 6-14 (or the
version downloaded from the book’s website).

10. Use a pictionary to make a simple phone book that lets the user add and look up name and
phone number pairs.

11. [Hard] Make an image lookup program similar to the one shown in Figure 16-5. When the
user clicks the PictureBox, let the user select an image file from an OpenFilebDialog. Use
code similar to the following to display the selected image:

imagePictureBox.Image = new Bitmap (imageOpenFileDialog.FileName) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 247

12.

George Waashington
John Adams

Image Lookup

FIGURE 16-5

Enable the Add Button when the TextBox and PictureBox are non-blank. When the user
clicks Add, add the pictureBox’s image to a Dictionary with the name as its key, add the
name to the ListBox, and blank the TextBox and PictureBox. (Blank the PictureBox by
setting its Image property to null.)

Finally, when the user clicks a name in the ListBox, display the corresponding name and

picture.

[Hard] Make a simple bank account register like the one shown in Figure 16-6.

The program should have these features:

» Make a Dictionary to hold account balances with
integer account numbers as keys.

| wome
> Enable the Buttons when both TextBoxes contain
-
non-blank text.
e

» When the user clicks Create, add the account num-
ber and amount to the dictionary and display the 2:5200.00
new data in the ListBox.

» When the user clicks Credit:

>

o Bank Accounts =11 -

1:$100.00
3:£150.00

Parse the account number and use the FIGURE 16-6
Dictionary to get the account’s current
balance.

Use the account number and balance to find the index of the account’s entry
in the ListBox.

Add the new amount to the account’s balance in the Dictionary.
Remove the account’s entry in the ListBox.

Insert a new entry for the account’s new balance in the ListBox at the same
position as the old entry.

www.it-ebooks.info

http://www.it-ebooks.info/

248 | LESSON 16 USING ARRAYS AND COLLECTIONS

> When the user clicks a ListBox entry, display the account number and balance in the
TextBoxes.

13. Write a program that lets the user enter text in the following format:

1,200 Gummy slugs @ $0.02 = $24.00

When the user clicks Parse, the program should use the string class’s split method to
get the item’s name, price each, and total price. It should then add the values to a ListBox.
Hint: The split method can take as a parameter an array of delimiters. (That makes pars-
ing a lot easier.)

14. [Hard] Write a palindrome checker. Whenever the user modifies the text in a TextBox, the
program should display a Label that indicates whether the text is a palindrome. Hints:

> Use two Labels, one that says “A Palindrome” and one that says “Not A
Palindrome.” Use a boolean expression to set their Visible properties appropriately.

> To see if the string is a palindrome:
> Remove commas, periods, and spaces.
> Then convert the text into lowercase. (I'll call this the processed string.)

> Use the string’s ToCharArray method to get an array containing the
string’s characters.

Use Array.Reverse to reverse the array.

Use code similar to the following to convert the reversed characters into a
string:

string reversed = new string(chars);
> Compare the processed string and the reversed string.

> Test the program on the two palindromes, “Able was I ere [saw Elba,” and “A man,
a plan, a canal, Panama.”

NOTE Please select the videos for Lesson 16 online at www.wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

17

Using Enumerations
and Structures

The data types you’ve learned about so far hold strings, integers, dates, and other predefined
kinds of information, but sometimes it would be nice to define your own data types.

An enumeration (or enumerated type) lets you define a new data type that can take only one
of an allowed list of values. For example, a menu program might define a MealType data type
that can hold the values Breakfast, Lunch, and Dinner.

The data types described in previous lessons also can hold only a single piece of data: a name,
street address, city, or whatever. Sometimes it would be nice to keep related pieces of data
together. Instead of storing a name, address, and city in separate strings, you might like to
store them as a single unit.

A structure (sometimes called a struct) lets you define a group of related pieces of data that
should be kept together.

In this lesson, you learn how to define and use enumerations and structures to make your code
easier to write, understand, and debug.

ENUMERATIONS

Defining an enumeration is easy. The following code defines a ContactMethod enumeration
that can hold the values None, Email, Phone, or SnailMail:

// Define possible contact methods.
enum ContactMethod

{

None = O,
Email,
Phone,
SnailMail,

www.it-ebooks.info

http://www.it-ebooks.info/

250 | LESSON 17 AND STRUCTURES

NOTE The final comma in this example is optional. You don’t need it because
there is no value after SnailVail, but C# allows you to use it if you want to
make the lines of code more consistent.

Internally an enumeration is stored as an integral data type, by default an int. An optional number
after a value tells C# explicitly which integer to assign to that value. In the preceding code, None is
explicitly assigned the value 0.

If you don’t specify a value for an enumeration’s item (and often you don’t care what these
values are), its value is one greater than the previous item’s value (the first item gets value 0). In
this example, None is 0, Email is 1, Phone is 2, and SnailMail is 3.

You create an instance of an enumerated type just as you make an instance of a primitive type such
as int, decimal, or string. The following code declares a variable of type ContactMethod, assigns
it the value contactMethod.Email, and then displays its value in the Output window:

ContactMethod contactMethod = ContactMethod.Email;
Console.WriteLine (contactMethod.ToString()) ;

An enumeration’s ToString method returns the value’s name, in this case “Email.”

STRUCTURES

Defining a structure is just as easy as defining an enumeration. The following code defines a simple
structure named Address that holds name and address information:

// Define a structure to hold addresses.
struct Address

{

public string Name;

public string Street;

public string City;

public string State;

public string Zip;

public string Email;

public string Phone;

public ContactMethod PreferredMethod;

Inside the braces, the structure defines the bits of data that it holds together. The public keywords
in this example mean that the fields inside the structure (Name, Street, and so on) are visible to any
code that can see an Address.

Notice that the structure can use an enumeration. In this example, the Address structure’s
PreferredMethod field has type ContactMethod.

In many ways structures behave like simple built-in types such as int and float. In particular,
when you declare a variable with a structure type, the code not only declares it but also creates it.
That means you don’t need to use the new keyword to create an instance of a structure.

www.it-ebooks.info

http://www.it-ebooks.info/

Structures Versus Classes | 251

After defining the variable, you can access its fields using syntax similar to the way you access a con-
trol’s properties. Start with the variable’s name, follow it with a dot, and then add the field’s name.

The following code creates and initializes a new Address structure named homeAddress:

Address homeAddress;

homeAddress.Name = nameTextBox.Text;
homeAddress.Street = streetTextBox.Text;
homeAddress.City = cityTextBox.Text;
homeAddress.State = stateTextBox.Text;
homeAddress.Zip = zipTextBox.Text;
homeAddress.Email = emailTextBox.Text;
homeAddress.Phone = phoneTextBox.Text;
homeAddress.PreferredMethod =
(ContactMethod) preferredMethodComboBox.SelectedIndex;

This code fills in the text fields using values entered by the user in TextBoxes.

The final field is a ContactMethod enumeration. The user selects a value for this field from the
preferredMethodComboBox. The code takes the index of the comboBox’s selected item, converts it
from an integer into a ContactMethod, and saves the result in the structure’s PreferredMethod field.

NOTE To correctly convert a ComboBox selection into an enumeration value, the
ComboBox must display the choices in the same order in which they are defined
by the enumeration. In this example, the ComboBox must contain the items None,
Email, Phone, and SnailMail in that order to match up with the enumeration’s
items.

STRUCTURES VERSUS CLASSES

In many ways structures are very similar to classes. Lesson 23 says a lot more about classes and the
sorts of things you can do with them, and many of the same techniques apply to structures.

For example, both can contain properties, methods, and events. Both can also have constructors,
special methods that are executed when you use new to create a new instance. These are described
in greater detail in Lesson 23.

While structures and classes have many things in common, they also have some significant
differences. A lot of these differences are outside the scope of this book, so I won’t cover them here,
but one very important difference that you should understand is that structures are value types
while classes are reference types.

Reference Types

A reference type doesn’t actually hold the data for a class instance. Instead it holds a reference to an
instance. The reference is like an address that points to where the data is actually stored.

www.it-ebooks.info

http://www.it-ebooks.info/

252

| LESSON 17 AND STRUCTURES

For example, the following code creates a NewUserForm and displays it:

NewUserForm userForm;
userForm = new NewUserForm() ;
userForm.ShowDialog () ;

The first statement declares a variable of type NewUserForm. Initially that variable doesn’t refer to
anything so if you tried to display the form at this point, the program would crash.

The second statement creates a new instance of the NewUserForm type and saves a reference to the
new form in the userForm variable.

Now the variable refers to an instance of the NewUserForm type, so the third statement can safely
display that form.

Value Types

In contrast to reference types, a value type actually contains its data instead of refers to it. Many of
the primitive data types such as int, double, and decimal are value types.

The following code creates and uses a variable with the Address structure type described earlier:

Address homeAddress;
homeAddress.Name = "Benjamin";

When the code executes the first statement, the program creates the Address structure so it’s all
ready to go, although its fields all contain nu11 values. The second statement can immediately set
the variable’s Name value without needing to use the new keyword to create a new instance of the
structure.

Other Differences

Another important difference between value and reference types involves the way the program
assigns values to them.

If a program sets one reference variable equal to another, then they both point to the same object.
For example, suppose ann and ben are two variables that hold references to student objects. Then
the statement ben = ann makes the variable ben refer to the same object to which ann refers.

Figure 17-1 shows this operation graphically. Initially (the picture on the left) variable ann contains
a reference to a Student object and variable ben contains the special value nul1 (represented by
the box with an X in it) that means it doesn’t refer to anything. After executing the statement

ben = ann, both variables contain references to the same student object (the picture on the right).

Before After
ann ———— | FirstName: Ann ann ——— > FirstName: Ann
LastName: Archer / LastName: Archer
ben ——— X ben

FIGURE 17-1

www.it-ebooks.info

http://www.it-ebooks.info/

Structures Versus Classes | 253

Because the two reference variables refer to the same object, if you use one variable to change the
object, the other variable also sees the change. For example, if you execute the statement ben
.FirstName = "Ben", then the value ann.FirstName will also contain the value Ben.

In contrast, if you set a variable with a value type equal to another, the first variable receives a copy
of the second variable’s value. For example, suppose cindy and dan are two variables of the struc-
ture type Person. The Person type might be very similar to the Student type, except it’s a structure
(value type) instead of a class (reference type). In that case, the statement dan = cindy makes the
variable dan hold a copy of the values in the structure cindy.

Figure 17-2 shows this operation graphically. Initially (the picture on the left) variables cindy and
dan each contain person data. This time the variables include all of the data inside the rectangles;
they’re not just references pointing to values stored someplace else. After executing the statement
dan = cindy, both variables contain separate copies of the same data.

Before After
cindy cindy
FirstName: Cindy FirstName: Cindy
LastName: Carter LastName: Carter
dan dan
FirstName: Dan FirstName: Cindy
LastName: Dent LastName: Carter
FIGURE 17-2

Because the two value variables refer to different copies of the same data, changing one doesn’t
change the other. For example, if you execute the statement dan.Name = "Dan", then the value
cindy.Name will still be cindy.

The Structure Versus Class example program, which is available in this lesson’s downloads, demon-
strates this difference. This issue is quite important, so it will be worth your time to download the
example and study it until you’re sure you understand it.

So which should you use, a structure or a class? In many programs the difference doesn’t matter
much. As long as you are aware of the relevant differences, you can often use either.

Microsoft’s “Classes and Structs (C# Programming Guide)” web page at msdn.microsoft .com/
library/ms173109.aspx gives this advice:

In general, classes are used to model more complex behavior, or data that is intended to
be modified after a class object is created. Structs are best suited for small data structures
that contain primarily data that is not intended to be modified after the struct is created.

If you follow that advice, then a more complex piece of data such as a Person or student should
probably be implemented as a class. You may need to update Person or student information over
time, so that also indicates that these should probably be classes.

In contrast, suppose you’re writing an oven control program and you want a data type to store tem-
perature data. In that case, you might store data in a Temperature structure.

www.it-ebooks.info

http://www.it-ebooks.info/

254 | LESSON 17 AND STRUCTURES

On some level, it doesn’t make sense for a particular temperature value to change, although it might
make sense for an oven’s temperature to change. For example, the oven’s temperature might start at
75° and warm up to 375°. The temperature 75° hasn’t changed; it’s the oven’s temperature that has
changed. Instead of updating the temperature variable, the program would set the variable equal to
the new temperature value.

To see the difference, think back to the student example. If Ann moves, you’ll need to change her
address (assuming the student class contains name, address, phone number, and other relevant
data). Ann herself hasn’t changed, so it doesn’t really make sense to set the ann variable equal to a
whole new student object. Instead you can just update the ann.Address value.

If you think I'm just being nit-picky and splitting hairs here, you’re right. The difference is there, but
for practical purposes it often doesn’t make a huge difference whether you use a class or a structure.
A lot of C# programmers use classes instead of structures basically all of the time. (Partly I suspect
so they don’t have to remember the differences between value and reference types.) If you’re using
classes and structures defined by Microsoft or some other programmer, then the differences matter,
but when you’re writing your own code, you can pick whichever makes the most sense to you.

WHERE TO PUT STRUCTURES

You can define structures in a couple places.

First, you can define a structure inside a class but outside of any of its methods. For example, you
can define a structure inside a form class. Then the structure is visible only inside the class that con-
tains it. If code outside of the class doesn’t need to use the structure, this restricts the structure’s vis-
ibility so it prevents possible confusion in the outside code.

Second, you can define a structure in the file that defines a class but outside of the class’s code. For
example, you can put it at the bottom of the class just before the final closing brace that ends the
namespace statement started at the top of the file. In that case, the structure is visible to all of the
code in the project (assuming you give it enough visibility, for example, public).

The second method can be a bit confusing because the same file defines a class and a structure. A
third place you can define a structure for use by the whole program is in its own module. The easiest
way to do that is to use the Project menu’s Add Class command. Give the class the name you want
to give the structure and click Add. After Visual Studio creates the class, change the c1ass keyword
to struct.

You can define enumerations in the same locations.

TRY IT

In this Try It, you use an enumeration and a structure to make the address book shown in
Figure 17-3. When the user clicks the Add button, the program saves the entered address values.
If the user enters a name and clicks Find, the program retrieves the corresponding address data.

www.it-ebooks.info

http://www.it-ebooks.info/

Try lt | 255

a? Dictionary Addresses | — |5 -
Name: [Rod Stephens |
Street: [1337 Leet &t |
City: [Programeria |
State: |CO |
ZIP: [s0s87 |
Email: [RodStephens @CShamHelper.com |
Phone: [444-555-6666 |
Prefered Contact: [Email v]

FIGURE 17-3

Lesson Requirements
In this lesson, you:
» Create the form shown in Figure 17-3.
Define the contactMethod enumeration with values None, Email, Phone, and SnailMail.
Define an Address structure to hold the entered address information.

Create a Dictionary<string, Addresss> field to hold the address data.

Y VYV YV Y

Add code to initially select the comboBox’s None entry when the form loads (just so some-
thing is selected).

Add code to the Add button that creates the new entry in the Dictionary.

\

Add code to the Find button that retrieves the appropriate entry from the Dictionary and
displays it.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox.com/go/csharp24hourtrainer2e.

Step-by-Step
> Create the form shown in Figure 17-3.

1. I’'m sure you can do this on your own by now.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

256 | LESSON 17 AND STRUCTURES

>

>

Define the contactMethod enumeration with values None, Email, Phone, and SnailMail.

1. Use code similar to the following at the form’s class level (not inside any event handler):

// Define contact methods.
private enum ContactMethod
{

None,

Email,

Phone,

SnailMail,

1
Define an Address structure to hold the entered address information.

1. Use code similar to the following at the form’s class level (not inside any event handler):

// Define the address structure.
private struct Address
{

public string Name;

public string Street;

public string City;

public string State;

public string Zip;

public string Email;

public string Phone;

public ContactMethod PreferredMethod;

}
Create a Dictionary<string, Addresss> field to hold the address data.

1. Use code similar to the following at the form’s class level (not inside any event handler):

// Make a Dictionary to hold addresses.
private Dictionary<string, Address> Addresses =
new Dictionary<string, Address>();

Add code to initially select the ComboBox’s None entry when the form loads.

1. Use code similar to the following:

// Make sure the ComboBox starts with an item selected.
private void Forml Load (object sender, EventArgs e)

{
}

Add code to the Add button that creates the new entry in the Dictionary.

preferredMethodComboBox.SelectedIndex = 0;

1. Use code similar to the following. (Using the indexed syntax instead of the
Dictionary’s Add method lets the Add button add or update a record.) Optionally you
can clear the TextBoxes to get ready for the next address.

// Add a new address.
private void addButton Click(object sender, EventArgs e)
{

// Fill in a new Address structure.

Address newAddress;

newAddress.Name = nameTextBox.Text;

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises

257

}

> Add code to the Find button that retrieves the appropriate entry from the bDictionary and

newAddress.Street = streetTextBox.Text;
newAddress.City = cityTextBox.Text;
newAddress.State = stateTextBox.Text;
newAddress.Zip = zipTextBox.Text;
newAddress.Email = emailTextBox.Text;
newAddress.Phone = phoneTextBox.Text;
newAddress.PreferredMethod =
(ContactMethod) preferredMethodComboBox.SelectedIndex;

// Add the name and address to the dictionary.
Addresses [nameTextBox.Text] = newAddress;

// Get ready for the next one.
nameTextBox.Clear () ;
streetTextBox.Clear() ;
cityTextBox.Clear () ;

stateTextBox.Clear() ;

zipTextBox.Clear () ;

emailTextBox.Clear() ;
phoneTextBox.Clear () ;
preferredMethodComboBox.SelectedIndex = 0;

nameTextBox.Focus () ;

displays it.

1. Use code similar to the following:

// Look up an address.
private void findButton Click (object sender, EventArgs e)

{

EXERCISES

// Get the Address.
Address selectedAddress = Addresses[nameTextBox.Text];

// Display the Address's values.
nameTextBox.Text = selectedAddress.Name;
streetTextBox.Text = selectedAddress.Street;
cityTextBox.Text = selectedAddress.City;
stateTextBox.Text = selectedAddress.State;
zipTextBox.Text = selectedAddress.Zip;
emailTextBox.Text = selectedAddress.Email;
phoneTextBox.Text = selectedAddress.Phone;
preferredMethodComboBox.SelectedIndex =
(int) selectedAddress.PreferredMethod;

1. Copy the program you built for this lesson’s Try It. Add a Delete button that removes an
item by calling the Dictionary’s Remove method.

2. Inaddition to simple fields, structures can contain arrays. Copy the program you built for
Exercise 1 and modify the address structure so it contains an array holding three phone

www.it-ebooks.info

http://www.it-ebooks.info/

258

LESSON 17 AND STRUCTURES

10.

numbers: home, work, and cell. (Hint: Before you can store values in the array, you need to
allocate it as in theAddress.Phones = new string[3].)

Exercise 2 uses a structure that contains an array. You can also make an array that contains
structures.

Make a program that creates an array holding five Address structures of the kind used by
the program you wrote for Exercise 2. When the program starts, initialize the array to lit-
eral values hardcoded into the program. Place the structures’ names in a ComboBox. When
the user selects an entry from the comboBox, display the corresponding data.

[Games] Make a program that defines an enumeration to represent the pieces on a chess
board. Then display each enumeration value as both a string and an int in a TextBox.

[Games] Make a program that uses the enumeration you defined for Exercise 4 to create an
array that represents a complete board position. When the program loads, initialize the array
to represent a new game.

[Games] Make a program that defines a structure to represent a chess move. (Hint: Don’t
record information that you can deduce from the current board position. For example, if a
move represents a capture, you don’t need to record that fact because you can figure it out.)

If you like, you can give multiple enumeration names the same numeric value by setting them
equal to that value. You can even use an enumeration name to calculate the value of a later
name.

Suppose you’re opening a coffee shop and you want to have the sizes Grande, Enorme, and
Demente. Because some customers will be too grouchy to use the fancy names (because they
haven’t had their coffee yet), those names should be equivalent to the more pedestrian names
Big, Huge, and Ginormous. Make a program that creates an enumeration that defines all of
those values. Then display each value as both a string and an int in a TextBox.

[Games] Suppose you’re building a steampunk Wild West fantasy role-playing game. Make a
program that defines a structure to represent weapons. It should record the weapon’s name,
range in feet, and attack value; the number of dice to roll when attacking; and the number of
sides on the dice.

[Games] To continue building your steampunk Wild West game, make a program that
defines a structure to represent a character. It should record the character’s name, profession
(which can be GunSlinger, Scientist, ConArtist, or Cyborg), primary weapon, and secondary
weapon.

[Hard] Suppose you’re writing a genealogy program. Make a program that defines a struc-
ture that can store a person’s name and that person’s parents (represented by the same
structure). When the program starts, initialize a data structure to represent the ancestor tree
shown in Figure 17-4. (Hint: Because a structure cannot contain direct instances of itself,
you’ll need to figure out a way to store the parents in a reference type.)

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 259

1.

Grandpa Art Grandma Ann Grandpa Bert Grandma Bea

e

Dad Mom

Me

FIGURE 17-4

[Hard] Make a program that defines a structure that can store a person’s name and that per-
son’s children (represented by the same structure). When the program starts, initialize a data
structure to represent the descendant tree shown in Figure 17-5.

Me
Alice Bill Carmen
Dean Erma Finnigan Gina Harry

FIGURE 17-5

NOTE Please select the videos for Lesson 17 online at www .wrox .com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION Ili
Program Statements

The lessons in Section II focused on working with variables. They explained how to declare
variables, set their values, and perform calculations.

Those techniques let you do some fairly complex things, but they’re still relatively straightfor-
ward things that you could do yourself by hand if you really had to. For example, you could
easily calculate line item totals, sales tax, shipping, and a grand total for a purchase order.

With what you know so far, you really can’t write a program that takes full advantage of the
computer’s power. You can’t make the program add up an unknown number of values stored
in a ListBox, perform the same task (such as calculating an account balance) for thousands
of customers, or take different actions depending on the user’s inputs. You can’t even write a
program that can tell if the user entered an invalid value such as “seventy-eight” in a TextBox
that should contain a number.

The lessons in this section explain how to perform these kinds of tasks. They explain ways
you can make a program take different courses of action depending on circumstances, repeat
a set of actions many times, break code into manageable pieces to make it easier to write and
debug, and handle unexpected errors. After you finish reading these lessons, you’ll bé able to
write applications that are much more powerful than those you can write now.

» LESSON 18: Making Choices

» LESSON 19: Repeating Program Steps

» LESSON 20: Reusing Code with Methods
» LESSON 21: Handling-Errors

» LESSON 22: Preventing Bugs

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

18

Making Choices

All of the code used in the lessons so far has been completely linear. The program follows a
series of steps in order with no deviation.

For example, a sales program could multiply a unit price by quantity desired, add several
items’ values, multiply to get sales tax and shipping costs, and calculate a grand total.

So far there’s been no way to perform different steps under different circumstances. For
example, the sales program couldn’t charge different prices for different quantities purchased
or waive shipping charges for orders over $100. It couldn’t even check quantities to see if they
make sense. So far a clever customer could order 1,000 items to get a huge credit!

In this lesson you learn how a program can make decisions. You learn how the program can
take different actions based on user inputs and other circumstances.

DECISION STATEMENTS

Programs often need to decide between two or more courses of action. For example:
> If it’s before 4:00 p.m., ship today. Otherwise ship tomorrow.
> If the order quantity is less than zero, make the user fix it.
> If a word processor has unsaved changes, refuse to exit.
>

Calculate shipping based on order total: $5 if total < $20, $7.50 if total < $50, $10 if
total < $75, and free if total > $75.

The basic idea is the same in all of these cases. The program examines a value and takes one
of several different actions depending on the value.

The following sections describe the different statements that C# provides for making these
kinds of decisions.

www.it-ebooks.info

http://www.it-ebooks.info/

264 | LESSON 18 MAKING CHOICES

IF STATEMENTS

The if statement examines a condition and takes action only if the condition is true. The basic syn-
tax for the if statement is:

if (condition) statement;

Here condition is some boolean expression that evaluates to either true or false, and statement is
a statement that should be executed if condition is true.

For example, suppose you’re writing an order entry program and shipping should be $5 for orders
under $100 and free for orders of at least $100. Suppose also that the program has already calcu-
lated the value total. The following code shows how the program might handle this:

decimal shipping = 5.00M; // Default shipping cost.
if (total >= 100) shipping = 0; // Shipping is free if total >= 100.

The code starts by setting the variable shipping to $5. Then if the previously calculated value
total is at least $100, the program sets shipping to $0.

If total is less than $100, the statement following the if statement is not executed and shipping
keeps its original value of $5.

If you want to execute more than one statement when condition is true, place the statements inside
braces as in the following code:

decimal shipping = 5.00M; // Default shipping cost.
if (total >= 100)

{
shipping = 0; // Shipping is free if total >= 100.
giveFreeGift = true; // Give a free gift if total >= 100.

}

You can place as many statements as you like inside the braces, and they are all executed if
condition s true.

NOTE To make the code more consistent and easier to read, some programmers
always use braces even if the program should execute only one statement. The
following code shows an example:

if (total >= 100)

{

shipping = 0;

Other programmers think that’s unnecessarily verbose. You should use the style
you find easiest to read.

www.it-ebooks.info

http://www.it-ebooks.info/

Cascading if Statements | 265

IF-ELSE STATEMENTS

The previous example set shipping to a default value and then changed it if total was at least
$100. Another way to think about this problem is to imagine taking one of two actions depending
on total’s value. If total is less than $100, the program should set shipping to $5. Otherwise the
program should set shipping to $0.

The if-else construct lets a program follow this approach, taking one of two actions depending on
some condition.

The syntax for if-else is:

if (condition)
statementsIfTrue;

else
statementsIfFalse;

If conditionis true, the first block statementsIfTrue executes. Otherwise (if condition is false)
the second block statementsIfFalse executes.

Using the else keyword, the preceding code could be rewritten like this:

decimal shipping;
if (total < 100)

shipping = 5M; // Shipping is $5 if total < 100.
else

shipping = 0M; // Shipping is free if total >= 100.

You can use braces to make either the i f or else part of the 1 f-else statement execute more than
one command.

CASCADING IF STATEMENTS

The if-else construct performs one of two actions depending on whether the condition is true or
false. Sometimes a program needs to check several conditions to decide what to do.

For example, suppose an order entry program calculates shipping charges depending on the total
purchase amount according to this schedule:

> If total < $20, shipping is $5.00.

> Otherwise, if total < $50, shipping is $7.50.
> Otherwise, if total < $73, shipping is $10.00.
>

Otherwise, shipping is free.

www.it-ebooks.info

http://www.it-ebooks.info/

266 | LESSON 18 MAKING CHOICES

You can make a program perform each of these tests one after another by making a second if state-
ment be the else part of a first i f statement. The following code shows how you can calculate ship-
ping according to the preceding schedule:

decimal shipping;

if (total < 20)

{
}

else if (total < 50)

{

shipping = 5M;

shipping = 7.5M;

}
else if (total < 75)
{

shipping = 10M;
}
else

{
}

shipping = 0M;

When the program encounters a cascading series of if statements, it executes each in turn until
it finds one with a true condition. It then skips the rest because they are all part of the current if
statement’s else block.

For example, consider the previous code and suppose total is $60. The code evaluates the first
condition and decides that (total < 20) is false, so it does not execute the first code block.

The program skips to the else statement and executes the next if test. The program decides that
(total < 50) is also not true, so it skips to this i f statement’s else block.

The program executes the third if test and finds that (total < 75) is true so it executes the state-
ment shipping = 10M.

Because the program found an if statement with a true condition, it skips the following else state-
ment, so it passes over any if statements that follow without evaluating their conditions.

NESTED IF STATEMENTS

Another common arrangement of if statements nests one within another. The inner if statement is
executed only if the first statement’s condition allows the program to reach it.

For example, suppose you charge customers 5 percent state sales tax. If a customer lives within your
county, you also charge a county transportation tax. Finally, if the customer also lives within city
limits, you charge a city sales tax. (Taxes where I live are at least this confusing.)

The following code performs these checks, where the variables incounty and incity indicate
whether the customer lives within the county and city:

if (inCounty)

{
if (inCity)

{

www.it-ebooks.info

http://www.it-ebooks.info/

switch Statements | 267

salesTaxRate 0.09M;

}

else

{

}
}
else

{
}

salesTaxRate = 0.07M;

salesTaxRate = 0.05M;

You can nest if statements as deeply as you like, although at some point the code gets hard to read.

NOTE There are always ways to rearrange code by using the s& (logical AND)
and || (logical OR) operators to remove nested if statements. For example, the
following code does the same thing as the previous version without nesting:

if (inCounty && inCity)

{

salesTaxRate = 0.09M;

}
else if (inCounty)
{
salesTaxRate = 0.07M;
}
else

{
}

salesTaxRate = 0.05M;

In fact, if you know that the city lies completely within the county, you could
rewrite the first test as i1f (inCity).

SWITCH STATEMENTS

The switch statement provides an easy-to-read equivalent to a series of cascading if statements that
compares one value to a series of other values.

The syntax of the switch statement is:

switch (testValue)
case (valuel):
statementsl;
break;

case (value2):

statements2;
break;

www.it-ebooks.info

http://www.it-ebooks.info/

268

| LESSON 18 MAKING CHOICES

default:
statementsDefault;
break;

Here testvalue is the value that you are testing. The values valuel, value2, and so on are the
values to which you are comparing testValue. The statementsi1, statements2, and so on are the
blocks of statements that you want to execute for each case. The other pieces (switch, case, break,
and default) are keywords that you must type as they appear here.

If you include the optional default section, its statements execute if no other case applies. Actually
the case statements are optional, too, although it would be strange to not use any.

Note that a case’s code block doesn’t need to include any statements other than break. You can use
that to make the code take no action when a particular case occurs.

For example, suppose you build a form where the user selects a hotel from a comboBox. The pro-
gram uses that selection to initialize an enumerated variable named hotelchoice. The following
code sets the 1odgingPrice variable depending on which hotel the user selected:

decimal lodgingPrice;

switch (hotelChoice)

{
case HotelChoice.LuxuryLodge:
lodgingPrice = 45;
break;

case HotelChoice.HamiltonArms:
lodgingPrice = 80;
break;

case HotelChoice.InvernessInn:
lodgingPrice = 165;
break;

default:
MessageBox.Show ("Please select a hotel");
lodgingPrice = 0;
break;

The case statements check for the three expected choices and sets 1odgingPrice to the appropriate
value. If the user doesn’t select any hotel, the default section’s code displays a message box and sets
lodgingPrice to O to indicate a problem.

A switch statement is most robust (less prone to bugs and crashes) if its cases can handle every pos-
sible comparison value. That makes them work very well with enumerated types because you can
list every possible value. In contrast, you can’t include a case statement for every possible integer
value (unless you include several billion lines of code), so case statements can’t check every possible
integer value.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 269

Even if the case statements check every possible value in an enumeration, it’s a good practice to include
a default section just in case another value sneaks into the code. For example, a bug in the code could
convert an integer into an enumeration value that doesn’t exist, or you could later add a new value to the
enumeration and forget to add a corresponding case statement. In those cases, the default statement can
catch the bug, take some default action, and possibly warn you that something is wrong.

When you use a switch statement with other data types, be sure to consider unexpected values, par-
ticularly if the user typed in the value. For example, don’t assume the user will always enter a valid
string. Allowing the user to select a string from a ComboBox is safer, but you should still include a
default statement.

TRY IT

In this Try It, you build the Order Form program shown in Figure 18-1. The program uses a cascad-
ing series of if statements to calculate shipping cost based on the subtotal.

. ol Order Form I;Ii-
Lesson ReqUIrements ltem Price Each Quantity Price
In this lesson, you: [starcustovD | [st9.98] | 1] [s19.9]
[Nation pook) | [ssss| | 1] [s8a9
> Build the form shown in Figure 18-1. [Teddy bear | [seas] | 1] [s
> Write the code for the Calculate button so it cal- g a | [== |S - |_3|
culates the subtotal, sales tax, shipping, and grand SUI : _
total. The sales tax should be 7 percent of the subto- S:es R
tal. Shipping should be $35 if subtotal < $20, $7.50 . '
. cuate Grand Total: -3?5.57
if subtotal < $50, $10 if subtotal < $75, and free if M
subtotal > $75 FIGURE 18-1

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox .com/go/csharp24hourtrainer2e.

Hints

> Make the sales tax rate a constant, giving it the most limited scope you can.

Step-by-Step
> Build the form shown in Figure 18-1.
1. This is relatively straightforward.

> Write the code for the Calculate button so it calculates the subtotal, sales tax, shipping, and
grand total. The sales tax should be 7 percent of the subtotal. Shipping should be $5 if subto-
tal < $20, $7.50 if subtotal < $50, $10 if subtotal < $75, and free if subtotal > $75.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

270 | LESSON 18 MAKING CHOICES

1.

subtotal.

the subtotal as in the following code:

// Calculate shipping cost.
decimal shipping;
if (subtotal < 20)

{
}

else if

{

shipping = 5;
(subtotal < 50)
shipping = 7.5m;

else if (subtotal < 75)

{
}

else

{

shipping 10;

shipping 0;

4.

5. Display the results.

EXERCISES
1.

Calculate the total costs for each of the four items. Add them together to get the

Calculate sales tax by multiplying the tax rate by the subtotal.

Use a series of cascading if-else statements to calculate the shipping cost based on

Add the subtotal, tax, and shipping cost to get the grand total.

Build the Conference Coster program shown in Figure 18-2.

adl Conference Coster - [o]
Transportation to Conference Haotel Local Transportation
Plane [$645) Carl's Campground ($60) MNone (S0}
Etiquette Inn (3325) Compact (8175)
Car (5150) Barogue Palace ($650) Mid-size SZEIDi
Manager Manor (31.375) Guzzler ($450)
Grand Total: §2.600.00
FIGURE 18-2

When the user clicks the Calculate button

, first check each ListBox’s SelectedIndex prop-

erty. If any SselectedIndex is less than zero (indicating the user didn’t make a choice), dis-

play an error message and use the return

keyword to stop calculating.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 271

If the user made a choice in all of the ListBoxes, create a variable total to hold the total
cost. Use three switch statements to add the appropriate amounts to total and display the
result. (Hint: Add a default statement to each switch statement to catch unexpected selec-
tions, even though none should occur in this program. Then add a new hotel to the ListBox
and see what happens if you select it.)

[SimpleEdit, Hard] Copy the SimpleEdit program that you built way back in Exercise 8-7 (or
download the version on the book’s website) and add code to protect the user from losing
unsaved changes.

The basic idea is to check whether the document has been modified before doing anything
that will lose the changes, such as starting a new document, opening another file, or exiting
the program.

a. In the File menu’s New, Open, and Exit commands, check the RichTextBox’s
Modified property to see if the document has unsaved changes.

b. If there are unsaved changes, ask if the user wants to save them. Display a message box
with the buttons Yes, No, and Cancel.

C. If the user clicks Yes, save the changes and continue the operation.

d. If the user clicks No, don’t save the changes (do nothing special) and let the operation
continue.

€. [If the user clicks Cancel, don’t perform the operation. For example, don’t open a
new file.

f. After starting a new document or saving an old one, set the RichTextBox control’s
Modified property to false to indicate that there are no unsaved changes at that time.

Hint: Use a local variable named shouldcontinue to decide whether the operation should
continue.

[SimpleEdit] Copy the SimpleEdit program you built for Exercise 2. That program protects
against lost changes if the user opens the File menu and selects Exit, but the user can close
the program several other ways such as pressing Alt+F4, clicking the “X” button in the pro-
gram’s title bar, and opening the system menu in the form’s upper-left corner and selecting
Close. Currently the program doesn’t protect unsaved changes for any of those.

To fix this, give the form a FormClosing event handler. When the form is about to close,
it raises this event. If you set the event’s e.Cancel parameter to true, the form cancels the
close and remains open. Add code to this event handler to protect unsaved changes.

Now that the FormClosing event handler is protecting against lost changes, you don’t need
to perform the same checks in the Exit menu item’s event handler. Make that event handler
simply call the close method and let the FormClosing event handler do the rest.

[Games, Hard] Copy the tic-tac-toe program that you built way back in Exercise 16-8 (or
download the version on the book’s website). That version of the program uses three Labels
for each square: two to let the user select the square for X or O, and one to show which
player has taken the square.

www.it-ebooks.info

http://www.it-ebooks.info/

272 | LESSON 18 MAKING CHOICES

Modify the program to make the following changes (which should make the program much
smaller):

> Remove the X and O Labels so there’s only one Label per square.

> Set each Label’s Tag property to indicate its row and column. For example, set the
Tag property for the upper-left Label to “0, 0.”

Make a class-level variable to keep track of which player’s turn it is.
> Use the same click event handler for all of the Labels.

When the user clicks a square, convert the event handler’s sender parameter into the
Label that raised the click event.

> If the square has already been taken, ignore the click.
> Otherwise, take the square for the player whose turn it is.

> Parse the clicked Label’s Tag property to see which entry in the Board array to set.
(Hint: Use ToString to convert the Tag property into a string.)

5. [Games] Copy the program you made for Exercise 4 and modify it so that when the last
square is taken, the program says “All squares are taken” in the turn Label (instead of say-
ing “O’s turn”).

6. [Games, Hard] Copy the program you made for Exercise 5 and modify it so it checks for a
winner after each square is taken. When the game ends, display the winner (or the fact that
it’s a tie) in the turn Label. After the game is over, ignore any click events until the user
starts a new game.

7. [Games, Hard] Make a program that displays a bouncing ball (shown in a PictureBox).
When the program starts, give the PictureBox a random position on the form and random
X and Y velocities. When a Timer ticks, use the velocities to calculate the PictureBox’s new
position. If the position makes the PictureBox move beyond one of the form’s edges, move
it back onto the form and reverse the corresponding velocity.

8. [Games, Hard] Copy the program you made for Exercise 7 and add a sound effect by follow-
ing these steps:

> In the Solution Explorer, double-click the Properties item. Select the References tab,
open the Add Resource dropdown, and select Add Existing File. Select the sound
effect’s source file and click Open.

> Use class-level code similar to the following to create a sound player associated with
the sound resource. (Here “boing” is the name of the resource I used.)

// The SoundPlayer.
private System.Media.SoundPlayer BoingSound =
new System.Media.SoundPlayer (Properties.Resources.boing) ;

> Use the statement BoingSound.Play () to play the sound when necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 273

9. [Games, Hard] Copy the program you made for Exercise 11-17 (or download the version on
the book’s website) and make the following changes:

> Remove the Stop button.

> When the user clicks Fire, play a sound file that sounds like a cannon firing.

> Place a new PictureBox displaying a picture of a castle or some other target on the
form.

> If the cannonball hits the target, stop moving it, play an explosion sound file, hide the
cannonball, and make the target PictureBox display an image of an explosion.

> If thf} capnonball moves off of the form, stop o Ufo | =]o]
moving it and play a failure sound effect. o 7

10. [Games, Hard] Make a UFO shooting gallery game simi- &
lar to the one shown in Figure 18-3.

> Make the image of a UFO move left-to-right [
across the top of the form. When the UFO leaves
the right side of the form, make it reappear on
the left side.

> When the user presses Space, fire the red laser 2
bolt (a PictureBox) from the laser cannon (an
image in another PictureBox). (Hint: To know FIGURE 18-3
when the user presses Space, catch the form’s
KeyDown event and see if e.KeyCode == Keys.Space.)

> Don’t allow the user to fire a bolt if one is already on the form.
Use variables ufox, Ufoy, Ufovx, and Ufovy to track the UFO’s position and veloc-
ity. Use similar variables for the laser bolt.

> When a Timer fires, update the positions of the UFO and the bolt.

> Use a variable to keep track of hit count.

>

If the bolt hits the UFO, hide the bolt, increment the hit count, and display the hit
count in the score Label at the top of the form.

If the bolt leaves the form, hide it.

Play cool sounds when the laser cannon fires and when a bolt hits the UFO.

11. [Games] The program you wrote for Exercise 10 isn’t very hard. After a minute or two, you
can easily get the timing down and hit the UFO almost every time.

Copy that program and make it more challenging by making these changes.

>

>

When you start the UFO at the left edge of the form, give it a random size, speed,
and Y coordinate.

When the user hits the UFO, award points that take into account the current size and
speed.

www.it-ebooks.info

http://www.it-ebooks.info/

274 | LESSON 18 MAKING CHOICES

12.

13.

14.

[Games, Hard] The program you wrote for Exercise 11 is still fairly easy because the user has
an unlimited amount of ammunition.

Copy the program and modify it so the user has only 10 laser bolts. Represent each with a
PictureBox visible on the form and keep track of the number of bolts remaining. When the
user fires a bolt, use a switch statement to hide the next bolt PictureBox.

When all of the bolts are used, display a label on top of the game that shows the user’s final
score and play a triumphant fanfare.

[Games] Copy the program you wrote for Exercise 12 and add a File menu with New Game
and Exit menu items.

[Games, Hard] Copy the program you wrote for Exercise 13 and add high scores to it.

> Use arrays to keep track of the five highest scores and the names of the players who
got those high scores.

> Give the File menu a new High Scores command that displays the five names and
scores in a dialog.

> When a game ends, compare the player’s score to the first item in the high scores
array. If the new score is higher:

> Display a form that lets the user enter a name.

> Replace the first array entries with the new score and name.
» Use Array.Sort to sort the arrays.
>

Display the high scores form.

NOTE Please select the videos for Lesson 18 online at www .wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

19

Repeating Program Steps

One of the computer’s greatest strengths is its ability to perform the exact same calculation
again and again without getting bored or making careless mistakes. It can calculate the aver-
age test scores for a dozen students, print a hundred advertisements, or compute the monthly
bills for a million customers with no trouble or complaining.

The lessons you’ve read so far, however, don’t tell you how to do these things. So far every step
the computer takes requires a separate line of code. To calculate bills for a million customers,
you would need to write at least a million lines of code!

In this lesson you learn how to make the computer execute the same lines of code many times.
You learn how to loop through arrays and collections of items to take action or perform calcu-
lations on them.

The following sections describe the kinds of loops provided by C#. The final section describes
two statements you can use to change the way a loop works: break and continue.

FOR LOOPS

A for loop uses a variable to control the number of times it executes a series of statements.
The for loop’s syntax is as follows:

for (initialization; doneTest; next)

{

statements. ..

> initialization gets the loop ready to start. Usually this part declares and initializes
the looping variable.

> doneTest is a boolean expression that determines when the loop stops. The loop
continues running as long as this expression is true.

www.it-ebooks.info

http://www.it-ebooks.info/

276 | LESSON 19 REPEATING PROGRAM STEPS

> next prepares the loop for its next iteration. Usually this increments the looping variable
declared in the initialization.

> statements are the statements that you want the loop to execute.

Note that none of the initialization, doneTest, or next statements are required, although they
are all used by the simplest kinds of for loops.

For example, the following code displays the numbers 0 through 9 followed by their squares in the
Console window:

for (int 1 = 0; 1 < 10; 1i++)

{
int iSquared = i * i;
Console.WriteLine (string.Format ("{0}: {1}", i, iSquared));

In this code the initialization statement declares the variable i and sets it to 0, the next state-
ment adds 1 to i, and the doneTest keeps the loop running as long as i < 10.

Here’s a slightly more complicated example that calculates factorials. The program converts the
value selected in the NumericUpDown control named numberNumericUpDown into a long integer and
saves it in variable n. It initializes the variable factorial to 1 and then uses a loop to multiply
factorial by each of the numbers between 2 and n. The resultis 1 * 2 * 3 * ... * n, which is n!:

// Get the input value N.
long n = (long)numberNumericUpDown.Value;

// Calculate N!.

long factorial = 1;

for (int i = 2; i <= n; i++)
{

checked

{
}

factorial *= 1i;

}

// Display the result.
resultTextBox.Text = factorial.ToString() ;

You may recall that Lesson 16 used code to calculate Fibonacci numbers, and in that lesson’s
Exercise 1 you calculated factorials. Those programs used 20 lines of code to calculate and store 20
values that the program then used as a kind of lookup table.

The factorial code shown here uses a lot less code. It doesn’t require a large array to hold values. It
also doesn’t require that you know ahead of time how many values you might need to calculate (20
for the earlier programs), although the factorial function grows so quickly that this program can
only calculate values up to 20! before the result won’t fit in a long.

NOTE The for loop is often the best choice if you know exactly how many
times you need the loop to execute.

www.it-ebooks.info

http://www.it-ebooks.info/

Foreach Loops | 277

FOREACH LOOPS

A foreach loop executes a block of code once for each item in an array or list. The syntax of the
foreach loop is as follows:

foreach (variableDeclaration in items)

{

statements. ..

> variableDeclaration declares the looping variable. Its type must be the same as the items
in the array or list.

> items is the array or list of items over which you want to loop.
statements are the statements that you want the loop to execute.

For example, the following code calculates the average of the test scores stored in the ListBox
named scoresListBox. Note that the ListBox must contain integers or something the program can
implicitly convert into an integer or else the program will crash:

// Add up the values.

int total = 0;

foreach (int value in valuesListBox.Items)

{
}

// Calculate the average.
float average = (float)total / valuesListBox.Items.Count;

total += value;

The code creates a variable named total and sets it equal to 0. It then loops through the items in
the ListBox, adding each value to total.

WARNING This code loops over the items in a ListBox, treating those items as
integers. If the ListBox contains something other than integers, the program will
crash.

The code finishes by dividing the total by the number of items in the ListBox.

NOTE If you need to perform some operation on all of the items in an array or
list, a foreach loop is often your best choice.

www.it-ebooks.info

http://www.it-ebooks.info/

278 | LESSON 19 REPEATING PROGRAM STEPS

WHILE LOOPS

A while loop executes as long as some condition is true. The syntax for a while loop is as follows:

while (condition)

{
}

Where:

statements. ..

> conditionis a boolean expression. The loop executes as long as this expression is true.
> statements are the statements that you want the loop to execute.

For example, the following code calculates a number’s prime factors:

// Find the number's prime factors.
private void factorButton Click (object sender, EventArgs e)

{

// Get the input number.
long number = long.Parse (numberTextBox.Text) ;

// Find the factors.
string result = "1";

// Consider factors between 2 and the number.
for (long factor = 2; factor <= number; factor++)

// Pull out as many copies of this factor as possible.
while (number % factor == 0)

{

result += " x " + factor.ToString() ;
number = number / factor;

}

// Display the result.
resultTextBox.Text = result;

The code starts by getting the user’s input number. It builds a result string and initializes it to “1.”

Next the code uses a for loop to consider the numbers between 2 and the user’s number as possible
factors.

For each of the possible factors, it uses a while loop to remove that factor from the number. As long
as the factor divides evenly into the remaining number, the program adds the factor to the result and
divides the user’s number by the factor.

The code finishes by displaying its result.

www.it-ebooks.info

http://www.it-ebooks.info/

do Loops | 279

NOTE Loops that use incrementing integers to decide when to stop are often
easier to write using for loops instead of while loops. A while loop is particu-
larly useful when the stopping condition occurs at a less predictable time, as in
the factoring example.

DO LOOPS

A do loop is similar to a while loop except it checks its stopping condition at the end of the loop
instead of at the beginning. The syntax of a do loop is as follows:

do

statements. . .
} while (condition) ;

Where:
> statements are the statements that you want the loop to execute.

> conditionis a boolean expression. The loop continues to execute as long as this expression
is true.

The following code uses a do loop to calculate the greatest common divisor (GCD) of two numbers,
the largest number that divides them both evenly:

// Calculate GCD(A, B).
private void calculateButton Click(object sender, EventArgs e)
{

// Get the input values.

long a = long.Parse(aTextBox.Text) ;

long b = long.Parse (bTextBox.Text) ;

// Calculate the GCD.
long remainder;
do
{
remainder = a % b;
if (remainder != 0)

{

a = b;

b = remainder;
1

} while (remainder > 0);

resultTextBox.Text = b.ToString() ;

www.it-ebooks.info

http://www.it-ebooks.info/

280 |

LESSON 19 REPEATING PROGRAM STEPS

NOTE Notice that the variable remainder used to end the loop is declared out-
side of the loop even though it doesn’t really do anything outside of the loop.
Normally to restrict scope as much as possible, you would want to declare this
variable inside the loop if you could.

However, the end test executes in a scope that lies outside of the loop, so any
variables declared inside the loop are hidden from it.

It’s important that any loop eventually ends, and in this code it’s not completely obvious why that
happens. It turns out that each time through the loop (with the possible exception of the first time),
a and b get smaller. If you step through a few examples, you’ll be able to convince yourself.

If the loop runs long enough, b eventually reaches 1. At that point b must evenly divide a no mat-
ter what a is so the loop ends. If b does reach 1, then 1 is the greatest common divisor of the user’s
original numbers and those numbers are called relatively prime.

EUCLID'S ALGORITHM

This algorithm was described by the Greek mathematician Euclid (circa 300 BC),
so it’s called the Euclidean algorithm or Euclid’s algorithm. I don’t want to explain
why the algorithm works because it’s complicated and irrelevant to this discussion
of loops (you can find a good discussion at primes.utm.edu/glossary/xpage/
EuclideanAlgorithm.html), but I do want to explain what the code does.

The code starts by storing the user’s input numbers in variables a and b. It then
declares variable remainder and enters a do loop.

Inside the loop, the program calculates the remainder when you divide a by b. If
that value is not 0 (that is, b does not divide a evenly), then the program setsa = b
and b = remainder.

Now the code reaches the end of the loop. The while statement makes the loop end
if remainder is 0. When that happens, b holds the greatest common divisor.

You may want to step through the code in the debugger to see how the values
change.

NOTE A do loop always executes its code at least once because it doesn’t check
its condition until the end. Often that feature is why you pick a do loop over a
while loop. If you might not want the loop to execute even once, use a while
loop. If you need to run the loop once before you can tell whether to stop, use a
do loop.

www.it-ebooks.info

http://www.it-ebooks.info/

break and continue | 281

BREAK AND CONTINUE

The break and continue statements change the way a loop works.

The break statement makes the code exit the loop immediately without executing any more state-
ments inside the loop.

For example, the following code searches the selected items in a ListBox for the value carter. If it

finds that value, it sets the boolean variable carterselected to true and breaks out of the loop. If
the ListBox has many selected items, breaking out of the loop early may let the program skip many
loop iterations and save some time:

// See if Carter is one of the selected names.
bool carterSelected = false;
foreach (string name in namesListBox.SelectedItems)

{

if (name == "Carter")

{

carterSelected = true;
break;

}
}
MessageBox.Show (carterSelected.ToString()) ;

The continue statement makes a loop jump to its looping statement early, skipping any remaining
statements inside the loop after the continue statement.

For example, the following code uses a foreach loop to display the square roots of the numbers
in an array. The Math.sqgrt function cannot calculate the square root of a negative number so, to
avoid trouble, the code checks each value. If it finds a value less than zero, it uses the continue
statement to skip the rest of that trip through the loop so it doesn’t try to take the number’s square
root. It then continues with the next number in the array:

// Display square roots.
float[] values = { 4, 16, -1, 60, 100 };
foreach (float value in values)
{
if (value < 0) continue;
Console.WriteLine (string.Format ("The square root of {0} is {1:0.00}",
value, Math.Sgrt (value))) ;

The following text shows this program’s results:

The square root of 4 is 2.00
The square root of 16 is 4.00
The square root of 60 is 7.75
The square root of 100 is 10.00

www.it-ebooks.info

http://www.it-ebooks.info/

282 | LESSON 19 REPEATING PROGRAM STEPS

NOTE The break and continue statements make loops work in nonstandard
ways and sometimes that can make the code harder to read, debug, and main-
tain. Use them if it makes the code easier to read, but ask yourself whether
there’s another simple way to write the loop that avoids these statements. For
example, the following code does the same things as the previous square root

code but without a continue statement:

// Display square roots.
float[] values = { 4, 16, -1, 60, 100 };
foreach (float value in values)

Console.WriteLine (string.Format ("The square root of {0} is

{ if (value >= 0)
{
{1:0.00}",
value, Math.Sgrt (value))) ;
}
1

TRY IT

In this Try It, you make the simple login form shown in Figure 19-1. When
the program’s startup form loads, it enters a loop that makes it display
this form until the user enters the correct username and password or clicks

Cancel.

Lesson

Requirements

In this lesson, you:

>

>

Build a main form that displays a success message.

Build the login dialog shown in Figure 19-1.

a7 LoginForm

Usemame:

[ok | [caeel |

FIGURE 19-1

In the main form’s Load event handler, create an instance of the login dialog. Then enter a
while loop that displays the dialog and doesn’t stop until the user enters a username and
password that match values in the code. If the user clicks Cancel, close the main form.

NOTE You can download the code and resources for this lesson from the web-

site at www.wrox .com/go/csharp24hourtrainer2e.

Hints

Use a boolean variable named tryingToLogin to control the loop. Initialize it to true before
the loop and set it to false when the user either cancels or enters the right username and

password.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Trylt | 283

> To decide whether the user entered a valid username and password, compare them to

the strings “User” and “Secret.” (A real application would validate these values with an
encrypted database or by using some other authentication method.)

Step-by-Step
> Build a main form that displays a success message.
1. Place labels on the form to display the message.
> Build the login dialog shown in Figure 19-1.
1. Create the controls shown in Figure 19-1.
2. Set the password TextBox’s PasswordChar property to X.

In the main form’s Load event handler, create an instance of the login dialog. Then enter a
while loop that displays the dialog and doesn’t stop until the user enters a username and
password that match values in the code. If the user clicks Cancel, close the main form and
break out of the loop.

1. The following code shows one possible solution:

// Make the user log in.

private void Forml Load (object sender, EventArgs e)
// Create a LoginForm.
LoginForm frm = new LoginForm() ;

// Repeat until the user successfully logs in.
bool tryingToLogin = true;
while (tryingToLogin)
{
// Display the login dialog and check the result.
if (frm.ShowDialog() == DialogResult.Cancel)
{
// The user gives up. Close and exit the loop.
this.Close();
tryingToLogin = false;
}
else
{
// See if the user entered valid values.
if ((frm.usernameTextBox.Text == "User") &&
(frm.passwordTextBox.Text == "Secret"))
{

// Login succeeded. Stop trying to log in.
tryingToLogin = false;
}
else
{
// Login failed. Display a message and
// let the loop continue.
MessageBox.Show ("Invalid username and password.");

www.it-ebooks.info

http://www.it-ebooks.info/

284 | LESSON 19 REPEATING PROGRAM STEPS

}

// If we get here, we're done trying to log in.

EXERCISES

1.

Make a program that calculates the sum 1 + 2 + 3 + ... + N for a number N entered by
the user.

[Hard] Make a program that calculates the Nth Fibonacci number for a number N entered
by the user. The Fibonacci sequence is defined by:

Fibonacci(0) = 0
Fibonacci(1l) =1
Fibonacci (N) = Fibonacci (N - 1) + Fibonacci (N - 2)

Hint: Use a loop. Define variables £ibo1, £ibo2, and £iboN outside the loop. Inside the
loop, make the variables hold Fibonacci (N - 1), Fibonacci (N - 2), and Fibonacci (N).
(To test your code, Fibonacci (10) = 55 and Fibonacci (20) = 6,765.)

Make a program that lets the user enter test scores into a ListBox. After adding each score,
display the minimum, maximum, and average values. (Hint: Before you start the loop, initial-

ize minimum and maximum variables to the value of the first score. Then loop through the list
revising the variables as needed.)

Copy the program you wrote for Exercise 14-1 (or download the version on the book’s web-
site) and add a List Items button. When the user clicks the button, use the console class to

display the items and their values in the Output window as a semicolon-separated list similar
to the following:

*hkkkkkkkk*k
Pencil;$0.10;12;$1.20;
Pen;$0.25;12;3$3.00;
Notebook;$1.19;3;383.57;

*hkkhkkkkkkkk

Hint: The ListView control’s Items property is a collection of ListViewItem objects.
Loop through that collection to get information about

each row. s LetterCombinations I;Ii-
. 1: AAAA ~
Hint: Each ListViewItem has a SubItems property Zannd
that is a collection of ListViewItem.ListViewSubItem A
objects. For each row, loop through the item’s subitem 5 AnB3
collection to get the values for that row. Use Console 3 MED
.Write to add data to the Console window without 10 ARCD
. . 11: AACC
adding a carriage return. 12 AACD
13: AADA
Make a program similar to the one shown in Figure 19-2 15 AADC
. . 16: AADD
that generates all possible four-letter words using the 17 ABAA
. .. 18: ABAB v
letters A, B, C, and D. (Hint: Make an array containing ———
the letters A, B, C, and D. Use a foreach loop to loop
through the letters. Inside that loop, use another loop FIGURE 19-2

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 285

to loop through the letters again. After four depths of nested loops, concatenate the looping
variables to get the word.)

6. [Games] Copy the program you built for Exercise 18-8 (or download the version on the
book’s website) and modify it so it displays four bouncing balls. Hints:

> Use four PictureBox controls to hold the ball images.
> When the program starts:
> Create class-level arrays vx and vy to hold the balls’ velocities.

> Create and initialize an array named Balls to hold references to the balls’
PictureBoxes.

> Loop through the Balls array and give the balls random initial locations and
velocities.

> In the Timer’s Tick event handler, loop through the Balls array and update the
balls’ locations and velocities.

> Because balls will hit the sides of the form more often than they did in Exercise 18-8,
you may want to change the boing sound effect to something shorter like a click.

7. [Graphics, Games] If you look closely at the program you wrote for Exercise 6, you can see
the corners of the balls’ PictureBoxes when they overlap each other. Copy that program and
fix it by following these steps:

» Remove the ball pictureBoxes.
» Define class-level constants NumBalls = 4, BallWidth = 40, and BallHeight = 40.

> Create x and Y arrays to hold the balls’ locations. When the form loads, initialize
those arrays with random positions.

> When the Timer’s Tick event fires, update the balls’ locations and velocities as before
(except using the x and Y arrays instead of the PictureBox controls’ Left and Top
properties).

> After you update all of the balls’ locations, call the form’s Refresh method to make
it redraw itself.

> Give the form the following Paint event handler to draw the balls:

// Draw the balls.
private void Forml Paint (object sender, PaintEventArgs e)

{

e.Graphics.SmoothingMode =
System.Drawing.Drawing2D.SmoothingMode.AntiAlias;

for (int ball = 0; ball < NumBalls; ball++)

{

e.Graphics.FillEllipse (Brushes.Red,
X[ball]l, Y[ball], Ballwidth, BallHeight) ;
e.Graphics.DrawEllipse (Pens.Black,

www.it-ebooks.info

http://www.it-ebooks.info/

286 | LESSON 19 REPEATING PROGRAM STEPS

X[ball]l, Y[ball], BallwWidth, BallHeight) ;

}

> 1If you experiment with the program for a while, you’ll notice some flickering. To fix
that, set the form’s DoubleBuffered property to True.

8. [Graphics, Games] Copy the program you wrote for Exercise 7 and modify it to give the balls
random sizes and colors. Hints:

> Make an array named BallBrushes to hold Brush objects.
> In the form’s Load event handler:

> Make an array named brushes to hold Brush objects. Initialize it to a selec-
tion of standard brushes such as Brushes.Pink and Brushes.LightGreen.

> Use code similar to the following to give each ball a brush selected randomly
from the brushes array:
BallBrushes[ball] = brushes[rand.Next (0, brushes.Length)];

9. [Games, Hard] Copy the program you built for Exercise 18-14 (or download the version on
the book’s website) and modify it so it displays three UFOs. Hints:

> Use techniques similar to those you used in Exercise 6 to manage the UFOs’ positions
and velocities.

> Loop through the UFOs to see if the laser bolt has hit any of them. If it has, remove
the bolt so it doesn’t pass through a UFO, possibly hitting one higher up on the form.

10. [Graphics, Games] Make a worm program similar to the e Worm =1 o Xl
one shown in Figure 19-3. The program should draw a
chain of circles that bounces around the form.

Hints:

> UseaList<Point> to keep track of the positions
of the circles.

» When the Timer ticks:

> Use velocity components to calculate a
new position for the first position in the
list.

FIGURE 19-3
» Use the list’s Insert method to insert a

new Point at the beginning of the list for the new position.
> Use the list’s Removeat method to remove the last position from the list.
Call the form’s Refresh method to make it redraw itself.

> Make the form’s Paint event handler loop through the list and draw the worm’s
circles.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 287

11. [Graphics, Games, Hard] Copy the program you wrote for Exercise 10 and modify it so it
displays three worms with different colors. Hints:
> Store the worms’ brushes in an array of Brush objects.
> Store the lists of worm positions in an array of lists of Point objects
(List<Point>[1).
> Before you use the List<Point> [], you need to initialize it with the new keyword.
Before you use a list inside the List<Point>[1, you need to initialize it with the new
keyword.
12. [Games] Copy the program you built for Exercise 9. The program uses the following code to

display the high scores on the HighScoreForm:

// Display the high scores.

HighScoresForm highScoresForm = new HighScoresForm() ;
highScoresForm.nameLabel0.Text = HighScoreNames [0] ;
highScoresForm.nameLabell.Text = HighScoreNames[1];
highScoresForm.nameLabel2.Text = HighScoreNames[2] ;
highScoresForm.nameLabel3.Text = HighScoreNames [3];
highScoresForm.nameLabel4.Text = HighScoreNames [4] ;
highScoresForm.scorelLabel0.Text = HighScores[0] .ToString() ;
highScoresForm.scoreLabell.Text = HighScores[1l].ToString() ;
highScoresForm.scoreLabel2.Text = HighScores[2].ToString() ;
highScoresForm.scorelLabel3.Text = HighScores|[3].ToString() ;
highScoresForm.scorelLabel4.Text = HighScores[4] .ToString() ;

Modify the program so it uses two for loops instead. (Hints: Use two arrays holding the
form’s controls. You’ll have to make the change in two places.)

NOTE Please select the videos for Lesson 19 online at www.wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

20

Reusing Code with Methods

Sometimes a program needs to perform the same action in several places. For example, con-
sider the UFO shooting gallery game you wrote for Exercise 19-12 and shown in Figure 20-1.

ol Ufo = I:'-
File
Score: 750
W a
i

1

1 ECS
FIGURE 20-1

When a laser bolt hits a UFO, the program takes these steps:
1. Plays the “hit a UFO” sound effect.

Increases the player’s score and shows it in the score Label.

3. Hides the laser bolt PictureBox.
4. SetsBoltIshway = false to remember that no laser bolt is currently on the form.
5. If that was the player’s last laser bolt:

a. Plays the “game over” sound effect.
Displays the “game over” label showing the player’s final score.

b
C. Disables the Timer.
d

If the player’s score is greater than the smallest high score:

www.it-ebooks.info

http://www.it-ebooks.info/

290 | LESSON 20 REUSING CODE WITH METHODS

i. Creates a NewHighScoreForm.
ii. Places the player’s score on the NewHighScoreForm.
iii. Displays the NewHighScoreForm.
iv. If the user enters a name and clicks OK:
1) Replaces the lowest high score with the player’s current score.
2) Sorts the high scores.
3) Creates a new HighScoreForm.
4) Places the high scores on the HighScoreForm.
5) DiSplayS the HighScoreForm.

Now suppose a laser bolt moves off the top edge of the form without hitting a UFO. In that case the
program must perform the same steps 3 through 5. The way I wrote my program, those steps take
33 lines of code (not counting blank lines and comments). That’s a lot of repeated code to write,
debug, and maintain.

In fact, the program contains even more repetition. If the user opens the File menu and selects High
Scores, the program repeats the last three steps to display a HighScoresForm.

Instead of repeating code wherever it was needed, it would be nice if you could centralize the code
in a single location and then invoke that code when you need it. In fact, you can do exactly that by
using methods.

A method is a group of programming statements wrapped in a neat package so you can invoke it as
needed. A method can take parameters that the calling code can use to give it extra information.
The method can perform some actions and then optionally return a single value to pass information
back to the calling code.

NOTE I[n programming languages other than C#, methods are sometimes
known as routines, subroutines, procedures, subprocedures, subs, or functions
(particularly when the method returns a value).

In this lesson, you learn how to use methods. You learn why they are useful, how to write them, and
how to call them from other pieces of code.

METHOD ADVANTAGES

The shooting gallery scenario described in the previous section illustrates one of the key advantages
to methods: code reuse. By placing commonly needed code in a single method, you can reuse that
code in many places. Clearly that saves you the effort of writing the code several times.

Much more important, it also saves you the trouble of debugging the code several times. Often
debugging a piece of complex code takes much longer than typing in the code in the first place, so
being able to debug the code in only one place can save you a lot of time and trouble.

www.it-ebooks.info

http://www.it-ebooks.info/

Method Syntax | 291

Reusing code also greatly simplifies maintenance. If you later find a bug in the code, you only need
to fix it in one place. If you had several copies of the code scattered around, you’d need to fix each
one individually and make sure all of the fixes were the same. That may sound easy enough, but
making synchronized changes is actually pretty hard, particularly in big projects. It’s just too easy to
miss one change or to make slightly different changes that later cause big problems.

Methods can also sometimes make finding and fixing bugs much easier. For example, suppose you’re
working on an inventory program that can remove items from inventory for one of many reasons:
external sales, internal sales, ownership transfer, spoilage, and so forth. Unfortunately the program
occasionally “removes” items that don’t exist, leaving you with negative inventory. If the program
has code in many places that can remove items from inventory, figuring out which place is caus-

ing the problem can be tricky. If all of the code uses the same method to remove items, you can set
breakpoints inside that single method to see what’s going wrong. When you see the problem occur-
ring, you can trace the program’s flow to see where the problem originated.

A final advantage to using methods is that it makes the pieces of the program easier to understand
and use. Breaking a complex calculation into a series of simpler method calls can make the code
easier to understand. No one can keep all of the details of a large program in mind all at once.
Breaking the program into methods makes it possible to understand the pieces separately.

A well-designed method also encapsulates an activity at an abstract level so other developers don’t
need to know the details. For example, you could write a FindItemForPurchase method that
searches through a database of vendors to find the best possible deal on a particular item. Now
developers writing other parts of the program can call that method without needing to understand
exactly how the search works. The method might perform an amazingly complex search to mini-
mize price with sales tax, shipping charges, and long-term expected maintenance costs, but the pro-
grammer calling the method doesn’t need to know or care how it works.

In summary, some of the key benefits to using methods are:
> Code reuse—You write the code once and use it many times.
> Centralized debugging—You only need to debug the shared code once.

> Centralized maintenance—If you need to fix the code, you only need to do so in the method,
not everywhere it is used.

Problem decomposition—Methods can break complex problems into simpler pieces.

> Encapsulation—The method can hide complex details from developers.

METHOD SYNTAX

In C#, all methods must be part of some class. In many simple programs, the main form contains all
of the program’s code, including all of its methods.

The syntax for defining a method is:

accessibility returnType methodName (parameters)

{

...Statements. ..
[return [returnValue];]

www.it-ebooks.info

http://www.it-ebooks.info/

292 | LESSON 20 REUSING CODE WITH METHODS

Where:

> accessibilityis an accessibility keyword such as public or private. This keyword deter-
mines what other code in the project can invoke the method.

> returnType is the data type that the method returns. It can take normal values such as int,
bool, or string. It can also take the special value void to indicate that the method won’t
return a result to the calling code.

> methodName is the name that you want to give the method. You can give the method any
valid name. Valid names must start with a letter or underscore and include letters, under-
scores, and numbers. A valid name also cannot be a keyword such as if, for, or while.

> parameters is an optional parameter list that you can pass into the method. I’ll say more
about this shortly.

> statements are the statements that the method should execute.

> returnValue is the value returned to the calling code. You can use return without a param-
eter to return from a void method. The method also returns if the program executes its last
line of code and reaches the closing curly bracket (}).

NOTE You can use the return statement as many times as you like in a method.
For example, some of the branches in an if-else sequence could lead to return
Sstatements.

If the method has a non-void return type, the C# compiler tries to guarantee
that all paths through the code end at a return statement and will warn you if
the code might not return a value.

The method’s parameters allow the calling code to pass information into the method. The param-
eters in the method’s declaration give names to the parameters while they are in use inside the
method.

For example, recall the definition of the factorial function. The factorial of a number N is written
N! and pronounced N factorial. The definition of N!is 1 *2 * 3 * ., * N,

The following C# code defines a Factorial method:

// Return value!
private long Factorial (long value)

{

long result 1;
for (long i = 2; 1 <= value; i++)

{
}

return result;

result *= i;

www.it-ebooks.info

http://www.it-ebooks.info/

Method Syntax | 293

The method is declared private so only code within this class can use it. For simple programs,
that’s all of the code anyway so this isn’t an issue.

The method’s data type is 1ong so it must return a value of type long.

The method’s name is Factorial. You should try to give each method a name that is simple and
that conveys the method’s purpose so it’s easy to remember what it does.

The method takes a single parameter of type long named value. Parameters have method scope so
value is only defined inside the method. In that sense parameters are similar to variables declared
inside the method.

The method creates a variable result and multiplies it by the values 2, 3, .. ., value.
The method finishes by executing the return statement, passing it the final value of result.

The following code shows how a program might call the Factorial method:

long number = long.Parse (numberTextBox.Text) ;
long answer = Factorial (number) ;
resultTextBox.Text = answer.ToString() ;

This code starts by creating a 1long variable named number and initializing it to whatever value is in
numberTextBox.

The code then calls the Factorial method, passing it the value number and saving the returned
result in the new long variable named answer.

Notice that the names of the variables in the calling code (number and answer) have no relation to
the names of the parameters and variables used inside the method (value and result). The meth-
od’s parameter declaration determines the names the parameters have while inside the method.

The code finishes by displaying the result.

A method’s parameter list can include zero, one, or more parameters separated by commas. For
example, the following code defines the method ced, which returns the greatest common divi-
sor (GCD) of two integers. (The GCD of two integers is the largest integer that evenly divides
them both.)

// Calculate GCD(a, b).
private long Gecd(long a, long b)
{
long remainder;
do
{
remainder = a % b;
1= 0)

if (remainder
{
a = b;
b = remainder;

}

} while (remainder > 0);

return b;

www.it-ebooks.info

http://www.it-ebooks.info/

294 | LESSON 20 REUSING CODE WITH METHODS

The following code shows how you might call the ged method:

// Get the input values.
long a = long.Parse (aTextBox.Text) ;
long b = long.Parse (bTextBox.Text) ;

// Calculate the GCD.
long result = Gcd(a, b);

// Display the result.
resultTextBox.Text = b.ToString() ;

The code initializes two integers, passes them to the Ged method, and saves the result. It then dis-
plays the two integers and their GCD.

USING REF PARAMETERS

Parameter lists have one more feature that’s confusing enough to deserve its own section. Parameters
can be passed to a method by value or by reference.

When you pass a parameter by value, C# makes a copy of the value and passes the copy to the
method. The method can then mess up its copy without damaging the value used by the calling code.

In contrast, when you pass a value by reference, C# passes the location of the value’s memory into
the method. If the method modifies the parameter, the value is changed in the calling code as well.

Normally values are passed by value. That’s less confusing because changes that are hidden inside
the method cannot mess up the calling code.

Sometimes, however, you may want to pass a parameter by reference. To do that, add the keyword
ref before the parameter’s declaration.

To tell C# that you understand that a parameter is being passed by reference and that it’s not just
a terrible mistake, you must also add the keyword ref before the value you are passing into the
method.

For example, suppose you want to write a method named GetMatchup that selects two chess play-
ers to play against each other. The method should return true if it can find a match and false if no
other matches are possible (because you’ve played them all). The method can only return one value
(true or false) so it must find some other way to return the two matched players.

The following code shows how the method might be structured:

private bool GetMatchup (ref string playerl, ref string player2)

{
// Do complicated stuff to pick an even match.
// Somewhere in here the code should set playerl and player2.
// We found a match.
return true;
1

www.it-ebooks.info

http://www.it-ebooks.info/

Using out Parameters | 295

The method takes two parameters, playerl and player2, that are strings passed by reference.
The method performs some complex calculations not shown here to assign values to the variables
playerl and player2. It then returns true to indicate that it found a match.

The following code shows how a program might call this method:

string playerA = null, playerB = null;

if (GetMatchup (ref playerA, ref playerB))

{
}
else

{
}

MessageBox.Show (playerA + " versus " + player);

MessageBox.Show ("No match is possible");

This code declares variables playera and playerB to hold the selected players’ names. It calls the
method, passing it the two player name variables preceded with the ref keyword. Depending on
whether the method returns true or false, the program announces the match or says that no match
is possible.

USING OUT PARAMETERS

The out keyword works similarly to the ref keyword except it doesn’t require that the input vari-
ables be initialized. For example, in the preceding example if you don’t initialize playera and
playerB to some value, Visual Studio will warn you that the variables are not initialized and won’t
let you run the program. The idea is that the method might need to use the input values of those
variables to do its work.

In contrast, if you use the out keyword instead of ref, the values are assumed to be output-only
parameters from the method, and you are not required to initialize them.

If you use the out keyword for a parameter, be sure that the method does not try to use the value
passed in for that parameter because it may not be initialized. In fact, if the method does try to use
the parameter’s incoming value, Visual Studio will warn you that it may not be initialized.

NOTE In general it’s considered good practice to avoid returning results through
parameters passed by reference because it can be confusing. It’s better to use out-
put parameters if possible.

An even better approach is to pass the method inputs through parameters and
make the method return all of its return values with the return statement. For
instance, the chess matchup example could return a structure or instance of a
class that contains the names of the two players.

www.it-ebooks.info

http://www.it-ebooks.info/

296 | LESSON 20 REUSING CODE WITH METHODS

TRY IT

In this Try It, you make a method that calculates the minimum, maximum, and average values for
an array of doubles. You build the program shown in Figure 20-2 to test the method.

al MinMaxAverage = = -
Walues:
[192029937821 |
Mirimum: | 8|
Madmum: | 37’|
Average: | 20 43|
FIGURE 20-2

Lesson Requirements

In this lesson, you:

>

>

Build the program shown in Figure 20-2.

Build a method that takes four parameters: an array of doubles, and three more return
doubles. It should loop through the array to find the minimum and maximum and to calcu-
late the average.

Write code to test the method.

NOTE You can download the code and resources for this lesson from the website
at www.wrox .com/go/csharp24hourtrainer2e.

Hints

Think about how the method needs to use the return parameters. Should they be declared
ref or out?

Step-by-Step

>

Build the program shown in Figure 20-2.
1. This is reasonably straightforward.

Build a method that takes four parameters: an array of doubles, and three more return dou-
bles. It should loop through the array to find the minimum and maximum and to calculate
the average.

1. This method calculates its results purely by examining the values in the input array so
it doesn’t need to use whatever values are passed in through its other parameters. That

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Try lt | 297

means the minimum, maximum, and average parameters should use the out keyword
instead of the ref keyword.

Initialize the minimum and maximum variables to the first entry in the array.
Initialize a total variable to the first entry in the array.

Loop through the rest of the array (skipping the first entry because it has already been
considered), updating the minimum and maximum variables as needed and adding the
values in the array to the total.

After finishing the loop, divide the total by the number of values to get the average.

The following code shows how you might build this method:

// Calculate the minimum, maximum, and average values for the array.
private void FindMinimumMaximumAverage (double[] values,
out double minimum, out double maximum, out double average)

// Initialize the minimum, maxiumum, and total values.
minimum = values[0];

maximum = values[0];

double total = values|[0];

// Loop through the rest of the array.

for (int i = 1; 1 < values.Length; i++)

{
if (values[i] < minimum) minimum = values[i];
if (values[i] > maximum) maximum = values[i];
total += values|[i];

}

// Calculate the average.
average = total / values.Length;

}

> Write code to test the method.

When the user clicks the button, take the TextBox’s text and use its Split method to
break the user’s values into an array of strings.

Make a double array and use a for loop to parse the text values into it.
Call the method to calculate the necessary results.

Display the results.

The following code shows how you might build the button’s event handler:

// Find and display the minimum, maximum, and average of the values.
private void calculateButton Click(object sender, EventArgs e)
{

// Get the values.

string[] textValues = valuesTextBox.Text.Split();

double[] values = new double[textValues.Length];

for (int 1 = 0; 1 < textValues.Length; i++)

{

www.it-ebooks.info

http://www.it-ebooks.info/

298 | LESSON 20 REUSING CODE WITH METHODS

values[i] = double.Parse(textValues[i]);

}

// Calculate.
double smallest, largest, average;
FindMinimumMaximumAverage (values,

out smallest, out largest, out average);

// Display the results.

minimumTextBox.Text = smallest.ToString() ;
maximumTextBox.Text = largest.ToString() ;
averageTextBox.Text = average.ToString("0.00");

NOTE This lesson mentions that returning values through parameters passed
by reference isn’t a good practice. So how could you modify this example to
avoid that?

You could break the FindVinimumMaximumAverage method into three separate
1neth0dS:FindMinimum,FindMaximum,andEﬁndAverage.T%eneachTWethOd
could return its result via a return statement. In addition to avoiding param-
eters passed by reference, that makes each routine perform a single well-focused
task so it makes them easier to understand and use. It also makes them easier to
use separately in case you only wanted to find the array’s minimum and not the
maximum or average.

(Also note that arrays provide methods that can find these values for you, so you
really don’t need to write these functions anyway. They’re here purely to demon-
strate parameters passed by reference.)

EXERCISES

1. Make a program that calculates the least common multiple (LCM) of two integers. (The
LCM of two integers is the smallest integer that the two numbers divide into evenly.) Hints:
LCM(a, b) =a * b/ GCD(a, b). Also don’t write the LCM method from scratch. Instead,
make it call the GCD method described earlier in this lesson.

2. A recursive method is one that calls itself. Write a recursive factorial method by using the
definition:
0! =1
N! = N * (N-1)!
Hint: Be sure to check the stopping condition N = 0 so the method doesn’t call itself forever.
(Also note that recursive methods can be very confusing to understand and debug so often

it’s better to write the method without recursion if possible. Some problems have natural
recursive definitions, but usually a non-recursive method is better.)

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 299

Write a program that recursively calculates the Nth Fibonacci number using the definition:

Fibonacci(0) = 0
Fibonacci(1l) = 1
Fibonacci (N) = Fibonacci (N - 1) + Fibonacci(N - 2)

Compare the performance of the recursive factorial and Fibonacci methods when N is
around 30 or 40.

[SimpleEdit] Copy the SimpleEdit program you built for Exercise 18-3 (or download the
version on the book’s website) and move the code that checks for unsaved changes into a
method named IsDatasafe. The IsDatasafe method should perform the same checks as
before and return true if it is safe to continue with whatever operation the user is about to
perform (new file, open file, or exit).

Other code that needs to decide whether to continue should call 1spatasafe. For example,
the fileNewMenuItem Click event handler can now look like this:

private void fileNewMenuItem Click (object sender, EventArgs e)

{

// See if it's safe to continue.
if (IsDataSafe())

{

// Make the new document.
contentRichTextBox.Clear () ;

// There are no unsaved changes now.
contentRichTextBox.Modified = false;

}

[Games]| Copy the program you wrote for Exercise 19-12 (or download the version on the
book’s website) and extract the code that moves a UFO into a new method. To do that:

> Select the code that moves a UFO.

> Right-click the code and select Quick Actions.
> Click Extract Method.

> Change the new method’s name to MoveUfo.

[Games] Copy the program you wrote for Exercise 5 and extract the code that moves the
laser bolt into a new method named MoveLaserBolt.

[Games] Copy the program you wrote for Exercise 6 and write a BoltHitUfo method that
returns true if the laser bolt hits the UFO with a particular index (passed into the method as
a parameter). Use that method in the MoveLaserBolt method.

[Games] Copy the program you wrote for Exercise 7. Find the code that removes a laser bolt,
determines whether the game is over, and updates the high scores if necessary. Extract that
code into a new RemoveLaserBolt method. Modify the program to call RemoveLaserBolt
in two places: if the laser bolt hits a UFO and if the laser bolt moves off the top of the form.

www.it-ebooks.info

http://www.it-ebooks.info/

300 | LESSON 20 REUSING CODE WITH METHODS

10.

11.

12.

[Games] Copy the program you wrote for Exercise 8. Find the code that executes when the
game is over. (It plays the “game over” sound effect and updates and displays the high scores
if necessary.) Extract that code into a new Gameover method.

[Games| Copy the program you wrote for Exercise 9 and extract the code that displays the
high score form into a new ShowHighScores method. The program should call this method
in two places: once in the Gameover method if the user has a new high score and once if the
user selects the File menu’s High Scores command.

[Games] Copy the program you wrote for Exercise 10. Find the code that determines whether
the user got a new high score and, if so, updates and displays the high scores. Extract that
code into a new UpdateHighScores method.

[Games] Copy the program you wrote for Exercise 11 and extract the code that randomizes a
UFO into a new RandomizeUfo method.

Usually it’s better to start with a solid design in mind and write methods as you need them rather
than refactor an older program as was done in the last several exercises, but at this point the UFO
shooting gallery should have no big chunks of duplicated code and no methods that are so long they
are hard to understand. It should be much easier to maintain and improve in the future.

Many of the other examples and exercises shown in earlier lessons also contain duplicated code. For
further practice, rewrite some of them to move the duplicated code into methods.

NOTE Please select the videos for Lesson 20 online at www .wrox . com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

21

Handling Errors

The best way to avoid user errors is to not give the user the ability to make them in the first
place. For example, suppose a program can take purchase orders for between 1 and 100 reams
of paper. If the program lets you specify the quantity by using a NumericUpDown control

with Minimum = 1 and Maximum = 100, you cannot accidentally enter invalid values like -5 or
10,000.

Sometimes, however, it’s hard to build an interface that protects against all possible errors. For
example, if the user needs to type in a numeric value, you need to worry about invalid inputs
such as 1.2.3 and ten. If you write a program that works with files, you can’t always be sure
the file will be available when you need it. For example, it might be on a CD that has been
removed, or it might be locked by another program.

In this lesson, you learn how to deal with these kinds of unexpected errors. You learn how to
protect against invalid values, unavailable files, and other problems that are difficult or impos-
sible to predict and prevent.

ERRORS AND EXCEPTIONS

An error is a mistake. It occurs when the program does something incorrect. Sometimes an
error is a bug, for example, if the code just doesn’t do the right thing.

Sometimes an error is caused by circumstances outside of the program’s control. If the pro-
gram expects the user to enter a numeric value in a textbox but the user types “seven,” the
program won’t be able to continue its work until the user fixes the problem.

Sometimes you can predict when an error may occur. For example, if a program needs to open
a file, there’s a chance that the file won’t exist. In predictable cases such as this one, the pro-
gram should try to anticipate the error and protect itself. It should check to see if the file exists
before it tries to open it. It can then display a message to the user and ask for help.

Other errors are hard or impossible to predict. Even if the file exists, it may be locked by
another program. The user entering invalid data is another example. In those cases, the

www.it-ebooks.info

http://www.it-ebooks.info/

302 | LESSON 21 HANDLING ERRORS

program may need to just try to do its job. If the program tries to do something seriously invalid, it
will receive an exception.

An exception tells the program that something generally very bad occurred such as trying to divide
by zero, trying to access an entry in an array that doesn’t exist (for example, setting values [100] =
100 when values only holds 10 items), or trying to convert the text “pickle” into an integer.

In cases like these, the program must catch the exception and deal with it. Sometimes it can figure
out what went wrong and fix the problem. Other times it might only be able to tell the user about
the problem and hope the user can fix it.

NOTE In C# terms, the code that has the problem throws the exception. Code
higher up in the chain can catch the exception and iry to handle it.

To catch an exception, a program uses a try-catch block.

TRY-CATCH BLOCKS

In C#, you can use a try-catch block to catch exceptions. One common form of this statement has
the following syntax:

try

{
}

catch (ExceptionTypel ex)

{
}

catch (ExceptionType2 ex)

{

...codeToProtect. ..

...exceptionCodel. ..

...exceptionCode2. ..
}
finally
{
...finallyCode. ..
}
Where:

> codeToProtect is the code that might throw the exception.

> ExceptionTypel, ExceptionType2 are exception types such as FormatException or
DivideByZeroException. If this particular exception type occurs in the codeToProtect, the
corresponding catch block executes.

> exis a variable that has the same type as the exception. You pick the name for this variable
just as you do when you declare any other variable. If an error occurs, you can use this vari-
able to learn more about what happened.

www.it-ebooks.info

http://www.it-ebooks.info/

try-catch Blocks | 303

> exceptionCode is the code that the program should execute if the corresponding exception
occurs.

> finallyCode is code that always executes whether or not an error occurs.

A try-catch block can include any number of catch blocks with different exception

types. If an error occurs, the program looks through the catch blocks in order until it finds one
that matches the error. It then executes that block’s code and jumps to the finally statement if
there is one.

If you use a catch statement without an exception type and variable, that block catches all
exceptions.

NOTE If you omit the catch statement’s exception type and variable, the code
cannot learn anything about the exception that occurred. Sometimes that’s okay
if you don’t really care what went wrong as long as you know that something
went wrong.

An alternative strategy is to catch a generic Exception object, which matches
any kind of exception and provides more information. Then you can at least
display an error message as shown in the following code, which tries to calculate
a student’s test score average assuming the variables totalScore and numTests
are already initialized. If the code throws an exception, the catch block displays
the exception’s default description.

try

{

// Calculate the average.
int averageScore = totalScore / numTests;

// Display the student's average score.
MessageBox.Show ("Average Score: " +
averageScore.ToString ("0.00")) ;

}

catch (Exception ex)

// Display a message describing the exception.
MessageBox.Show ("Error calculating average.\n" + ex.Message) ;

}

In this example the error that this code is most likely to encounter is a
DivideByZeroException thrown if numTests is 0. Because that kind

of error is predictable, the code should probably specifically look for
DivideByZeroException. The best strategy is to catch the most specific type
of exception possible to get the most information. Then catch more generic
exceptions just in case. Better still, it should check numTests and not perform
the calculation if numTests is 0. Then it can avoid the exception completely.

www.it-ebooks.info

http://www.it-ebooks.info/

304 | LESSON 21 HANDLING ERRORS

A try-catch block must include at least one catch block or the finally block, although none of
them needs to contain any code. For example, the following code catches and ignores all exceptions:

try

{
}

catch

{
}

...codeToProtect. ..

The code in the £inally block executes whether or not an exception occurs. If an error occurs,
the program executes a catch block (if one matches the exception) and then executes the
finally block. If no error occurs, the program executes the £inally block after it finishes the
codeToProtect code.

In fact, if the code inside the try or catch section executes a return statement, the finally block
still executes before the program actually leaves the method! The £inally block executes no matter
how the code leaves the try-catch block.

TRYPARSE

One place where problems are likely to occur is when a program parses text entered by the user.
Even if users don’t enter obviously ridiculous values such a “twelve,” they might enter values in

a format that you don’t expect. For example, you might expect the user to enter an integer dol-
lar amount such as 1200 but the user enters $1,200.00. If you use the decimal data type’s Parse
method and don’t allow the currency symbol, thousands separator, and decimal point, the Parse
method will throw an exception.

You can use a try-catch block to handle the exception, but it’s more efficient to detect the invalid
format instead. To do that, you can use the decimal data type’s TryParse method.

A data type’s TryParse method attempts to parse some text and save the result in a parameter
passed with the out keyword. The TryParse method returns true if it successfully parsed the text
and false if it could not.

For example, the following code tries to parse a value entered by the user:

decimal amount;
if (!decimal.TryParse (amountTextBox.Text, out amount))

{

MessageBox.Show ("Invalid format for amount: " +
amountTextBox.Text +
"\r\nThe amount should be an integer such as 12.");
return;

The code uses decimal.TryParse to try to parse the value in amountTextBox. If TryParse returns
false, the code displays an error message and then uses a return statement to stop processing
the value.

www.it-ebooks.info

http://www.it-ebooks.info/

Throwing Exceptions | 305

The Tryparse methods can take a NumbersStyles parameter just as the Parse methods can. For
example, you can pass decimal.TryParse the parameter NumberStyles.Any to allow the user to
enter values that include currency symbols and thousands separators.

To make things a bit more confusing, the version of Tryparse that takes a NumbersStyles parameter
also takes a format provider that gives the method information about the culture it should use when
parsing the text. If you set that parameter to null, the method uses the program’s current culture
information. For example, the following code is similar to the previous code except it allows thou-
sands separators. The new code is highlighted in bold:

decimal amount;
if (!decimal.TryParse (amountTextBox.Text,
NumberStyles.AllowThousands, null, out amount))

MessageBox.Show ("Invalid format for amount: " +
amountTextBox.Text +
"\r\nThe amount should be an integer such as 12.");
return;

It’s generally considered good programming practice to look for the most predictable errors first and
only use try-catch blocks as a last resort. That usually allows you to give the user the most mean-
ingful error messages.

THROWING EXCEPTIONS

Occasionally it’s useful to be able to throw your own exceptions. For example, consider the factorial
method you wrote in Lesson 20 and suppose the program invokes the method passing it the value
-10 for its parameter. The value —10! is not defined, so what should the method do? It could just
declare that =10! is 1 and return that, but that approach could hide a bug in the rest of the program.

A better solution is to throw an exception telling the program what’s wrong. The calling code can
then use a try-catch block to catch the error and tell the user what’s wrong.

The following code shows an improved version of the factorial method described in Lesson 20.
Before calculating the factorial, the code checks its parameter and, if the parameter is less than zero,
it throws a new ArgumentOutOfRangeException. The exception’s constructor has several over-
loaded versions. The one used here takes as parameters the name of the parameter that caused the
problem and a description of the error:

// Return value!
private long Factorial (long value)
{

// Check the parameter.

if (value < 0)

// This is invalid. Throw an exception.
throw new ArgumentOutOfRangeException (
"value",
"value must be at least 0.");

www.it-ebooks.info

http://www.it-ebooks.info/

306 | LESSON 21 HANDLING ERRORS

// Calculate the factorial.
long result = 1;
for (long i = 2; 1 <= value; i++)

{
}

return result;

result *= 1i;

The following code shows how the program might invoke the new version of the Factorial
method. It uses a try-catch block to protect itself in case the Factorial method throws an excep-
tion. The block also protects against other errors such as the user entering garbage in the TextBox.

// Calculate the factorial.
private void calculateButton Click(object sender, EventArgs e)

{
try
{
// Get the input value.
long number = long.Parse (numberTextBox.Text) ;

// Calculate the factorial.
long answer = Factorial (number) ;

// Display the factorial.
resultTextBox.Text = answer.ToString();

}

catch (Exception ex)

{
// Display an error message.
MessageBox.Show (ex.Message) ;
resultTextBox.Clear () ;

TIP Exceptions take additional overbead and disrupt the natural flow of the
code, making it harder to read, so only throw exceptions to signal exceptional
conditions.

If a method needs to tell the calling code whether it succeeded or failed, that isn’t
an exceptional condition so use a return value. If a method has an invalid input
parameter (such as a 0 in a parameter that cannot be 0), that’s an error, so throw
an exception.

www.it-ebooks.info

http://www.it-ebooks.info/

Try It | 307

TRY IT

In this Try It, you add validation and error handling code to the program you built for Exercise
19-4. When the user clicks the NewItemForm’s Calculate and OK buttons, the program should verify
that the values make sense and protect itself against garbage such as the user entering the quantity
“one,” as shown in Figure 21-1.

ol Trylt 13 -|o] x
ltem Price Each Quantity Total Price |
Aspirin, 50 ct 5125 12.00 S1E 0N
Granola careal 5274 1.00 New ltem
ltem |Feather duster
Quantity must be an integer. AT IR
Quantity one
]
FIGURE 211

Lesson Requirements
In this lesson, you:

> Copy the program you built for Exercise 19-4 (or download the version on the book’s
website).

> Write a ValuesAreok method to validate the values entered by the user. It should:
» Verify that Item, Price Each, and Quantity aren’t blank.
> Use TryParse methods to get the Price Each and Quantity values.
> Verify that Price Each and Quantity are greater than zero.
>

Calculate the product of Price Each and Quantity to see if the result is too large to fit
in a decimal value.

> If valuesAreOk finds a problem, it should:
> Tell the user.
> Set focus to the textbox that caused the problem.
> Return false.

> If valuesAreOk finds that all of the values are okays, it should return true.

www.it-ebooks.info

http://www.it-ebooks.info/

308 | LESSON 21 HANDLING ERRORS

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox .com/go/csharp24hourtrainer2e.

Hints

>

If the user clicks the OK button, the form should close only if the user’s inputs are valid. Be
sure the OK button’s DialogResult property doesn’t automatically close the form.

Step-by-Step

>

Copy the program you built for Exercise 19-4 (or download the version on the book’s
website).

1. This is straightforward.
Write a ValuesAreok method to validate the values entered by the user. It should:
> Verify that Item, Price Each, and Quantity aren’t blank.
> Use Tryparse methods to get the Price Each and Quantity values.
> Verify that Price Each and Quantity are greater than zero.
>

Calculate the product of Price Each and Quantity to see if the result is too large to fit
in a decimal value.

If valuesAreok finds a problem, it should:
> Tell the user.
> Set focus to the textbox that caused the problem.
> Return false.

1. The current program only enables the OK button when the Item, Price Each, and
Quantity are all non-blank, so you don’t need to add any code to verify that they aren’t
blank. The user can’t click the OK button unless they’re non-blank.

2. The following code shows how you might try to parse Price Each:

// Try to parse PriceEach.

if (!decimal.TryParse (priceEachTextBox.Text,
NumberStyles.Any, null, out PriceEach))

{

MessageBox.Show ("Price Each must be a currency value.");
priceEachTextBox.Focus () ;
return false;

}

When you parse quantity, you could use NumberStyles. Integer to require a plain integer,
or you could use NumberStyles.AllowThousands to allow thousands separators.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Exercises | 309

3. The following code shows how you might verify that PriceEach is greater than zero:

// Verify that PriceEach is greater than zero.
if (PriceEach <= 0)

{

MessageBox.Show ("Price each must be greater than 0.");
priceEachTextBox.Focus () ;
return false;

}

4. The following code shows how you might verify that the product of Price Each and
Quantity fits in the decimal data type:
// See if Quantity * PriceEach is too big.
try

{
}

catch (Exception ex)

{

decimal total = Quantity * PriceEach;

MessageBox.Show (ex.Message) ;
return false;

}

You can test that part of the code by setting Price Each to 1e28 and Quantity to 1000.
> If valuesAreOk finds that all of the values are okays, it should return true.

1. If the method makes it past all of the previous tests, it should use the statement
ItemName = itemTextBox.Text to save the item name for the main program to read.

2. The method should then end with the statement return true.

EXERCISES

1. Copy the program you wrote for the Try It. That program still has one more problem (at
least). If the sum of the values of the items is too big to fit in a decimal, the main program
will crash. You can test this by entering two items with Price Each 1e28 and Quantity 7.

Use a try-catch block to protect the main program from this problem. Enclose the code
that displays the NewItemForm in a loop that executes as long as the new item’s values cause
problems.

(Did you anticipate this problem? How about the problem of a new item having a price of
$1e28 and quantity 1000? Anticipating and protecting against these kinds of problems is
part of what makes programming challenging.)

2. The limits used by the program you wrote for Exercise 1 are ludicrous. You could use the
program to order 1 million pencils or a notepad that cost $1e28. That’s more money than
there is in the entire world. (Probably more money than exists in the entire universe, depend-
ing on the currency exchange rate with the Andromeda galaxy.)

www.it-ebooks.info

http://www.it-ebooks.info/

310 | LESSON 21 HANDLING ERRORS

Copy the program you wrote for Exercise 1 and add sanity checks. Modify the
ValuesAreOk method so it allows up to 100 items and Price Each up to $100.

3. Even if it’s unusual for an item to have a price of more than $100 or for someone to order
more than 100 of a particular item, it still may be possible. Copy the program you wrote for
Exercise 2 and modify the sanity checks. If a value exceeds the normal limits, ask the user if
the value is correct and continue if the user says Yes.

4. Copy the LCM program you built for Exercise 20-1 (or download the version on the book’s
website) and add error handling to it. If a value causes an error, display a message and set
focus to its textbox. Hints: Validate both the GCD and LCM methods so they only allow
inputs greater than 0. That way they’re both covered if a different program uses GCD
directly. Also use a try-catch block in the Calculate button’s click event handler to protect
against format errors.

5. Copy the Fibonacci program you built for Exercise 19-2 (or download the version on the
book’s website) and add error handling and validation to it. Protect the program against for-
mat errors. Also move the calculation itself into a new method and make it throw an excep-
tion if its input is less than 0. (Hint: Test the program with the input 200 and make sure the
result makes sense.)

6. [SimpleEdit] Copy the SimpleEdit program you built for Exercise 20-4 (or download the ver-
sion on the book’s website) and add error handling to the places where the program opens
and saves files.

To test the program, run it, type some text, and then close the program. Then:

> Use Microsoft Word to open the file Test . rtf in the program’s executable directory.
Then try to use SimpleEdit to open the file.

> Close Word, open the file in SimpleEdit, and then open the file again in Word. Now
make a change in SimpleEdit and try to save the file.

> With the file still open in Word, start a new file in SimpleEdit, type some text, and
use the File menu’s Save As command to try to save the new file as Test . rtt.

In all three tests, Word should have the Test . rtf file locked so SimpleEdit should display
an error message.

7. The quadratic equation finds solutions to equations with the form ax? + bx + ¢ = 0 where
a, b, and c are constants. The solutions to this equation (the values of x that make it true) are
given by the quadratic formula:

. —b+b* —4ac

2a

Build a program similar to the one shown in Figure 21-2 that calculates solutions to qua-
dratic equations. Hints:

> Use TryParse to protect against format errors.

> Use Math.Sqrt to take square roots.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 311

The equation has zero, one, or two real solutions depending on whether the discrimi-
nant b2 — 4ac is less than, equal to, or greater than zero. Use if statements to avoid
trying to take the square root of a negative number.

If a is 0, then this is a linear equation not a quadratic, and the quadratic formula
tries to divide by zero. Unfortunately C# doesn’t consider that an error and just sets
the result equal to the special value NaN (which stands for “not a number”). After
performing the calculation, use double. IsNaN to see if the result is NaN and display
“Not a quadratic” if it is.

o Quadratic Formula I;‘i-
[xe[_4-0
x= ‘1 |0r |-4

FIGURE 21-2

Several of the programs you’ve built or described in this book so far enable a Button only
when a TextBox contains non-blank text. If the user should enter a number, you can improve
the program by only enabling the Button if the text has a valid format. Try this out by writ-
ing a program that calculates the area of a circle. Hints:

>

Use TryParse to make the TextBox’s TextChanged event handler enable the
Calculate Button when the user has entered a valid double and that value is at least
zZero.

Use the formula area = m x radius?.

If the user enters a value that is too large (such as 1€200), display the message, “The
radius is too big.”

Make a program that contains a TextBox for each of the basic data types byte, sbyte,
ushort, short, uint, int, ulong, long, float, double, decimal, bool, and char. Use
event handlers to set each TextBox’s background color to white if the TextBox contains a
valid value of the corresponding data type and pink if it does not.

NOTE Please select the videos for Lesson 21 online at www.wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

s

Preventing Bugs

Many programmers believe that the way to make a program robust is to make it able to
continue running even if it encounters errors. For example, consider the following version
of the Factorial method:

// Recursively calculate n!
private long Factorial (long n)

{
if (n <= 1) return 1;
return n * Factorial(n - 1);

This method is robust in the sense that it can handle nonsensical inputs such as —10. The func-
tion cannot calculate —10!, but at least it doesn’t crash so you might think this is a safe method.

Unfortunately, although the function doesn’t crash on this input, it also doesn’t return a correct
result because —10! is not defined. That makes the program continue running even though it has
produced an incorrect result.

The method also has a problem if its input is greater than 20. In that case, the result is too
big to fit in the 1ong data type so the calculations cause an integer overflow. By default, the
program silently ignores the error, and the result you get uses whatever bits are left after the
overflow. In this case, the result looks like a large negative number. Again the method doesn’t
crash but it doesn’t return a useful result, either.

In general, bugs that cause a program to crash are a lot easier to find and fix than bugs like
this one that produce incorrect results but that continue running.

In this lesson, you learn techniques for detecting and correcting bugs. You learn how to make
bugs jump out so they’re easy to fix instead of remain hidden.

INPUT ASSERTIONS

In C# programming, an assertion is a statement that the code claims is true. If the statement is
false, the program stops running so you can decide whether a bug occurred.

www.it-ebooks.info

http://www.it-ebooks.info/

314 | LESSON 22 PREVENTING BUGS

One way to make an assertion is to evaluate the statement and, if it is false, throw an exception.
That guarantees that the program cannot continue running if the assertion is false.

The following code shows a Factorial method with assertions. If the method’s parameter is less
than O or greater than 20, the code throws an exception:

// Recursively calculate n!
private long Factorial (long n)

{
// Validate the input.
if ((n < 0) || (n > 20))
throw new ArgumentOutOfRangeException (
"n", "Factorial parameter must be between 0 and 20.");

if (n <= 1) return 1;
return n * Factorial(n - 1);

To make this kind of assertion easier, the .NET Framework provides a Debug class. The Debug
class’s static Assert method takes as a parameter a boolean value. If the value is false, Assert
displays an error message showing the program’s stack dump at the time so you can figure out
where the error occurred.

The following code shows a new version of the factorial method that uses Debug.Assert. The
optional second parameter to Debug.Assert gives a message that should be displayed if the
assertion fails:

// Recursively calculate n!
private long Factorial (long n)
{
// Validate the input.
Debug.Assert ((n >= 0) && (n <= 20),
"Factorial parameter must be between 0 and 20.");

if (n <= 1) return 1;
return n * Factorial(n - 1);

NOTE The Debug class is in the System.Diagnostics namespace. If you want
to use it without including the namespace, as in the preceding code, you should
include the following using directive at the top of the file:

using System.Diagnostics;

Normally when you develop a program you make debug builds. These include extra debugging sym-
bols so you can step through the code in the debugger. If you switch to a release build, those sym-
bols are omitted, making the compiled program a bit smaller. The Debug.Assert method also has
no effect in release builds.

www.it-ebooks.info

http://www.it-ebooks.info/

Input Assertions | 315

The idea is that you can use Debug.Assert to test the program but then skip the assertions after
the program is debugged and ready for release to end users. Of course this works only if the code
is robust enough to behave correctly even if a bug does slip past the testing process and appears in
the release build. In the case of the Factorial method, this code must always protect itself against
input errors so it should throw an exception rather than use Debug.Assert.

To switch from a debug to a release build or vice versa, open the Build menu and select the
Configuration Manager command to display the dialog shown in Figure 22-1. Select Debug
or Release from the dropdown and click Close.

Configuration Manager _

Active solution configuration: Active solution platform:

Debug v| |Any CPU v|

Project contexts (check the project configurations to build or deploy):

Project Configuration Platform Build Deploy

Average Salaries Debug Any CPU

Close

FIGURE 221

When you build the program, Visual Studio places the compiled executable in the project’s
bin\Debug or bin\Release subdirectory. Be sure you use the correct version or you may find
Debug.Assert statements displaying errors in what you thought was a release build.

NOTE The pebug class provides some other handy methods in addition to
Assert. The WriteLine method displays a message in the Output window. You
can use it to display messages showing you what methods are executing, to dis-
play parameter values, and to give you other information that you might other-
wise need to learn by stepping through the code in the debugger.

The Debug class’s Indent method lets you change the indentation of output
produced by Debug.WriteLine so, for example, you can indicate nesting of
method calls.

Like the other Debug methods, these do nothing in release builds so the end user
never sees these messages.

www.it-ebooks.info

http://www.it-ebooks.info/

316

LESSON 22 PREVENTING BUGS

OTHER ASSERTIONS

In addition to input assertions, a method can make other assertions as it performs calculations. A
method can use assertions to check intermediate results and to validate final results before returning
them. A method can even use assertions to validate the value it receives from another method.

Often these assertions cannot be as exact as those you can perform on inputs, but you may still be
able to catch some really ludicrous values.

For example, suppose an order-processing form lets the user enter items for purchase and then cal-
culates the total cost. You could use assertions to verify that the total cost is between $0.01 and $1
million. This is a pretty wide range so you are unlikely to catch any but the most egregious errors,
but you may catch a few.

Note that you should not validate user inputs with assertions. An assertion interrupts the program

so you can try to find a bug. Your code should check for user input errors and handle them without
interrupting the program. Instead of using assertions, you should use TryParse, try-catch blocks,
and if statements to determine whether the user’s input makes sense. Remember, when you make a
release build, Debug. Assert calls go away so you cannot rely on them to validate the user’s values.

One drawback to assertions is that it’s hard to make programmers use them. When you’re writing
code, it’s hard to convince yourself that the code could be wrong. After all, if you knew there was a
bug in the code, you'd fix it.

Assertions are like seat belts, airbags, and bicycle helmets. You don’t use them because you expect to
need them today; you use them just on the off chance that you’ll need them someday. Usually your
assertions will just sit there doing nothing, but if a bug does rear its ugly head, a good set of asser-
tions can make the difference between finding the bug in seconds, hours, or days.

To summarize, you can use assertions to protect a method against invalid inputs and to validate its
outputs. If you want an assertion to only occur in debug builds, use Debug.assert. If you want a
test to be included in release builds, use your own 1if statement to check the condition and throw an
exception if the condition fails. In particular, use Debug.Assert to catch unusual but valid values so
you can decide whether they are bugs during testing.

TRY IT

In this Try .It, you erte. a method to Ca‘lculate the average Qf a o Average Salaries | = | O [N
set of salaries. Calculating the average is easy. The interesting
part is adding assertions to make sure the method is being used

Salaries:
520,000 530,000 $25,000 $40.000 $52,000 |

correctly.
To test the method, you build the program shown in Figure 22-2. Avermge:
| $33.400.00

The focus of this Try It is on the method that calculates the aver-
age, not on the user interface. The assumption is that some other FiGURE 22-2

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 317

part of a larger program would call this method, so the user interface shown in Figure 22-2 is purely
for testing purposes. A real program would not allow the user to enter invalid values. Instead it
might take the values from a database. In that case, the method’s assertions protect it from invalid
data in the database.

Lesson Requirements

In this lesson, you:

>

>

Build a program similar to the one shown in Figure 22-2.

When the user clicks Calculate, make the program split the values entered in the TextBox
apart, copy them into an array of decimals, pass them to the Averagesalary method, and
display the result.

Make the averagesalary method validate its inputs by asserting that the array has a reason-
able number of elements and that the salaries are reasonable. (Assume you’re not working on
Wall Street so salaries are at least $10,000 and less than $1 million.) Also validate the average.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox .com/go/csharp24hourtrainer2e.

Hints

Think about how the program should react in a final release build for each of the input
conditions.

For example, if the values array contains a salary of $1,600, what should the method
do? In this case, that value is unusual but it could be valid (perhaps the company hired

an intern for a week) so the method can calculate a meaningful (although unusual) result.
The method should check this condition with Debug.Assert so it can calculate a result in
the release version.

For another example, suppose the values array is empty. In this case the method cannot
calculate a meaningful value so it should throw an exception to make the calling code deal
with the problem.

Step-by-Step

>

Build a program similar to the one shown in Figure 22-2.
1. This is reasonably straightforward.

When the user clicks Calculate, make the program split the values entered in the TextBox
apart, copy them into an array of decimals, pass them to the AverageSalary method, and
display the result.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

318

LESSON 22 PREVENTING BUGS

1. You can use code similar to the following:

// Calculate and display the average salary.
private void calculateButton Click(object sender, EventArgs e)
{
try
{
// Copy the salaries into an array.
string[] string salaries = salariesTextBox.Text.Split();
decimal[] salaries = new decimal [string salaries.Length];
for (int 1 = 0; i1 < string salaries.Length; i++)
{
salaries[i] =
decimal.Parse(string salaries[i], NumberStyles.Any) ;

}

// Calculate the average.
decimal averageSalary = AverageSalary(salaries);

// Display the result.
averageTextBox.Text = averageSalary.ToString("C");

}

catch (Exception ex)

{

averageTextBox.Clear () ;
MessageBox.Show (ex.Message) ;

}

> Make the averagesalary method validate its inputs by asserting that the array has a reason-
able number of elements and that the salaries are reasonable. (Assume you’re not working
on Wall Street so salaries are at least $10,000 and less than $1 million.) Also validate the
average.

2. You can use code similar to the following:

// Calculate the average of this array of salaries.
private decimal AverageSalary(decimal[] salaries)
{
// Sanity checks.
if (salaries.Length < 1)
{
throw new ArgumentOutOfRangeException("salaries",
"AverageSalary method cannot calculate average " +
"salary for an empty array.");
}
Debug.Assert (salaries.Length < 100, "Too many salaries.");
for (int 1 = 0; i < salaries.Length; i++)
{
Debug.Assert (salaries[i] >= 10000, "Salary is too small.");
Debug.Assert (salaries[i] < 1000000, "Salary is too big.");

}

// Calculate the result.
decimal total = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 319

for (int 1 = 0; i < salaries.Length; i++)

{
}

decimal result = total / salaries.Length;

total += salaries|[i];

// Validate the result.
Debug.Assert (result >= 10000, "Average salary is too small.");
Debug.Assert (result < 1000000, "Average salary is too big.");

return result;

EXERCISES

1.

Suppose you’re writing a method to sort orders based on priority. Use the following defini-
tion for an order structure:

private struct Order

{

public int OrderId;
public int Priority;

}

Write the sortorders method, which takes as a parameter an array of orders and sorts
them. Don’t actually write the code that sorts the orders, just write assertions to validate the
inputs and outputs.

Build the program shown in Flgpre 22—_3 to convert tem- . Temperatures
peratures between the Fahrenheit, Celsius, and Kelvin
ScaleS. Fahrenheit Celsius Kelhvin
.)) [womo |[377 |[38 |
Write the methods FahrenheitToCelsius,
[se | [s&][s& |

KelvinToCelsius, CelsiusToFahrenheit, and
CelsiusToKelvin to perform the conversions using the
following formulas: FIGURE 22-3

°C=(F-32)x5/9
°C = °K - 273.15
F=°Cx9/5+32
°K = °C + 273.15

Make the conversion methods use assertions to ensure that Fahrenheit values are between
—130 and 140, Celsius values are between =90 and 60, and Kelvin values are between 183
and 333.

Make a program that lets the user input miles and gallons of fuel and calculates miles per gal-
lon using a MilesPerGallon method. Make the method protect itself against miles and gal-
lons values that are too big or too small. Make it also validate its result so it doesn’t return
values that are too large or small.

www.it-ebooks.info

http://www.it-ebooks.info/

320 | LESSON 22 PREVENTING BUGS

4. Copy the Fibonacci program you wrote for Exercise 20-3 (or download the version on the
book’s website). Because of the recursive way the program calculates Fibonacci numbers, it
takes a noticeable amount of time to calculate values larger than around the 35th Fibonacci
number. It can still calculate larger values, however. Add appropriate input validation to the
Fibonacci method.

5. Exercise 12-11 asks you to debug a program that calculates interest. Copy the fixed program
(or download the version on the book’s website) and add appropriate input validation.

6. Exercise 12-12 asks you to debug a program that uses several methods to calculate the
amount of time needed to double an investment at various interest rates. Copy the fixed pro-
gram (or download the version on the book’s website) and add appropriate input validation.

7. [Graph%cs, Hard] Make a program §1m11ar to the one - e]
shown in Figure 22-4 to display a histogram showing
student test scores.

Hints: —

> Make a class-level scores array and initialize it
to random values in the form’s Load event han-
dler. (Hint: For each score, I used the sum of three
random values in the ranges 10-25, 10-25, and
10-50 to get a somewhat curved distribution.)

» Place a PictureBox on the form. Make its
Resize event handler refresh the PictureBox.
Make its Paint event handler call a brawGraph
method.

FIGURE 22-4

> Make the prawGraph method do the following;:

> Take as parameters the available size in which to draw the bar chart, the
Graphics object on which to draw, and the test scores.

> Make 10 bins to count scores in the ranges 0-19, 20-29, 30-39, ..., 90-100.
(Hint: Make the number of bins a constant so you can change it easily.)

> Loop through the scores and increment the corresponding bins. (Hint: Be sure
to place scores of 100 in the last bin.)

> Loop through the bins and find the largest count. Use that value to calculate a
scale factor that makes the largest count fill the available height. (Hint: scale =
available height / largest count.)

Calculate the bar width. (Hint: width = available width / number of bars.)

> Loop through the bins and draw their bars. (Hint: Remember that drawing
coordinates start with (0, 0) in the upper-left corner and increase down and to
the right.)

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 321

[Graphics] Copy the program you wrote for Exercise 7. (Or download the version on the
book’s website if you didn’t do it. I warned you that it was hard.) Add validation code to
the DrawGraph method to make sure the available size and test scores are reasonable.

NOTE Please select the videos for Lesson 22 online at www .wrox.com/go/

csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION IV
Classes

The lessons in Section III focus on C# programming statements. They explain how to make
decisions with if and switch statements, repeat program steps with loops, reuse code with
methods, and catch exceptions.

Methods are particularly useful for programming at a higher level because they let you
encapsulate complex behaviors in a tightly wrapped package. For example, you might write

a CalculateGrade method that determines a student’s grades. This method can hide all of
the details of how grades are calculated. (Are tests graded on a curve? Is the grade a weighted
average of tests and homework assignments? How much is attendance worth?) The main
program only needs to know how to call the method, not how it works.

Classes provide another even more powerful method for abstracting complex entities into
manageable packages. For example, a student class might embody the idea of a student and
include basic information (name, address, phone), the courses that the student is taking, grades
(test scores, homework grades), and even attendance. It could also include methods such as
CalculateGrade for manipulating the student data.

The lessons in this section explain classes. They explain how you ¢an build classes, make one
class inherit the capabilities of another, and make a class override the features of its’parent class.

» LESSON 23: Defining Classes

» LESSON 24: Initializing Objects

» LESSON 25: Fine-Tuning Classes

» LESSON 26: Overloading Operators
» LESSON 27: Using Interfaces

» LESSON 28: Making Generic Classes

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

23

Defining Classes

This book hasn’t emphasized the fact, but you’ve been working with classes since the very
beginning. The very first program you created in Lesson 1 included several classes such as the
program’s main form and some behind-the-scenes classes that help get the program running.
Since then, you’ve used all kinds of control classes, the MessageBox class, the Array class,
collection classes, and more. You can even treat primitive data types such as int and string
as classes under some circumstances.

In this lesson you learn how to create your own classes. You learn how to define a class and
give it properties, methods, and events to make it useful.

WHAT IS A CLASS?

A class defines a type of object. It defines the properties, methods, and events provided by
its type of object. After you define a class, you can make as many instances of that class as
you like.

For example, the Button class defines the properties and behaviors of a button. You can create
any number of instances of Buttons and place them on your forms.

You can think of a class as a blueprint for making objects. When you create an instance of the
class, you use the blueprint to make an object that has the properties and behaviors defined by
the class.

You can also think of a class as a cookie cutter. Once you’ve created the cookie cutter, you can
make any number of cookies that all have the same shape.

Classes are very similar to the structures described in Lesson 17, and many of the techniques
you learned there apply here as well. For example, you can give a class fields that an instance
of the class can use to perform calculations.

Several important differences exist between structures and classes, but one of the most
important is that structures are value types while classes are reference types. Perhaps the most

www.it-ebooks.info

http://www.it-ebooks.info/

326

| LESSON 23 DEFINING CLASSES

confusing consequence of this is that when you assign structure variable A equal to structure vari-
able B, A becomes a copy of B. In contrast, if you assign class variable ¢ equal to class variable p,
then variable ¢ now points to the same object that variable D does.

For a more detailed discussion of some of these differences, see the section “Structures Versus
Classes” in Lesson 17.

The rest of this lesson focuses on classes and doesn’t talk specifically about structures.

NOTE Note that the same techniques apply to structures and classes. For
example, structures have the same benefits as classes described in the
following section. Just because I'm describing them here doesn’t mean I'm
trying to imply that classes are better because they have these advantages and
structures don’t.

CLASS BENEFITS

The biggest benefit of classes is encapsulation. A well-designed class hides its internal workings
from the rest of the program so the program can use the class without knowing how the
class works.

For example, suppose you build a Turt1e class to represent a turtle crawling across the screen
drawing lines as it moves. The class would need properties such as x, v, and Direction to define
the Turtle’s location and direction. It might also provide methods such as Turn to make it change
direction and Move to make it move.

The Turtle class needs to know how to draw the Turt1e’s path as it moves, but the main program
doesn’t need to know how it works. It doesn’t need to know about Graphics objects, Pens, or the
trigonometric functions the Turtle uses to figure out where to go. The main program only needs to
know how to set the Turt1e’s properties and call its methods.

Some other benefits of classes (and structures) include:

> Grouping data and code—The code that makes a Turtle move is right in the same object as
the data that determines the Turt1le’s position and direction.

> Code reuse—You only need to write the code for the Turt1le class once and then all instances
of the class get to use it. You get even more code reuse through inheritance, which is
described in the section “Inheritance” later in this lesson.

> Polymorphism—Polymorphism means you can treat an object as if it were from
another class as long as it inherits from that class. For example, a student is a
type of Person so you should be able to treat a student object as if it were either
a student or a Person. The section “Polymorphism” later in this lesson describes
this further.

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Class | 327

MAKING A CLASS

Now that you know a bit about what classes are good for, it’s time to learn how to build one.

Making a class in C# is simple. Open the Project menu and select Add Class. Give the class a good
name and click Add.

Initially the class looks something like the following:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace MyProgram

{

class Employee

{
}

Here MyProgram is your program’s default namespace, which is normally the same as the program’s
name. It is used as the namespace for all of the forms and other classes that you add to the program.

Employee is the name that I gave the class in this example.

At this point, the class doesn’t contain any data or methods so it can’t do anything. You can write
code to create an instance of the class, but it will just sit there. To make the class useful, you need to
add properties, methods, and events:

> Properties are values associated with a class. For example, an Employee class might define
FirstName, LastName, and EmployeeId properties.

> Methods are actions that an object can perform. For example, an Employee class might
provide a calculateBonus method that calculates the employee’s end-of-year bonus based
on performance during the year.

> Ewvents are raised by the class to tell the rest of the program that something interesting
happened, sort of like raising a flag to draw attention to something. For example, the
Employee class might raise a TooManyHours event if the program tried to assign an employee
more than 40 hours of work in a week.

Properties, methods, and events allow a program to control and interact with objects. The following
sections explain how you can add properties, methods, and events to your classes.

Properties

If you give a class a public variable, other pieces of code can get and set that variable values. This
kind of variable is called a field. A field is similar to a property but it has one big disadvantage: it
provides unrestricted access to its value. That means other parts of the program could dump any
garbage into the field without the class being able to stop them.

www.it-ebooks.info

http://www.it-ebooks.info/

328 | LESSON 23 DEFINING CLASSES

In contrast, a class implements a property by using accessor methods that can include code to pro-
tect the class from garbage values. You learn more about this as you see how to build properties.

The following sections describe the two most common approaches for implementing properties:
auto-implemented properties and backing fields.

Auto-Implemented Properties

The easiest way to make a property is to use an auto-implemented property. The syntax for an auto-
implemented property is:
accessibility dataType Name { get; set; }

Here accessibility determines what code can use the property. It can be public, private, and so
on. The dataType determines the property’s data type and Name determines its name. The get and
set keywords indicate that other code should be able to get and set the property’s value.

NOTE You can omit the set clause to create a read-only property.

The following code creates a simple property named FirstName of type string:

public string FirstName { get; set; }

Backing Fields

When you make an auto-implemented property, C# automatically generates accessors that let you

get and set the property’s value. You can use those accessors without needing to know the details of
how they work.

When you make a property that is not auto-implemented, you need to write the accessors yourself.

The following shows the basic syntax used to define a property that is not auto-implemented:

accessibility dataType Name

get
{

...getCode. ..
}
set
{

...setCode. ..
}

}

Here accessibility, dataType, and Name are the same as before. The getCode and setcCode are
the pieces of code that get and set the property’s value somehow.

One common way to implement this kind of property is with a backing field. A backing field is a
field that stores data to represent the property. The getcode and setcode use the backing field to
get and set the property’s value.

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Class | 329

The following C# code shows a version of the birection property stored in the backing field named
direction:

// The Turtle's direction in degrees.
private int direction = 0; // Backing field.
public int Direction

{
get { return direction; }
set { direction = value; }

}

The code starts by defining the field direction to hold the property’s value. The field is private so
only the code inside the class can see it.

The property’s get accessor simply returns the value of direction.

The property’s set accessor saves a new value in the backing field direction. The new value that
the calling code is trying to assign to the property is stored in a parameter named value. This
parameter is a bit odd because it isn’t declared anywhere. The set accessor implicitly defines value
and can use it.

The preceding code simply copies values in and out of the backing field, so why didn’t you just make
the backing field public and not bother with a property? There are several reasons.

First, a property hides its details from the outside world, increasing the class’s encapsulation. As far
as the outside world is concerned, a description of the Direction property tells you what is stored
(the direction in degrees) but not how it is stored (as an integer value in degrees).

This example stores the direction in degrees, but suppose you decided that the class would work
better if you stored the direction in radians. If Direction is a field, then any code that uses it would
now break because it is using degrees. If you use accessors, they can translate between degrees and
radians as needed so the code outside the class doesn’t need to know that anything has changed.

The following code shows a new version of the Direction property that stores the value in radians.
As far as the code outside the class is concerned, nothing has changed and that code can still work
in degrees.

// The Turtle's direction in radians.

private double direction = 0; // Backing field.
public int Direction
{

get { return (int) (direction * 180 / Math.PI); }
set { direction = value * Math.PI / 180; }

You can also add validation code to property accessors. For example, suppose the Direction prop-
erty represents an angle in degrees and you only want to allow values between 0 and 359. The fol-
lowing code asserts that the new value is between 0 and 359 degrees. The program can continue
correctly if the value is outside of this range so the code uses Debug.assert instead of throwing an
exception:

// The Turtle's direction in degrees.
private int direction = 0; // Backing field.
public int Direction

www.it-ebooks.info

http://www.it-ebooks.info/

330 | LESSON 23 DEFINING CLASSES

get { return direction; }
//set { direction = value; }
set
{
Debug.Assert ((value >= 0) && (value <= 359),
"Direction should be between 0 and 359 degrees");
direction = value;

Property accessors also give you a place to set breakpoints if something goes wrong. For

example, if you know that some part of your program is setting a Turtle’s Direction to 45 when it
should be setting it to 60 but you don’t know where, you could set a breakpoint in the set accessor
to see where the change is taking place.

TRY IT

Because classes are important and somewhat confusing, this lesson includes three Try Its. In this first
Try It, you create a simple Person class with FirstName, LastName, City, Street, and zip properties
that have some simple validations. You also build a

simple test application shown in Figure 23-1. = Person Class =& =
. First Name: ‘ | | Create |
Lesson Requlrements Last Name |Jackson -
. 5 17EEm &
In this lesson, you: oot [7EBmS |
City Clonesburgh
. - E ting Person.
> Build the program shown in Figure 23-1. State PA rereEna TR
Person.Firsthame cannot be blank.
> Create a Person ClaSS. ar IE Parameter name; FirstName
> Make auto-implemented properties for
Street, City, State, and Zip.
>

Make FirstName and LastName proper- FIGURE 23-1
ties that use backing fields. Add validation

code to their set accessors to prevent you from setting FirstName or LastName to a null or
blank value.

Step-by-Step

>

Build the program shown in Figure 23-1.

1. This is reasonably straightforward.

Create a Person class.

1. Use the Project menu’s Add Class item. Name the class Person.
Make auto-implemented properties for Street, City, State, and Zip.

1. You can use code similar to the following:

// Auto-implemented properties.
public string Street { get; set; }

www.it-ebooks.info

http://www.it-ebooks.info/

Methods | 331

public string City { get; set; }
public string State { get; set; }
public string Zip { get; set; }

> Make FirstName and LastName properties that use backing fields. Add validation code
to their set accessors to prevent you from setting FirstName or LastName to a null or
blank value.

1. The following code shows how you might implement the FirstName property. The
code for the LastName property is similar.

// FirstName property.
private string firstName = "";// Backing field.
public string FirstName
{
get

{

return firstName;

if (value == null)
throw new ArgumentOutOfRangeException ("FirstName",
"Person.FirstName cannot be null.");
if (value.Length < 1)
throw new ArgumentOutOfRangeException ("FirstName",
"Person.FirstName cannot be blank.");

METHODS

A method is simply a piece of code in the class that other parts of the program can execute. The fol-
lowing method shows how the Turtle class might implement its Move method:

// Make the Turtle move the indicated distance
// in its current direction.
public void Move (int distance)
{
// Calculate the new position.
double radians = Direction * Math.PI / 180;
int newX = (int) (X + Math.Cos(radians) * distance);
int newY = (int) (Y + Math.Sin(radians) * distance);

// Draw to the new position.
using (Graphics gr = Graphics.FromImage (Canvas))

{
}

gr.DrawLine (Pens.Blue, X, Y, newX, newY);

// Save the new position.
X = newX;
Y = newY;

www.it-ebooks.info

http://www.it-ebooks.info/

332

| LESSON 23 DEFINING CLASSES

The method takes as a parameter the distance it should move. It uses the Turtle’s current position
and direction to figure out where this move will finish. It uses some graphics code to draw a line
from the current position to the new one (don’t worry about the details) and finishes by saving the
new position.

EVENTS

Events let the class tell the rest of the program that something interesting is happening. For example,
if a Bankaccount object’s balance falls below 0, it could raise an Accountoverdrawn event to notify
the main program.

Declaring an event in C# is a bit tricky because you first need to understand delegates.

Delegates

A delegate is a data type that can hold a specific kind of method. For example, you could make a
delegate type that represents methods that take no parameters and return a double. You could then
declare a variable of that type and save a method in it.

Confusing? You bet!

The key to understanding delegates is to remember that a delegate type is a new data type just like
a string or int. The difference is that a variable with a delegate type holds a method, not a simple
value like “Hello” or 27.

The Delegates example program, which is part of this lesson’s download on the book’s website,
provides a simple example. The program uses four steps to demonstrate delegates: declare the
delegate type, create variables of that type, initialize the variables, and use the variables’ values.

First the program defines a delegate type:

// Define a delegate type that takes no parameters and returns nothing.
private delegate void DoSomethingMethod () ;

The declaration begins with the accessibility keyword private and then the keyword delegate to
tell C# that it is defining a delegate type. The rest of the declaration gives the delegate type’s name
DoSomethingMethod. It also indicates that instances of this type must refer to methods that take no
parameters and return nothing (void).

Now that it has defined the delegate type, the code declares three variables of that type. Each of the
variables can hold a reference to a method that takes no parameters and returns nothing:

// Declare three DoSomethingMethod variables.
private DoSomethingMethod methodl, method2, method3;
Next the program defines two methods that match the delegate’s definition:

// Define some methods that have the delegate's type.
private void SayHi ()

{
}

MessageBox.Show ("Hi") ;

www.it-ebooks.info

http://www.it-ebooks.info/

Events | 333

private void SayClicked()

{
}

When the program starts, the following Load event handler sets the variables method1, method2,
and method3 so they point to these two methods. Notice that the code makes method1 and method3
point to the same method, sayHi:

MessageBox.Show ("Clicked") ;

// Initialize the delegate variables.
private void Forml Load(object sender, EventArgs e)
{

methodl = SayHi;

method2 = SayClicked;

method3 = SayHi;

}

At this point, the program has defined the delegate type, created three variables of that type, and
initialized those variables so they refer to the sayHi and sayClicked methods. Now the program is
ready to use the variables.

The program displays three buttons. When you click them, the following event handlers execute.
Each button simply invokes the method referred to by one of the delegate variables.

// Invoke the method stored in the delegates.
private void methodlButton Click(object sender, EventArgs e)

{
}
private void method2Button Click(object sender, EventArgs e)

{
}

private void method3Button Click(object sender, EventArgs e)

{
}

When it executes, a Button’s event handler doesn’t “know” what method is stored in its variable.
For example, the last Button invokes method3 without knowing which “real” method will execute.

methodl () ;

method2 () ;

method3 () ;

This isn’t an extremely practical program, and it’s hard to imagine a situation where you would just
want buttons to invoke the methods stored in different delegates. However, this example is much
simpler than many programs that use delegates so it’s worth studying before you look at more
realistic examples.

Event Handler Delegates
Now that you know a bit about delegates, you can learn how to use them to make an event.

First, in the class that will raise the event, declare a delegate type to define the event handler.
Usually developers end the delegate’s name with EventHandler to make it obvious what the
delegate represents.

www.it-ebooks.info

http://www.it-ebooks.info/

334

| LESSON 23 DEFINING CLASSES

By convention, event handlers usually take two parameters named sender and e. The sender
parameter is an object that contains a reference to whatever object is raising the event. The
e parameter contains data specific to the event. Often you will define a class to provide that
information and the parameter e will be of that class.

For example, suppose you want the Turtle class to raise an outofBounds event to tell the program
that it is trying to move the Turtle off the drawing area. You want the parameter e to tell the pro-
gram the X and Y coordinates where the Turtle was trying to move.

In that case, you could use the following Turt1eoutofBoundsEventArgs class to store the X and Y
coordinates:

// The TurtleOutOfBoundsEventArgs data type.
public class TurtleOutOfBoundsEventArgs

{
// Where the Turtle would stop if
// this were not out of bounds.
public int X { get; set; }
public int ¥ { get; set; }

Vi
The following code shows how the Turtle class could declare its outofBoundsEventHandler delegate:

// Declare the OutOfBound event's delegate.
public delegate void OutOfBoundsEventHandler (
object sender, TurtleOutOfBoundsEventArgs e);

Next the class must declare the actual event to tell C# that the class will provide this event. The
declaration should begin with an accessibility keyword (public, private, and so on) followed
by the keyword event. Next it should give the event handler’s delegate type. It finishes with the
event’s name.

The following code declares the outofBounds event, which is handled by event handlers of type
OutOfBoundsEventHandler:

// Declare the OutOfBounds event.
public event OutOfBoundsEventHandler OutOfBounds;

The final piece of code that you need to add to the class is the code that raises the event. This code
simply invokes the event handler, passing it any parameters that it should receive.

Before it raises the event, however, the code should verify that some other piece of code has registered
to receive the event. The code does that by checking whether the event is nu11. (This syntax seems

a bit strange to me. The code looks like it is checking that an event is null when really it’s asking
whether another piece of code has asked to receive the event. This is just the syntax used by C#.)

The following code raises the Turtle class’s outofBounds event:

if (OutOfBounds != null)
{
TurtleOutOfBoundsEventArgs args = new TurtleOutOfBoundsEventArgs() ;
args.X = newx;
args.Y = newy;
OutOfBounds (this, args);

www.it-ebooks.info

http://www.it-ebooks.info/

Events | 335

If outofBounds is not null (in other words, some other code wants to receive the event), the code

creates a new TurtleOutOfBoundsEventArgs object, initializes it to indicate the point the Turtle
was trying to move to, and then calls outofBounds, passing it the object raising the event and the

TurtleOutOfBoundsEventArgsObﬁct

A class uses code to decide when to raise the event. The following code shows how the Turtle class
raises its event when the Move method tries to move beyond the edge of the Turtle’s Bitmap. The
bold code determines whether the Turtle is moving out of bounds and raises the event if necessary.

// Make the Turtle move the indicated distance
// in its current direction.
public void Move (int distance)
{
// Calculate the new position.
double radians = Direction * Math.PI / 180;
int newX = (int) (X + Math.Cos(radians) * distance);
int newY = (int) (Y + Math.Sin(radians) * distance);

// See if the new position is off the Bitmap.
if ((newX < 0) || (newY < 0) ||

(newX >= Canvas.Width) || (newY >= Canvas.Height))
{

// Raise the OutOfBounds event, passing
// the event handler the new coordinates.
if (OutOfBounds != null)

{
TurtleOutOfBoundsEventArgs args =
new TurtleOutOfBoundsEventArgs() ;
args.X = newX;
args.Y = newy;
OutOfBounds (this, args);
}
return;

}

// Draw to the new position.
using (Graphics gr = Graphics.FromImage (Canvas))

{
}

// Save the new position.
X = newX;
Y = newY;

gr.DrawLine (Pens.Blue, X, Y, newX, newY);

}

There’s still one piece missing to all of this. The main program must register to receive the
outOfBound event or it won’t know when the Turtle has raised it.

When the Turtle program starts, its Form Load event handler executes the following code. This adds the
Turtle OutOfBounds method as an event handler for the MyTurtle object’s outofBounds event. Now if
the MyTurtle object raises its event, the program’s Turtle outOfBounds event handler executes.

// Register to receive the OutOfBounds event.
MyTurtle.OutOfBounds += Turtle OutOfBounds;

www.it-ebooks.info

http://www.it-ebooks.info/

336 | LESSON 23 DEFINING CLASSES

NOTE You can remove an event handler by using code like this:

MyTurtle.OutOfBounds -= Turtle OutOfBounds;

The following code shows the Turtle program’s Turtle OutOfBounds event handler:

// Handle the OutOfBounds event.
private void Turtle OutOfBounds (object sender, Turtle.TurtleOutOfBoundsEventArgs e)

{

MessageBox.Show (string.Format ("Oops! ({0}, {1}) is out of bounds.",
e.X, e.Y));

TRY IT

In this second Try It in the lesson, you create a BankAccount class. You give it a Balance property
and two methods, credit and Debit. The Debit method raises an Overdrawn event if a withdrawal
would give the account a negative balance.

ozl Bank Account |=[B] X
You also build the test application shown in Figure 23-2.
Amourt: [15000] [Credt || Debit |
Lesson Requirements .

In this lesson, you:

Insufficient funds.

> Build the program shown in Figure 23-2.

> Create a BankAccount class. Give it a Balance

property. FIGURE 23-2

Add pebit and credit methods to add and
remove money from the account.

\

Define the AccountOverdrawnargs class to pass to event handlers.
Define the overdrawnEventHandler delegate type.

Declare the overdrawn event itself.

Make the pebit method raise the event when necessary.

In the main program, register to receive the overdrawn event so it can display a message box.

Y Y Y VY Y Y

In the main program, make the Credit and Debit buttons add and remove money from the
bank account, respectively.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox.com/go/csharp24hourtrainer2e.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Try lt | 337

Hints
> This example doesn’t do anything special with the Balance property so you can make it
auto-implemented.
>

Make the main form create an instance of the BankAccount class to manipulate.

Step-by-Step

> Build the program shown in Figure 23-2.

1. This is reasonably straightforward.
Create a BankAccount class. Give it a Balance property.

1. Use code similar to the following:

// The account balance.
public decimal Balance { get; set; }

Add pebit and credit methods to add and remove money from the account.

1.

Start with code similar to the following. You’ll modify the pebit method later to raise
the overdrawn event.

// Add money to the account.
public void Credit (decimal amount)

{
}

Balance += amount;

// Remove money from the account.
public void Debit (decimal amount)

{
}

Define the Accountoverdrawnargs class to pass to event handlers.

Balance -= amount;

>

1. Use code similar to the following:

// Define the OverdrawnEventArgs type.
public class OverdrawnEventArgs

{
}

Define the overdrawnEventHandler delegate type.

public decimal currentBalance, invalidBalance;
>

1. Use code similar to the following:

// Define the OverdrawnEventHandler delegate type.
public delegate void OverdrawnEventHandler (
object sender, OverdrawnEventArgs args);

www.it-ebooks.info

http://www.it-ebooks.info/

338 | LESSON 23 DEFINING CLASSES

> Declare the overdrawn event itself.
1. Use code similar to the following:
// Declare the Overdrawn event.
public event OverdrawnEventHandler Overdrawn;
> Make the pebit method raise the event when necessary.
1. Modify the initial version of the method so it raises the event when necessary.
Use code similar to the following;:
// Remove money from the account.
public void Debit (decimal amount)
{
// See if there is enough money.
if (Balance < amount)
{
// Not enough money. Raise the Overdrawn event.
if (Overdrawn != null)
{
OverdrawnEventArgs args = new OverdrawnEventArgs() ;
args.currentBalance = Balance;
args.invalidBalance = Balance - amount;
Overdrawn (this, args);
}
}
else
{
// There's enough money.
Balance -= amount;
}
}
>

In the main program, register to receive the Overdrawn event so it can display a
message box.

1. Use code similar to the following:

// Declare an account.
BankAccount MyAccount;

// Initialize the account.
private void Forml Load(object sender, EventArgs e)

{

// Initialize the account.
MyAccount = new BankAccount () ;
MyAccount .Balance = 100M;

// Register to receive the Overdrawn event.
MyAccount .Overdrawn += MyAccount Overdrawn;

// Display the current balance.

balanceTextBox.Text = MyAccount.Balance.ToString("C");

www.it-ebooks.info

http://www.it-ebooks.info/

Inheritance | 339

// We're overdrawn.
private void MyAccount Overdrawn (object sender,
BankAccount .OverdrawnEventArgs args)

}

> In the main program, make the Credit and Debit buttons add and remove money from the
bank account, respectively.

MessageBox.Show ("Insufficient funds.");

1. Use code similar to the following:

// Add money to the account.
private void creditButton Click (object sender, EventArgs e)

{

// Add the money.
decimal amount = decimal.Parse (amountTextBox.Text) ;
MyAccount.Credit (amount) ;

// Display the current balance.
balanceTextBox.Text = MyAccount.Balance.ToString("C") ;

}

// Remove money from the account.
private void debitButton Click (object sender, EventArgs e)

{

// Remove the money.
decimal amount = decimal.Parse (amountTextBox.Text) ;
MyAccount .Debit (amount) ;

// Display the current balance.
balanceTextBox.Text = MyAccount.Balance.ToString("C") ;

INHERITANCE

Often when you build one class, you end up building a bunch of other closely related classes. For
example, suppose you’re building a program that models your company’s organization. You might
build an Employee class to represent employees. After a while, you may realize that there are differ-
ent kinds of employees: managers, supervisors, project leaders, and so forth.

You could build each of those classes individually but you’d find that these classes have a lot in com-
mon. They all probably have FirstName, LastName, Address, EmployeeId, and other properties.
Depending on the kinds of operations you need the objects to perform, you might also find that they
Sharealotofnuxhods:ScheduleVacation,PrintTimesheet,RecordHours,andsofordL.Ahhough
you could build each of these classes individually, you would end up duplicating a lot of code in each
class to handle these common features.

Fortunately, C# allows you to make one class inherit from another and that lets them share common
code. When you make one class inherit from another one, you derive the new class from the existing
class. In that case, the new class is called the child class and the class from which it inherits is called
the parent class.

www.it-ebooks.info

http://www.it-ebooks.info/

340

| LESSON 23 DEFINING CLASSES

In this example, you could build a Person class with properties that all people have: FirstName,
LastName, Street, City, State, Zip, Email, and Phone. You could then derive the Employee class
from Person and add the new property EmployeeId.

Next you could derive the Manager class from Employee (because all Managers are also Employees)
and add new manager-related properties such as DepartmentName and DirectReports.

Syntactically, to make a class that inherits from another you add a colon and the parent class’s name
after the child class’s declaration. For example, the following code defines the Manager class, which
inherits from Employee. In addition to whatever features the Employee class provides, Manager adds
new DepartmentName and DirectReports properties:

class Manager : Employee

{

public string DepartmentName { get; set; }
public List<Employee> DirectReports = new List<Employee> () ;

NOTE Note that C# only supports single inheritance. That means a class can
inherit from at most one parent class. For example, if you define a House class
and a Boat class, you cannot make a HouseBoat class that inherits from both.

POLYMORPHISM

Polymorphism is a rather confusing concept that basically means a program can treat an object as if
it were any class that it inherits. Another way to think of this is that polymorphism lets you treat an
object as if it were any of the classes that it is. For example, an Employee is a kind of Person so you
should be able to treat an Employee as a Person.

Note that the reverse is not true. A Person is not necessarily an Employee (it could be a customer
or some other unrelated person), so you can’t necessarily treat a Person as an Employee.

For a more detailed example, suppose you make the Person, Employee, and Manager classes
and they inherit from each other in the natural progression: Employee inherits from Person and
Manager inherits from Employee.

Now suppose you write a SendEmail method that takes a Person as a parameter and sends a mes-
sage to the e-mail address stored in the Person’s Email property. Employee inherits from Person so
you should be able to pass an Employee into this method and the method should be able to treat it
as a Person. This makes intuitive sense because an Employee is a Person, just a particular kind of
Person.

Similarly, Manager inherits from Employee so a Manager is a kind of Employee. If an Employee
is a kind of Person and a Manager is a kind of Employee, then a Manager must also be a kind of
Person, so the same method should be able to take a Manager as its parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

Try lt | 341

TRY IT

In the final Try It of this lesson, you get to experiment with classes, inheritance, and polymorphism.
You build Person, Employee, and Manager classes. To test the classes, you build a simple

program that creates instances of each class and passes them to a method that takes a Person

as a parameter.

Lesson Requirements

In this lesson, you:

>

Create a Person class with properties FirstName, LastName, Street, City, State, Zip,
Email, and Phone. Give the Person class a GetAddress method that returns the Person’s
name and address properties as a string in the format:

Alice Archer
100 Ash Ave
Bugsville CO 82010
Derive an Employee class from Person. Add the properties EmployeeId and MailStop.

Derive a Manager class from Employee. Add a DepartmentName property and a
DirectReports property of type List<Employee>. Make a GetDirectReportsList
method that returns the names of the Manager’s Employees separated by newlines.

Make the main program create two Employees named Alice and Bob, a Manager named
Cindy who has Alice and Bob in her department, and a Person named Dan.

Make a showaddress method that takes a Person as a parameter and displays the Person’s
address.

On the main form, make buttons that call showaAddress for each of the people, passing the
method the appropriate object.

Make a final button that displays Cindy’s list of direct reports.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox.com/go/csharp24hourtrainer2e.

Hints

This example doesn’t do anything fancy with the class’s properties so you can use
auto-implemented properties.

The showaddress method should take a Person parameter even though some of the objects
it will be passed are Employees or Managers.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

342 | LESSON 23 DEFINING CLASSES

Step-by-Step

> Create a Person class with properties FirstName, LastName, Street, City, State, Zip,
Email, and Phone. Give the Person class a Getaddress method that returns the Person’s
name and address properties as a string in the format:

Alice Archer
100 Ash Ave
Bugsville CO 82010

1. Make a new person class with code similar to the following:

class Person

{
public string FirstName { get; set; }
public string LastName { get; set; }
public string Street { get; set; }
public string City { get; set; }
public string State { get; set; }
public string Zip { get; set; }

// Display the person's address.
// A real application might print this on an envelope.
public string GetAddress()

{

return FirstName + " " + LastName +
"\n" + Street + "\n" + City +
" " + State + " "+ Zip;

1
> Derive an Employee class from person. Add the properties EmployeeId and MailStop.

1. Make the Employee class similar to the following:

class Employee : Person

{
public int EmployeeId { get; set; }
public string MailStop { get; set; }

}

> Derive a Manager class from Employee. Add a DepartmentName property and a
DirectReports property of type List<Employee>. Make a GetDirectReportsList
method that returns the names of the Manager’s Employees separated by newlines.

1. Make the Manager class similar to the following:

class Manager : Employee

{

public string DepartmentName { get; set; }
public List<Employee> DirectReports = new List<Employee> () ;

// Return a list of this manager's direct reports.
public string GetDirectReportsList ()

www.it-ebooks.info

http://www.it-ebooks.info/

Try lt | 343

>

string result = "";
foreach (Employee emp in DirectReports)

{
}

return result;

result += emp.FirstName + " " + emp.LastName + "\n";

}

Make the main program create two Employees named Alice and Bob, a Manager named
Cindy who has Alice and Bob in her department, and a Person named Dan.

1. Because the program’s buttons need to access the objects, these objects should be stored
in class-level fields as in the following code:
// Define some people of various types.
private Person Dan;

private Employee Alice, Bob;
private Manager Cindy;

2. Add code to the main form’s Load event handler to initialize the objects. The following
code shows how the program might create Alice’s Employee object:

// Make an Employee named Alice.
Alice = new Employee() ;

Alice.FirstName = "Alice";
Alice.LastName = "Archer";
Alice.Street = "100 Ash Ave";

Alice.City = "Bugsville";
Alice.State = "CO";
Alice.Zip = "82010";
Alice.EmployeeId = 1001;
Alice.MailStop = "A-1";

3. Creating and initializing the other objects is similar. The only odd case is adding Alice
and Bob as Cindy’s employees as in the following code:

Cindy.DirectReports.Add (Alice) ;
Cindy.DirectReports.Add (Bob) ;

Make a showAddress method that takes a Person as a parameter and displays the Person’s
address.

1. Use code similar to the following:

// Display this Person's address.
private void ShowAddress (Person person)

{
}

On the main form, make buttons that call showaddress for each of the people, passing the
method the appropriate object.

MessageBox.Show (person.GetAddress ()) ;

www.it-ebooks.info

http://www.it-ebooks.info/

344 | LESSON 23 DEFINING CLASSES

>

1. Create the buttons’ click event handlers. The following code shows the event handler
that displays Cindy’s address:

private void cindyAddressButton Click (object sender, EventArgs e)

{
}

Note that the variable cindy is a Manager but the Showaddress method treats it as a
person. That’s okay because Manager inherits indirectly from pPerson.

ShowAddress (Cindy) ;

Make a final button that displays Cindy’s list of direct reports.

1. This method simply calls the cindy object’s GetDirectReportsList method and dis-
plays the result:

// Display Cindy's direct reports.
private void cindyReportsButton Click (object sender, EventArgs e)

{
}

MessageBox.Show (Cindy.GetDirectReportsList ()) ;

EXERCISES

1.

Write a program similar to the one shown in Figure 23-3 % ComplexNumbers | =10 [HGHN|
to manipulate complex numbers. When you enter the

complex numbers’ real and imaginary parts in the text- R i
boxes and click Calculate, the program should display ’) i

the sum, difference, and product of the two complex

numbers. A+B: S '

Make a ComplexNumber class with properties Real e v i

and Imaginary to hold a number’s real and imaginary e : i

parts, respectively. Give the class AddTo, MultiplyBy,

and subtractFrom methods that combine the current FIGURE 23-3

ComplexNumber with another taken as a parameter and
return the result as a new ComplexNumber.

Hints: Recall from school these equations for calculating with complex numbers:

(A+Bi)+ (C+Di)=(A+C)+ (B+D)
(A+Bi)-(C+Di)=(A-C)+(B-D)i
(A+Bi))x (C+Di)=(AxC-BxD)+(AxD+BxC)i
For more review of complex numbers, see en.wikipedia.org/wiki/Complex numbers Or
mathworld.wolfram.com/ComplexNumber.html.

[Games] Suppose you’re writing a role-playing game and design classes to represent the play-
er’s class choices: fighter, magic-user, and rogue. Hints:
> Give each class a few representative properties, but you don’t need to include every-

thing you would need to actually build the game.

> Use auto-implemented properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 345

> Give each class a few methods that might make sense for the class but don’t give them
any code. (You may need to add a return statement if a method returns a value.)

> Make most properties strings instead of objects. For example, you can represent a
weapon as a string holding the weapon’s name (as in “sword”); you don’t need to
use some sort of Weapon or Sword class.

> Think about what the classes have in common and how you can avoid duplicating code.

Build Person and student classes. Give the student class (directly or via inheritance) typi-
cal name and address properties, plus a list to hold the courses (strings) that the Student is
enrolled in. Also give the class an Enrol1 method that adds a course to the list.

Next make a user interface that lets the user add courses to a student. After adding a
new course, display the Student’s courses in a ListBox. (Hint: The word class is a key-
word used by C# so it’s easier to use the word “course” instead when you’re talking about
enrollment.)

Copy the program you wrote for Exercise 3 and modify the Enro11 method so it throws an
ArgumentException if the program tries to enroll the student in the same course twice or if
the student is already enrolled in six courses.

Copy the program you wrote for Exercise 4 and modify the Enrol1 method so it raises an
overenrolled event instead of throwing an exception if the student tries to enroll in more
than six courses.

Sometimes you can use an event handler to tell the program about unusual circumstances and
let the program decide whether to allow some action. For example, a form’s FormClosing
event handler can use its e.Cancel parameter to cancel the close and force the form to
remain open.

Consider the program you wrote for Exercise 5. Under some circumstances, you may
want to allow a student to enroll in more than six courses. (For example, students such as
Hermione Granger who have time turners.) Copy that program and add an A11ow field to
the overenrolledEventArgs class. Make the student class initialize Allow to false and
then invoke the event handlers.

Make the main program catch the event, display a message box asking the user whether it
should allow the student to overenroll, and set A11ow accordingly.

After the event handlers return, make the student class allow the student to overenroll if
Allow is true.

[Games, Hard] Most games that involve moving objects use sprites to represent those objects.
A sprite is simply an instance of a class that represents the game object’s position, velocity,
colors, and other attributes. The goal is to move as much information about the objects as
possible into the sprite class so the main program doesn’t need to know about it.

Copy the bouncing ball program you built for Exercise 19-8 (or download the version avail-
able on the book’s website) and modify it so it uses a Ball class to track balls. Hints:

> Add the directive using System.Drawing to the file that defines the Ball class.

> Give the Bal1 class the fields (or properties) x, Y, vx, Vy, Width, Height, and Brush.
Also give it a new ClientSize property of type Size.

www.it-ebooks.info

http://www.it-ebooks.info/

346 | LESSON 23 DEFINING CLASSES

> Give the Ball class an Initialize method that randomizes the Ba11’s properties.
Hints:

» Pass the main form’s ClientSize into the Initialize method. Make the
method save it in the Ball’s ClientSize field.

> Make a private static array called brushes that lists the brushes from
which to pick randomly. (Making the array private means code outside of
the Bal11 class cannot see it. Making it static means all instances of the Ba11l
class share the same array, so they don’t waste space by creating a new array
for each Ball object.)

> Make a private static Random object for the Ball instances to share.
(This solves a tricky problem. When a program makes a Random object, it uses
the system time to initialize itself by default. This program makes all of the
Balls at the same time. That means if each Ba11l made its own Random object,
they would all be initialized at almost exactly the same time so the Random
objects would all produce the same sequence of “random” values. The result
would be a bunch of Bal1s with the same positions, velocities, and colors.
Using the static keyword makes all of the Ba11s share the same Random
object so they get different “random™ values. To see the problem, just remove
the static keyword from the Random object’s declaration.)

> Give the Ball class a Move method that updates the Ba11’s position. If the Bal1 hits
a wall, raise a HitWall event.

> Give the Ball class a Draw method that takes a Graphics object as a parameter and
draws the ball on it.

» Make the form’s code use the Ball methods to initialize, move, and draw the balls.
(This should make the form’s code much simpler.)

> Make the form’s code catch the Ba11ls’ Hitwall events and play the appropriate
sound.

NOTE Please select the videos for Lesson 23 online at www.wrox .com/go
/csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

24

Initializing Objects

Most of the time when you create an object, you need to initialize its properties. You generally
wouldn’t create an Employee object without at least setting its FirstName and LastName prop-
erties. The following code shows how you might initialize an Employee object:

// Make an Employee named Alice.
Employee alice = new Employee() ;
alice.FirstName = "Alice";
alice.LastName = "Archer";
alice.Street = "100 Ash Ave";
alice.City = "Bugsville";
alice.State = "CO";

alice.Zip = "82010";
alice.EmployeeId = 1001;
alice.MailStop = "A-1";

Though this is relatively straightforward, it is fairly tedious. Creating and initializing a bunch
of Employees would take a lot of repetitive code. Fortunately C# provides alternatives that
make this task a little easier.

In this lesson you learn how to initialize an object’s properties as you create it. You also learn
how to define constructors that make initializing objects easier and how to make destructors
that clean up after an object.

INITIALIZING OBJECTS

C# provides a simple syntax for initializing an object’s properties as you create it. Create the
object as usual but follow the new keyword and the class’s name with braces. Inside the braces,
place comma-separated statements that initialize the object’s properties.

For example, the following code creates and initializes an Employee object named alice
similar to the one created in the previous code. The statements inside the braces initialize the
object’s properties.

www.it-ebooks.info

http://www.it-ebooks.info/

348 | LESSON 24 INITIALIZING OBJECTS

// Make an Employee named Alice.
Employee alice = new Employee()

{

FirstName = "Alice",
LastName = "Archer",
Street = "100 Ash Ave",

City = "Bugsville",
State = "CO",

Zip = "82010",
EmployeeId = 1001,
MailStop = "A-1",

NOTE Note that an initializer can only initialize properties that the code
can access. For example, if a property is private, the initializer cannot set
its value.

This may not seem like much of an improvement because it has just as many lines of code as the pre-
vious version. (Two more lines if you count the braces.) It is easier to type, however, partly because
you don’t need to repeatedly type the name of the object.

IntelliSense also helps. When you open the braces and type F, IntelliSense can figure out that you'’re
trying to initialize the FirstName property. At that point, you can press Tab to fill in the rest of the
property’s name without typing it.

IntelliSense also knows what values you’ve entered previously and won’t show them to you again.
For example, if you initialize the Street property and then later type s, IntelliSense knows that you
must be initializing the state property.

CONSTRUCTORS

Initializers are handy and easy to use but sometimes you might like some extra control over how an
object is created. Constructors give you that extra control.

A constructor is a method that is executed when an object is created. The constructor executes
before the code that creates the object gets hold of it. The constructor can perform any setup tasks
that are necessary to prepare the object for use. It can look up data in databases, prepare data struc-
tures, and initialize properties.

To create a constructor, you make a method that has no return type and that is named after the
class. Alternatively, you can think of it as a method that returns the class’s type and that has no
name. You’ll see examples shortly.

The next two sections describe two kinds of constructors: parameterless constructors and param-
eterized constructors. A later section explains how one constructor can invoke another to avoid
duplicated code.

www.it-ebooks.info

http://www.it-ebooks.info/

Constructors | 349

Parameterless Constructors

A constructor can take parameters just like any other method to help it in its setup tasks. A param-
eterless constructor (sometimes called an empty constructor) takes no parameters, so it’s somewhat
limited in what it can do.

For example, suppose the Manager class has a DirectReports property, which is a list of Employees
that report to a given manager. A parameterless constructor cannot build that list because it doesn’t
know what employees to put in it. It can, however, initialize the DirectReports property to an
empty list, as shown in the following code:

class Manager : Employee

{

public List<Employees> DirectReports;

// Initialize the Manager.
public Manager ()

{
}

DirectReports = new List<Employee>();

}

You implicitly invoke a parameterless constructor any time you create an object without using
any parameters. For example, the following code creates a new Person object. When this

code executes, control jumps briefly to the parameterless constructor so it can prepare the object
for use.

Manager fred = new Manager () ;

Note that C# creates a default public parameterless constructor for you if you don’t define any
constructors explicitly. If you give the class any constructors, however, C# doesn’t create the default
constructor. In that case, if you want a parameterless constructor, you must make it yourself.

Parameterized Constructors

Parameterless constructors are useful but fairly limited because they don’t have much information
to go by. To give a constructor more information, you can make it take parameters just like you can
with any other method.

One simple type of parameterized constructor uses its parameters to initialize properties. For example,
you could make a constructor for the Person class that takes the person’s first and last names as
parameters. The constructor could then set the object’s FirstName and LastName properties.

Why would you bother doing this when you could use an initializer? First, the syntax for using a
constructor is slightly more concise than initializer syntax. The following code uses a constructor
that takes eight parameters to initialize an Employee’s properties:

Employee alice = new Employee("Alice", "Archer", "100 Ash Ave",
"Bugsville", "CO", "82010", 1001, "A-1");

Compare this code to the earlier snippet that used initializers. This version is more concise, although
it’s less self-documenting because it doesn’t explicitly list the property names.

www.it-ebooks.info

http://www.it-ebooks.info/

350 | LESSON 24 INITIALIZING OBJECTS

The second reason you might prefer to use a parameterized constructor instead of an initial-

izer is that a constructor can perform all sorts of checks that an initializer cannot. For example,

a constructor can validate its parameters against each other or against a database. An Employee
class’s constructor could take an employee ID as a parameter and use a database to verify that the
employee really exists.

A constructor can also require that certain parameters be provided. For example, a Person con-
structor could require that the first and last name parameters be provided. If you rely on initializers,
the program could create a Person that has no first or last name.

To make a constructor that takes parameters, simply add the parameters as you would for any other
method. The following code shows a constructor for the Person class that uses its parameters to
initialize the new Person object’s properties:

// Initialize all values.

public Person(string firstName, string lastName, string street,
string city, string state, string zip)

FirstName = firstName;
LastName = lastName;
Street = street;

City = city;
State = state;
Zip = zip;

DESTRUCTORS

Constructors execute when a new object is created to perform initialization chores. Destructors
execute when an object is being destroyed to perform cleanup chores. For example, a destructor
might disconnect from databases, close files, free memory, and do whatever else is necessary before
the object gets carted off to the electronic recycle center.

Destructors are simpler than constructors because:

> A class can have only one destructor.
You cannot call a destructor directly; they are only called automatically.
A destructor cannot invoke another destructor.

Destructors cannot take parameters.

Y Y VYV VY

Destructors automatically call base class destructors when they are finished.

To make a destructor, you create a method named after the class with a tilde character (~) in
front of its name. You cannot include an access specifier (such as private or public), return
type, or parameters. For example, the following code shows a simple destructor for the
Person class:

~Person ()

{
}

// Perform cleanup chores here...

www.it-ebooks.info

http://www.it-ebooks.info/

Destructors | 351

Destructors are a fairly specialized topic and you are unlikely to need to build one until you have
more programming experience, but I wanted to describe them for an important reason: so you know
when destructors execute and you can help them perform well.

You might think that so far destructors are fairly simple and that would be the end of the story
except for one remaining question: “When are destructors called?” This turns out to be a trickier
question than you might imagine. To understand when a destructor runs, you need to understand
the garbage collector.

Normally a C# program runs merrily along, creating variables and objects as needed. Sometimes all
of the references to an object disappear so the program no longer has access to the object. In that
case, the memory (and any other resources) used by that object are lost to the program. If the pro-
gram makes a lot of objects and then discards them in this way, the program will eventually use up
a lot of memory.

Eventually the program may start to run out of available memory. At that point, the garbage
collector springs into action. The garbage collector runs when it thinks the program may have
used a lot of inaccessible memory such as old, discarded Employee objects. When the garbage
collector runs, it reclaims the memory lost by objects that are inaccessible and makes that mem-
ory available for future objects.

It is only when the garbage collector reclaims an object’s memory that the object’s destructor
executes. So the answer to the question “When are destructors called?” is: “Whenever the gar-
bage collector runs.” So when does the garbage collector run? The answer to this new question is:
“Whenever it feels like it.”

The end result is that you cannot really know when a destructor will run. The fancy name for this is
non-deterministic finalization. Many programs never run low on memory so the garbage collector
doesn’t run until the program ends.

The moral of the story is that you can use destructors to clean up after an object but you shouldn’t
rely on them to handle tasks that must be done in a timely fashion. For example, if a destructor
closes a file so other programs can use it, the file may not actually be closed until the program ends.

If you want to perform actions such as this in a timely fashion, give the class a Dispose method that
the program can call explicitly to clean up after the object.

NOTE The IDisposable interface formalizes the notion of providing a Dispose
method that cleans up after an object. It’s a fairly advanced topic, however, so it
isn’t covered here. For more information, see msdn.microsoft .com/library
/blyfkh5e .aspx and msdn.microsoft.com/library/system.idisposable

. aspx.

If an object (whether or not you created its class) provides a Dispose method, you should use it
when you are done with the object so you can free its resources.

For example, you can use a Graphics object to draw on a bitmap. A Graphics object uses limited
system resources, so it’s a good practice to call its Dispose method when you’re done using it.

www.it-ebooks.info

http://www.it-ebooks.info/

352

| LESSON 24 INITIALIZING OBJECTS

Unfortunately, it’s easy to forget to call Dispose. To help you remember, C# provides the using
statement. The using statement is followed by the object that it manages and, when the using block
ends, the program automatically calls the object’s Dispose method.

The usual syntax for a using block is:

using (variableInitialization)

{
}

In this syntax, the variableInitialization declares and initializes the variable that the block
controls. (You can declare the object outside of the using block, but putting it inside the block
usually makes it easier to read and restricts its scope to the block.)

Statements ...

For example, the following code creates a Graphics object named gr associated with the bitmap
bigBitmap. The using block ensures that the program executes the gr object’s Dispose method
when it finishes the block.

using (Graphics gr = Graphics.FromImage (bigBitmap))

{
}

Note that the object’s Dispose method is called even if the program exits from the block because of
an exception, a return statement, or some other method.

// Draw stuff...

INVOKING OTHER CONSTRUCTORS

You can give a class many different constructors as long as they have different parameter lists (so
C# can tell them apart). For example, you might give the Person class a parameterless constructor,
a second constructor that takes first name and last name as parameters, and a third constructor that
takes first and last name, street, city, state, and ZIP code as parameters.

Often when you give a class multiple constructors, some of them perform the same actions. In the
person example, the constructor that initializes first name, last name, street, city, state, and ZIP code
probably does the same things that the second constructor does to initialize just first and last name.

You can also find overlapping constructor functionality when one class inherits from another. For
example, suppose the Person class has FirstName and LastName properties. The Employee class
inherits from Person and adds some other properties such as EmployeeId and MailStop. The
person class’s constructor initializes the FirstName and LastName properties, something that the
Employee class’s constructors should also do.

Having several methods perform the same tasks makes debugging and maintaining code harder.
Fortunately, C# provides a way you can make one constructor invoke another.

To make one constructor invoke another in the same class, follow the constructor’s parameter decla-
rations with a colon and the keyword this, passing this any parameters that the other constructor
should receive. For example, the following code shows three constructors for the Person class that
invoke each other. The code that invokes other constructors is shown in bold:

www.it-ebooks.info

http://www.it-ebooks.info/

Invoking Other Constructors | 353

// Parameterless constructor.
public Person()

{
}

// Initialize first and last name.

public Person(string firstName, string lastName)
: this()

{

// General initialization if needed

FirstName = firstName;
LastName = lastName;

}

// Initialize all values.

public Person(string firstName, string lastName, string street,
string city, string state, string zip)
: this(firstName, lastName)

Street = street;

City = city;
State = state;
Zip = zip;

}

The first constructor is a parameterless constructor. In this example it doesn’t do anything.

The second constructor takes first and last names as parameters. The : this () at the end of the
declaration means the constructor should invoke the parameterless constructor when it starts.

The third constructor takes name and address parameters. Its declaration ends with:

this (firstName, lastName) to indicate that the constructor should begin by calling the second
constructor, passing it the firstName and lastName parameters. (That constructor in turn invokes
the parameterless constructor.)

Notice that the third constructor doesn’t save the firstName and lastName values. That’s handled
by the second constructor.

You can use a similar syntax to invoke a parent class constructor by simply replacing the keyword
this with the keyword base.

For example, the Employee class inherits from the Person class. The following code shows two of
the class’s constructors. The code that invokes the Person class constructors is shown in bold:

// Parameterless constructor.
public Employee ()

: base()
{

}

// Initialize first and last name.

public Employee (string firstName, string lastName)
: base(firstName, lastName)

{

}

www.it-ebooks.info

http://www.it-ebooks.info/

354 | LESSON 24 INITIALIZING OBJECTS

The first constructor is parameterless. It invokes its parent class’s parameterless constructor by
using : base ().

The second constructor takes first and last name parameters and invokes the Person class’s con-
structor that takes two strings as parameters.

NOTE Notice how the constructors invoke other constructors by using the key-
word this or base followed by a parameter list. C# uses the parameter list to decide
which constructor to invoke. That’s why you cannot have more than one construc-
tor with the same kinds of parameters. For example, if two constructors each took a
single string as a parameter, how would C# know which one to use?

TRY IT

In this Try It, you enhance the Person,

. ol

Employee, and Manager classes you built Constructors
fOr the thlrd Try It m LCSSOH 23 YOu add | Person w/o Parameters | | Employee w./o Parameters | | Manager w0 Parameters |
constructors to make initializing objects

. | Person w/Parameters | | Employee w./Parameters | | Manager w/Parameters |
easier and you add destructors so you can
trace object destruction when the program

FIGURE 24-1

ends. You also build the user interface
shown in Figure 24-1 to test the classes’
constructors and destructors.

Lesson Requirements

In this lesson, you:

> Copy the person, Employee, and Manager classes you built for the third Try It in Lesson 23
(or download the version that’s available on the book’s website).

> Give the Person class a parameterless constructor. Make it print a message to the Console
window indicating that a new Person is being created.

> Give the Person class a constructor that initializes all of the class’s properties. Make it
invoke the parameterless constructor and also display its own message.

Give the Person class a destructor that displays a message in the Console window.
Make similar constructors and destructors for the Employee and Manager classes.

> Build the user interface shown in Figure 24-1. Add code behind the Buttons to create
Person, Employee, and Manager Objects.

> Run the program, make some objects, and close the program. Study the Console window
messages to see if they make sense.

NOTE You can download the code and resources for this lesson from the web-
site at www . wrox. com/go/csharp24hourtrainer2e.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Trylt | 355

Hints

>

>

Make the constructors and destructors invoke each other where possible to avoid duplicate
work.

When you use parameterless constructors, use object initialization to set the objects’ properties.

Step-by-Step

>

Copy the pPerson, Employee, and Manager classes you built for the third Try It in Lesson 23
(or download the version that’s available on the book’s website).

1. This is relatively straightforward.

Give the Person class a parameterless constructor. Make it print a message to the Console
window indicating that a new Person is being created.

1. The person class’s parameterless constructor should look something like this:

public Person()

{
}

Give the Person class a constructor that initializes all of the class’s properties. Make it
invoke the parameterless constructor and also display its own message.

Console.WriteLine ("Person()") ;

1. This constructor should look something like this:

public Person(string firstName, string lastName,
string street, string city, string state, string zip)
this ()

FirstName = firstName;
LastName = lastName;
Street = street;

City = city;
State = state;
Zip = zip;

Console.WriteLine ("Person (parameters) ") ;

}

Give the Person class a destructor that displays a message in the Console window.

1. This destructor should look something like this:

~Person ()

{
}

Make similar constructors and destructors for the Employee and Manager classes.

Console.WriteLine ("~Person") ;

1. The following code shows the Employee class’s constructors and destructor:

public Employee ()
: base()
{

www.it-ebooks.info

http://www.it-ebooks.info/

356 | LESSON 24 INITIALIZING OBJECTS

Console.WriteLine ("Employee()") ;

}

public Employee (int employeeId, string mailStop,
string firstName, string lastName, string street,
string city, string state, string zip)
: base(firstName, lastName, street, city, state, zip)

{
EmployeeId = employeeId;
MailStop = mailStop;
Console.WriteLine ("Employee (parameters) ") ;
}
~Employee ()
Console.WriteLine ("~Employee") ;
}

2. The following code shows the Manager class’s constructors and destructor:

public Manager ()
: base()
{

DirectReports = new List<Employees>();
Console.WriteLine ("Manager()") ;

}

public Manager (string departmentName, int employeeld,
string mailStop, string firstName, string lastName,
string street, string city, string state, string zip)
: base (employeeId, mailStop, firstName, lastName, street,
city, state, zip)

DepartmentName = departmentName;
Console.WriteLine ("Manager (parameters) ") ;

}

~Manager ()

{
}

Console.WriteLine ("~Manager") ;

> Build the user interface shown in Figure 24-1. Add code behind the Buttons to create
Person,Employee,and]Wanager(ﬂﬁeCt&
1. This is relatively straightforward.

>

Run the program, make some objects, and close the program. Study the Console window
messages to see if they make sense.

1. The following text shows the program’s output if you create a Manager with parame-

ters and then close the program. I’ve removed some messages generated by the program
itself showing when various threads exited.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 357

Creating a Manager with parameters
Person ()

Person (parameters)

Employee (parameters)

Manager (parameters)

~Manager

~Employee

~Person

When I clicked the Manager w/Parameters Button, the program performed the
following actions:

a. The Button’s click event handler displayed the message “Creating a
Manager with parameters.” It then called the Manager class’s parameterized

constructor.
b. That constructor invoked the parameterized Employee constructor.
C. That constructor invoked the parameterized Person constructor.
d. That constructor invoked the parameterless Person constructor.
€. That constructor displayed the message “Person()” and returned control to the

parameterized Person constructor that called it.

—

The parameterized Person constructor displayed the message
“Person(parameters)” and returned control to the parameterized Employee
constructor that called it.

g. The parameterized Employee constructor displayed the message
“Employee(parameters)” and returned control to the parameterized Manager
constructor that called it.

h. The parameterized Manager constructor displayed the message
“Manager(parameters)” and returned control to the Button’s Click event
handler.

When the Button’s Click event handler ended, the Manager object it created went

out of scope so it was lost to the program. It wasn’t destroyed, however, because the
garbage collector didn’t think it needed to run. (The program undoubtedly had plenty
of memory left over.) It only ran when I closed the program. At that point, the program
performed the following actions:

a. The program was ending, so the garbage collector ran. It called the Manager
object’s destructor.

b. That destructor displayed a message and then automatically called its base class
destructor in the Employee class.

C. That destructor displayed a message and then automatically called its base class
destructor in the Person class.

d. That destructor displayed a message.

www.it-ebooks.info

http://www.it-ebooks.info/

358 | LESSON 24 INITIALIZING OBJECTS

EXERCISES

1.

Copy the program you built for Exercise 23-1 (or download the version that’s available
on the book’s website) and change the main program so it uses initializers to prepare
its ComplexNumber objects. Be sure to update new instances created inside the
ComplexNumber class.

Copy the program you built for Exercise 1 and give the ComplexNumber class a constructor
that initializes the new number’s real and imaginary parts. Modify the program to use
this constructor.

Copy the program you built for Lesson 23’s second Try It (or download the Trylt23b
program from the book’s website) and give the BankAccount class a constructor that
guarantees that you cannot create an instance with an initial balance under $10. Change the
main program so it uses this constructor.

Make a Memorywaster class that has two fields: an integer named Megabytes and an array
of bytes named Bytes. Give the class a constructor that takes a number of megabytes as a
parameter, saves that value in the Megabytes field, allocates the array to hold that amount
of memory, and writes a message in the Console window saying how many megabytes it is
allocating. (Don’t forget to multiply by 1,024 x 1,024 to convert megabytes to bytes.)

Also give the class a destructor that writes a message in the Console window saying how
many megabytes it is freeing.

Finally, make a user interface that lets the user enter a number of megabytes and click a
Button to create a MemoryWaster. Use the program to allocate memory until the garbage
collector runs. For example, on my system I can allocate a 500 MB Memorywaster, but
when I try to allocate a second, the garbage collector reclaims the first one. (Hint: You may
want to protect the Button’s event handler with a try-catch block. For example, try mak-
ing a 10,000 MB MemoryWaster.)

[Graphics] Create a Shape class that has three properties: a Pen, a Brush, and a Rectangle.
(Hint: Include the statement using System.Drawing in the class’s file.)

Give the class two initializing constructors. The first should have the following signature:
public Shape (Pen pen, Brush brush, int x, int y, int width, int height)
Make the constructor use its parameters to initialize its properties.
The second constructor should have the following signature:
public Shape (Pen pen, Brush brush, Point location, Size size)
Make this constructor invoke the first one.

Also give the class a braw method that takes a Graphics object as a parameter and uses it to
draw the shape’s bounding rectangle with the shape’s pen and brush. Make the main pro-
gram create several Shape objects and draw them in a PictureBox’s Paint event handler.

[Graphics] Copy the program you wrote for Exercise 5 and add an E11lipse class that
inherits from Shape. Give it two constructors that invoke the corresponding base class
constructors. Make the main program create a few instances of the new class. (The E11ipse

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 359

class inherits the Shape class’s Draw method so the E11ipses will be drawn as rectangles on
the PictureBox. Don’t worry about that. We’ll fix that in the next lesson’s exercises.)

[Graphics, Hard] Copy the program you wrote for Exercise 6 and add a circle class that
inherits from E11ipse. Give the new class a constructor with the following signature:

public Circle (Pen pen, Brush brush, Point center, int radius)
Make this constructor initialize the object by invoking a parent class constructor.

[Graphics] Copy the program you wrote for Exercise 7 and modify it so the shape class
stores two Color properties named Foreground and Background instead of a Pen and

a Brush. Also add a new integer Thickness property and corresponding parameters to
the class’s constructors. (You’ll need to make similar changes to the classes that inherit

from Shape.)

Modify the braw method so it fills and draws the shape with the appropriate colors and line
thickness. To fill the shape, create a new SolidBrush object. To outline the Shape, create a
new Pen object. Include using statements to automatically dispose of the brush and pen.

Finally, update the main program to use the new constructors and make some sample
shapes with different colors and line thicknesses.

[Graphics] Copy the program you wrote for Exercise 8 and modify the braw method so it
uses dashed lines. To do that, set the Pen object’s DashStyle property to System.Drawing
.Drawing2D.DashStyle.Dash. (This is the only way you can make dashed pens. The stock
Pen objects such as Pens.Blue and Pens.Chartreuse are solid and one pixel wide.)

NOTE Please select the videos for Lesson 24 online at www.wrox . com/go
/csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

25

Fine-Tuning Classes

In Lesson 24 you learned how to build constructors and destructors, special methods that
execute when an object is created or destroyed. In this lesson you learn about other special
methods you can give a class. You learn how to overload and override class methods.

OVERLOADING METHODS

Lesson 24 mentioned that you can give a class any number of constructors as long as they have
different parameter lists. For example, it’s common to give a class a parameterless constructor
that takes no parameters and one or more other constructors that take parameters.

Making multiple methods with the same name but different parameter lists is called overloading.
C# uses the parameter list to decide which version to use when you invoke the method.

For example, suppose you’re building a course assignment application and you have built
Student, Course, and Instructor classes. You could give the student class two versions of
the Enroll method, one that takes as a parameter the name of a class the student is taking
and a second that takes a course object as a parameter.

You could give the Instructor class similar versions of the Teach method to make the
instructor teach a class by name or course object.

Finally, you could give the course class different Report methods that:
> Display a report in a dialog if there are no parameters.

> Append a report to the end of a file if the method receives a FileStream as a
parameter.

> Save the report into a new file if the method receives a string (the filename) as a
parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

362

| LESSON 25 FINE-TUNING CLASSES

Making overloaded methods is so easy that there’s little else to say. The only catch (and it’s a tiny
one) is that you need to be sure the parameter lists must differ in number, type, or arrangement. For
example, consider the following two method declarations:

public void MakeReport (string fileToCreate)

{
}

public void MakeReport (string fileToAppend)

{
}

You might intend the first version to create a report in a file and the second to append a report
to the end of a file. As far as C# is concerned, however, they both take a single string as a
parameter. Even though the parameters have different names, C# wouldn’t be able to tell which
one to use under different circumstances. For example, which version should the statement
MakeReport ("MyReport.txt") use?

OVERRIDING METHODS

When one class inherits from another, you can add new properties, methods, and events to the new
class to give it features that were not provided by the parent class.

Once in a while it’s also useful to replace a method provided by the parent class with a new version.
This is called overriding the parent’s method.

Before you can override a method, you should mark the method in the parent class with the
virtual keyword so it allows itself to be overridden. Next, add the keyword override to the
derived class’s version of the method to indicate that it overrides the parent class’s version.

For example, suppose the Person class defines the usual assortment of properties: FirstName,
LastName, Street, City, and so on. Suppose it also provides the following Getaddress method that
returns the Person’s name and address formatted for printing on an envelope:

// Return the Person's address.
public virtual string GetAddress()

{

return FirstName + " " + LastName + "\n" +
Street + "\n" + City + " " + State + " " + Zip;

}

Now suppose you derive the Employee class from Person. An Employee’s address looks just like a
Person’s except it also includes MailStop. The Mailstop property was added by the Employee class
to indicate where to deliver mail within the company.

The following code shows how the Employee class can override the Getaddress method to return
an Employee-style address:

www.it-ebooks.info

http://www.it-ebooks.info/

Overriding ToString | 363

// Return the Employee's address.
public override string GetAddress()

{
}

Notice how the method calls the base class’s version of Getaddress to reuse that version of the
method and avoid duplicated code.

return base.GetAddress() + "\n" + MailStop;

NOTE [ntelliSense can help you build overridden methods. For example, when
you type public override and a space in the Employee class, IntelliSense

lists the virtual methods that you might be trying to override. If you select one,
IntelliSense fills in a default implementation for the new method. The following
text shows the code IntelliSense generated for the GetAddress method:

public override string GetAddress ()

{
}

return base.GetAddress() ;

The most miraculous thing about overriding a virtual method is that the object uses the method
even if you invoke it from the base class. For example, suppose you have a person variable pointing
to an Employee object. Remember that an Employee is a kind of Person, so a Person variable can
refer to an Employee as in the following code:

Employee bob = new Employee() ;
Person bobAsAPerson = bob;

Now if the code calls bobAsAPerson.GetAddress (), the result is the Employee version of
GetAddress.

NOTE You can think of the virtual keyword as making a slot in the base class
for the method. When you override the method, the derived class fills this slot
with a new version of the method. Now even if you call the method from the
base class, it uses whatever is in the slot.

OVERRIDING TOSTRING

Overriding a class’s Tostring method is particularly useful. All classes inherit a Tostring method
from System.Object (the ultimate ancestor of all other classes), but the default implementation of

ToString isn’t always useful. For classes that you define, such as Person and Employee, the default
version of ToString simply returns the class’s name. For example, in a program named ListPeople,
the Employee class’s Tostring method would return “ListPeople.Employee.”

www.it-ebooks.info

http://www.it-ebooks.info/

364 | LESSON 25 FINE-TUNING CLASSES

Although this correctly reports the object’s class, it would be more useful if it returned something
that contained information about the object’s properties. In this example, it might be nice if it
returned the Employee object’s first and last names.

Fortunately the Tostring method is virtual, so you can override it. The following code shows how
you can override the Tostring method to return an Employee’s first and last name:

// Return first and last name.
public override string ToString()

{
}

This makes a lot more sense. Now your program can use an Employee object’s Tostring method to
learn about the object.

return FirstName + " " + LastName;

Overriding Tostring also has a nice side benefit for Windows = Lstpeople =10 G|
Forms development. Certain controls and parts of Visual Studio

use an object’s Tostring method to decide what to display. For
example, the ListBox and ComboBox controls display lists of items. Cat Carer

If those items are not simple strings, the controls use the items’
ToString methods to generate output.

If the list is full of Employee objects and you’ve overridden the

Employee class’s ToString method, a ListBox or ComboBox can
display the employees’ names.

FIGURE 25-1

The ListPeople example program shown in Figure 25-1 (and available as part of this lesson’s code
download) demonstrates method overriding.

When it starts, the ListPeople program uses the following code to fill its ListBox with two Student
objects and two Employee objects. Both of these classes inherit from person.

private void Forml Load (object sender, EventArgs e)

{

// Make some people.

peoplelListBox.Items.Add (new Student ("Ann", "Archer", "101 Ash Ave",
"Debugger", "NV", "72837"));
peoplelListBox.Items.Add (new Student ("Bob", "Best", "222 Beach Blvd",

"Debugger", "NV", "72837"));

peoplelListBox.Items.Add (new Employee("Cat", "Carter", "300 Cedar Ct",
"Debugger", "NV", "72837", "MS-1"));

peoplelListBox.Items.Add (new Employee ("Dan", "Dental", "404 Date Dr",
"Debugger", "NV", "72837", "MS-2"));

}

The Employee class overrides its Tostring method so you can see the Employees’ names in
Figure 25-1 instead of their class names. The student class does not override its Tostring method
so Figure 25-1 shows class names for the student objects.

If you select a person in this program and click the Show Address button, the program executes the
following code:

// Display the selected Person's address.
private void showAddressButton Click(object sender, EventArgs e)

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 365

Person person = peoplelListBox.SelectedItem as Person;
MessageBox.Show (person.GetAddress ()) ;

}

This code converts the ListBox’s selected item into a Person object. The item is actually either a
Student or an Employee, but both of those inherit from pPerson (they are kinds of Person) so the
program can treat them as Persons.

The program calls the Person’s Getaddress method and displays the result. If the object was actu-
ally a student, the result is a basic name and address. If the object was actually an Employee, the
result is a name and address plus mailstop.

In addition to ListBoxes and ComboBoxes, some parts of Visual Studio use an object’s Tostring
method, too. For example, if you stop an executing program and hover the mouse over an object in
the debugger, a tooltip appears that displays the result of the object’s Tostring method. Similarly,
if you type an object’s name in the Immediate window and press Enter, the result is whatever is
returned by the object’s Tostring method.

TRY IT

In this Try It, you improve the shape drawing program you built for Exercise 24-9 by overriding the
Shape class’s Draw method so E11lipse and Ccircle objects can draw themselves appropriately.

Lesson Requirements
In this lesson, you:

> Copy the program you wrote for Exercise 24-9 (or download the version that’s available on
the book’s website).

Add the virtual keyword to the Shape class’s Draw method.
Override the braw method in the E11ipse class so it draws an ellipse instead of a rectangle.

Modify the form’s Paint event handler to draw smooth shapes.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox.com/go/csharp24hourtrainer2e.

Hints

If gr is the Graphics object, you can use these techniques:

> gr.SmoothingMode = SmoothingMode.AntiAlias—Makes the object draw shapes
smoothly. (SmoothingMode is defined in the System.Drawing.Drawing2D namespace.)

gr.FillEllipse (brush, rect)—TFillsan ellipse defined by the Rectangle rect with brush.

> gr.DrawEllipse (pen, rect)—Outlines an ellipse defined by the Rectangle rect with pen.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

366 | LESSON 25 FINE-TUNING CLASSES

Step-by-Step

> Copy the program you wrote for Exercise 24-9 (or download the version that’s available on
the book’s website).

1. This is straightforward.

> Add the virtual keyword to the Shape class’s Draw method.

1. Change the shape class’s braw method so its declaration looks like this. (The virtual
keyword is highlighted in bold.)
public virtual void Draw(Graphics gr)

> Override the Draw method in the E11ipse class so it draws an ellipse instead of a rectangle.
1. Use code similar to the following:
// Draw the ellipse.
public override void Draw (Graphics gr)
{
using (Brush brush = new SolidBrush (Background))
{
gr.FillEllipse (brush, Bounds) ;
}
using (Pen pen = new Pen(Foreground, Thickness))
{
gr.DrawEllipse (pen, Bounds) ;
}
}

2. Note that you don’t need to override the circle class’s Draw method. The circle
class inherits from E1lipse, so it will inherit the version shown here that’s defined by
the E1lipse class. The circle class’s constructors ensure that the circle’s width and
height are the same, and that makes the ellipse-drawing code produce a circle.

> Modify the form’s Paint event handler to draw = shapes [= | = G
smooth shapes.

1. Add the following using directive at the top of
the form’s code file:
using System.Drawing.Drawing2D;

2. Add the following statement at the beginning of
the form’s Paint event handler:
e.Graphics.SmoothingMode = SmoothingMode

.AntiAlias;
Figure 25-2 shows the result for the objects I created. FIGURE 25-2

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 367

EXERCISES

1.

[Graphics] Copy the program you built for the Try It and override the Shape class’s Draw
method to create a new version that takes a Pen and Brush as parameters and uses them to
draw. Then make similar changes to the E1lipse and circle classes. Test the new methods
by modifying the form’s code so it passes Pens .Red and Brushes.Pink into the objects’
Draw methods.

[Graphics] Copy the program you built for Exercise 1 and add Rect and square classes.
(Pm calling the first of those classes Rect instead of Rectangle because .NET already has
a Rectangle class so that name could cause confusion.) Modify the form’s code to create a
random Shape, Ellipse, Circle, Rect, and Square. Hints:

> Make the Rect class analogous to the E11ipse class.

> Make the square class somewhat analogous to the circle class but give its
constructor X and Y coordinates and a width instead of a center point and radius.

> Make a GetRandomParameters method to generate random thickness, width, height,
and position for a new shape.

> Remove the code that makes all of the shapes pink so you can see the shapes’ colors.

[Graphics, Advanced] The abstract keyword is somewhat similar to the virtual keyword.
When you mark a method as abstract, you allow it to be overridden in derived classes.

In fact, an abstract method has no code so you must override it before you can make an
instance of the class.

Because you cannot make an instance of a class that contains an abstract method, you
must also mark the class as abstract.

Why would you do this? Think about the program you wrote for the Try It. You probably
don’t really intend the program to make instances of the shape class. It’s really just there to
be a base class so you can treat other objects such as E11ipses and Ccircles as Shapes.

Copy the program you wrote for Exercise 2 and make the Shape class’s Draw methods
abstract. Then modify the form’s code so it doesn’t try to make a Shape object. Hints:

> An abstract method cannot include any code. Just end it with a semicolon after the
method’s parameter list.

> Place the abstract keyword before the class keyword.

An abstract class can contain non-abstract properties and methods and they are
inherited as usual. In this example, the Shape class can still define drawing param-
eters (Bounds, Foreground, Background, and Thickness) and constructors.

www.it-ebooks.info

http://www.it-ebooks.info/

368 | LESSON 25 FINE-TUNING CLASSES

4. [Graphics, Hard] Create a new program that displays a PictureBox with Cursor property
set to Cross. Copy the shape classes you build for Exercise 3 into it. To copy a class from one
project to another, you can create a class with the same name in the new project and then
copy and paste its code into it. Alternatively you can:

> Copy the class’s file into the new project’s directory.
> Use the Project menu’s Add Existing Item command to add the class to the project.

> Edit the class’s code and change its namespace statement so it uses the same
namespace as the rest of the project. (You can look at the top of the main form’s
code to see what the statement should look like.)

Next create a class-level List<Shape> named Shapes.
Write code to allow the user to select a rectangle on the PictureBox.

» Create two class-level Point variables named StartPoint and EndPoint. Also cre-
ate a class-level bool variable named Drawing and initialize it to false.

> In the PictureBox’s MouseDown event handler, save the mouse’s location in
StartPoint and EndPoint and set Drawing = true.

> In the PictureBox’s MouseMove event handler, if Drawing is false, return.
Otherwise, save the mouse’s current position in EndPoint and refresh the
PictureBox.

> In the PictureBox's MouseUp event handler, if Drawing is false, return. Otherwise,
if StartPoint and EndPoint have different X
and Y coordinates, use them to create a new &5 Draw Shapes | = o B
Rect and add it to the Shapes list. A

» In the PictureBox’s Paint event handler,
loop through the shapes list and make the
objects it contains draw themselves. Then if
Drawing is true, draw a red dashed rectangle
with corners at StartPoint and EndPoint.
(Hints: The DrawRectangle method can’t
draw rectangles with negative widths or
heights so you’ll need to figure out where the
upper-left corner of the newly selected rectan-
gle is. The Math.Min and Math.Abs methods
may help.)

FIGURE 25-3

5. [Graphics, Hard] Copy the program you built for Exercise 4 and add the toolbar holding
four dropdown buttons shown in Figure 25-3.

The dropdown buttons represent the user’s selected shape, line thickness, foreground color,
and background color. When the user finishes selecting an area on the PictureBox, add the
appropriate shape to the Shapes list. Hints:

> Use the properties of the menu items to store the selected values.

> Use the menu items’ Tag properties to store the line thickness values. (You’ll need to
parse those values when you need them.)

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 369

> Use the menu items’ ForeColor properties to store colors.
> Use the menu items’ Text properties to store shape names.

> Use code similar to the following when the user selects an item from the shapes drop-
down button:

// Save this shape selection.

private void shapeMenuItem Click(object sender, EventArgs e)

{

ToolStripMenultem item = sender as ToolStripMenultem;
shapeDropdownItem.Image = item.Image;

shapeDropdownItem.Tag = item.Text.Replace("&", "").ToLower () ;

}

This code is shared by all of the shape menu items. It converts the sender parameter
into the ToolStripMenuItem that the user selected. It then copies that item’s Image
and Text (converted to lowercase and with any ampersands removed) into the
dropdown button.

> Use similar code for the other dropdown buttons’ items. Copy the selected item’s
Image property and the appropriate value (Tag or ForeColor) into the dropdown
button.

Copy the complex number program you built for Exercise 24-2 (or download the version
that’s available on the book’s website). Override the class’s Tostring method so it returns
the number in a form similar to “2 + 3i.” Overload the complexNumber class’s AddTo,
MultiplyBy, and SubtractFrom methods so you can pass them a single double parameter
representing a real number with no imaginary part. Modify the form so you can test the new
methods.

Copy the bank account program you built for Exercise 24-3 (or download the version that’s
available on the book’s website). Derive a new OverdraftaAccount class from the Account
class. Give it a constructor that simply invokes the base class’s constructor. Override the
Debit method to allow the account to have a negative balance and charge a $50 fee if any
debit leaves the account with a negative balance. Change the main program so the Account
variable is still declared to be of type Account but initialize it as an overdraftAccount.
(Hint: Don’t forget to make the Account class’s version of Debit virtual.)

Copy Lesson 23’s Turtle program. The Turtle class has a Move method that moves the turtle
a specified distance in the object’s current direction. Overload this method by making a
second version that takes as parameters the X and Y coordinates where the turtle should
move. Raise the outofBounds event if the point is not on the canvas. (Hint: Can you reuse
code somehow between the two Move methods?)

NOTE Please select the videos for Lesson 25 online at www.wrox .com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

26

Overloading Operators

In Lesson 25 you learned how to overload a class’s methods. C# also lets you overload opera-
tors such as + and * to give them new meanings when working with the structures and classes
that you create. For example, you could overload the + operator so the program would know
how to add a student object and a Course object. Sometimes that allows you to use a more
natural syntax when you’re working with objects.

In this lesson, you learn how to overload operators so you can use them to manipulate objects.

WARNING Before you jump into operator overloading, be warned that just
because you can overload an operator doesn’t mean you should. You should only
overload operators in intuitive ways.

For example, it makes sense to overload the + operator so you can add two
ComplexNumber objects. It might also make sense to overload + so you can add
an item to a purchase order.

It probably doesn’t make sense to define + between two Employee objects to
return a list of projects that included both employees. You could do that, but you
probably shouldn’t because it would be confusing.

OVERLOADABLE OPERATORS

In C#, you can overload the unary, binary, and comparison operators listed in Table 26-1.

www.it-ebooks.info

http://www.it-ebooks.info/

372 | LESSON 26 OVERLOADING OPERATORS

TABLE 26-1
TYPE OPERATORS
Unary 4=~ e, -
Binary o % %8 |, T, <<, >
Comparison ==, l=,<, > <=, >=

The comparison operators come in pairs. For example, if you overload the < operator, you must also
overload the > operator.

The compound assignment operators (+=, -=, *=, /=, $=, &=, |=, “=, <<=, and >>=) are automatically
overloaded when you overload the corresponding binary operator. For example, if you overload *,
C# automatically overloads *= for you.

The syntax for overloading operators is easiest to understand by looking at examples. The following
sections explain how to overload the different types of operators.

UNARY OPERATORS

The following code shows how you can overload the unary - operator for the ComplexNumber class:

public static ComplexNumber operator - (ComplexNumber me)

{
}

return new ComplexNumber (-me.Real, -me.Imaginary);

The method begins with public static followed by the operator’s return type. In this case the
operator returns a ComplexNumber because the negation of a complex number is another complex
number.

Next comes the keyword operator and the operator’s symbol, in this case -.

The parameter list tells on which class the operator should be defined. Because this code is defining
an operator for the ComplexNumber class, that’s the parameter’s data type. I often name this param-
eter me to help me remember that this is the object to which the operator is being applied.

Note that the overload must be declared inside the class used by the parameter. In this case, the
parameter is a ComplexNumber so this code must be in the ComplexNumber class.

The code inside this method simply negates the ComplexNumber’s real and imaginary parts and
returns a new ComplexNumber.

The following code shows how a program might use this operator:

ComplexNumber a = new ComplexNumber (1, 2); // 1 + 2i
ComplexNumber minusA = -a; // -1 - 21

www.it-ebooks.info

http://www.it-ebooks.info/

Binary Operators | 373

BINARY OPERATORS

Overloading binary operators is similar to overloading unary operators except the operator takes a
second parameter. The first parameter is still the object to which the operator is being applied.

For example, the following code overloads the binary - operator to subtract two ComplexNumbers:

public static ComplexNumber operator - (ComplexNumber me, ComplexNumber other)

{

return new ComplexNumber (me.Real - other.Real,
me.Imaginary - other.Imaginary) ;

The first parameter gives the object on the left of the - sign and the second parameter gives the
object on the right. To help keep them straight, I often name the parameters me and other.

Note that the overload must be declared inside a class or structure used by one of the parameters. In
this case, both parameters are ComplexNumbers so this code must be in the ComplexNumber class.

Although this example subtracts two ComplexNumbers, in general the parameters do not need to
have the same data types. The following code defines the binary - operator for subtracting a double
fronla,ComplexNumber:

public static ComplexNumber operator - (ComplexNumber me, double x)

{
}

return new ComplexNumber (me.Real - x, me.Imaginary) ;

Note that this is not the same as subtracting a ComplexNumber from a double. If you want to handle
that situation as well, you need the following separate overload:

public static ComplexNumber operator - (double me, ComplexNumber other)

{
}

return new ComplexNumber (me - other.Real, other.Imaginary);

With these overloads, a program could execute the following code:

ComplexNumber a

new ComplexNumber (2, 3);

ComplexNumber b = new ComplexNumber (4, 5);

ComplexNumber ¢ = a - b; // ComplexNumber - ComplexNumber
ComplexNumber d = a - 10; // ComplexNumber - double
ComplexNumber e = 10 - a; // double - ComplexNumber

NOTE The shift operators << and >> are a little different from the other binary
operators because the second parameter must always be an integer.

www.it-ebooks.info

http://www.it-ebooks.info/

374 | LESSON 26 OVERLOADING OPERATORS

COMPARISON OPERATORS

The comparison operators are simply binary operators that return a boolean result. The only oddity
to these is that they come in pairs. For example, if you define ==, then you must also define 1=. The
pairsare == and !=, < and >, and <= and >=.

The following code shows how you could overload the < and > operators for the complexNumber
class:

// Return the number's magnitude.
public double Magnitude

{
}

public static bool operator < (ComplexNumber me, ComplexNumber other)

{
}

public static bool operator > (ComplexNumber me, ComplexNumber other)

{
}

get { return Math.Sqrt(Real * Real + Imaginary * Imaginary); |}

return (me.Magnitude() < other.Magnitude()) ;

return (me.Magnitude() > other.Magnitude());

WARNING The object class provides Equals and GetHashCode methods that
are tied closely to an object’s notion of equality, because Equals should return
true if two objects are equal and GetHashCode should return the same value
for two objects that are considered equal. To avoid confusion, you should not
overload == and | = unless you also override Equals and GetHashCode. In fact,
Visual Studio flags an error if you overload == or | = but not these two methods.

CONVERSION OPERATORS

C# provides one more kind of operator you can overload: conversion operators. These let a C#
program convert one data type to another, either implicitly or explicitly. For example, consider the
following code:

int 1 = 10;
double d = i; // Implicitly convert i into a double.
int j = (int)d; // Explicitly convert d into an int.

The first statement declares and initializes the integer i. The next statement sets the double variable
d equal to the variable i. Because any int value can fit in a double variable, this conversion is safe
so C# allows you to make it implicitly.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 375

The third statement sets integer variable j equal to the value in the double variable. Not all double
values can fit in an int, so C# won’t let you make that assignment implicitly. The cast operator
(int) explicitly tells C# to make the conversion anyway and you’re willing to take the risk that the
value may not fit.

You can overload conversion operators to allow your program to convert between types that you
define. For example, consider the following code in the ComplexNumber class:

// Convert double to ComplexNumber.

public static implicit operator ComplexNumber (double x)

{
}

// Convert ComplexNumber to double.
public static explicit operator double (ComplexNumber me)

{
}

The first method defines a conversion operator that converts a double into a ComplexNumber. You
can easily convert any double into a ComplexNumber by simply setting its imaginary part to 0. This
conversion never causes a loss of data so it can be made implicitly.

return new ComplexNumber (x, 0);

return me.Magnitude;

The second method defines a conversion operator that converts a ComplexNumber into a double by
returning the number’s magnitude. This does cause a loss of data (unless the number’s imaginary
part happens to be 0) so the conversion is declared explicit. It allows your code to convert from a
ComplexNumber to a double, but you need to explicitly use a cast to make it happen.

TRY IT

In this Try It, you extend the ComplexNumber class you built in Exercise 25-6. That version of the
class included methods such as AddTo and subtractFrom to perform simple operations. Now you’ll
replace those cumbersome methods with overloaded +, -, *, and unary - operators.

Lesson Requirements
In this lesson, you:

> Copy the complex number program you built for Exercise 25-6 (or download the
version that’s available on the book’s website). Remove the ComplexNumber class’s AddTo,
MultiplyBy, and SubtractFrom methods.

> Give the class new overloaded operators to handle these cases:
> ComplexNumber + ComplexNumber

> ComplexNumber + double

www.it-ebooks.info

http://www.it-ebooks.info/

376 | LESSON 26 OVERLOADING OPERATORS

double + ComplexNumber
ComplexNumber * ComplexNumber
ComplexNumber * double

double * ComplexNumber
-ComplexNumber

ComplexNumber - ComplexNumber

ComplexNumber - double

Y Y Y Y Y VY VY Y

double - ComplexNumber

> Revise the main form’s code to use the new operators.

NOTE You can download the code and resources for this lesson from the website
at www .wrox .com/go/csharp24hourtrainer2e

Hints

> You can use operators to define other operators. For example, if you define the unary -
operator, the following two operations have the same result:

ComplexNumber - ComplexNumber
ComplexNumber + -ComplexNumber

Step-by-Step

> Copy the complex number program you built for Exercise 25-6 (or download the
version that’s available on the book’s website). Remove the complexNumber class’s AddTo,
MultiplyBy,and SubtractFrom methods.

1. This is reasonably straightforward.
> Give the class new overloaded operators to handle these cases:
> ComplexNumber + ComplexNumber
ComplexNumber + double
double + ComplexNumber
ComplexNumber * ComplexNumber
ComplexNumber * double
double * ComplexNumber

-ComplexNumber

Y Y Y Y Y VY Y

ComplexNumber - ComplexNumber

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Trylt | 377

> ComplexNumber - double
> double - ComplexNumber

1. You can use code similar to the following:

// ComplexNumber + ComplexNumber.
public static ComplexNumber operator + (ComplexNumber me, ComplexNumber other)

{

return new ComplexNumber (
me.Real + other.Real,
me.Imaginary + other.Imaginary);

}

// ComplexNumber + double.
public static ComplexNumber operator + (ComplexNumber me, double x)

{
}

// double + ComplexNumber.
public static ComplexNumber operator +(double x, ComplexNumber other)

{
}

// ComplexNumber * ComplexNumber.
public static ComplexNumber operator * (ComplexNumber me, ComplexNumber other)

{

return new ComplexNumber (me.Real + x, me.Imaginary) ;

return other + x;

return new ComplexNumber (
me.Real * other.Real - me.Imaginary * other.Imaginary,
me.Real * other.Imaginary + me.Imaginary * other.Real);

}

// ComplexNumber * double.
public static ComplexNumber operator * (ComplexNumber me, double x)

{
}

// double * ComplexNumber.
public static ComplexNumber operator *(double x, ComplexNumber other)

{
}

// Unary -.
public static ComplexNumber operator - (ComplexNumber me)

{
}

// ComplexNumber - ComplexNumber.
public static ComplexNumber operator - (ComplexNumber me, ComplexNumber other)

{
}

return new ComplexNumber (me.Real * x, me.Imaginary * x);

return other * x;

return new ComplexNumber (-me.Real, -me.Imaginary);

return me + -other;

www.it-ebooks.info

http://www.it-ebooks.info/

378 | LESSON 26 OVERLOADING OPERATORS

// ComplexNumber - double.
public static ComplexNumber operator - (ComplexNumber me, double x)

{
}

// double - ComplexNumber.
public static ComplexNumber operator - (double x, ComplexNumber other)

{
}

> Revise the main form’s code to use the new operators.

return new ComplexNumber (me.Real - x, me.Imaginary) ;

return -other + x;

1. You can use code similar to the following:

// Perform the calculations between two ComplexNumbers.
private void calculateButton Click(object sender, EventArgs e)
{

new ComplexNumber (

reallTextBox.Text),
imaginarylTextBox.Text)) ;

new ComplexNumber (

real2TextBox.Text) ,
imaginary2TextBox.Text)) ;

ComplexNumber a
double.Parse
double.Parse

ComplexNumber b
double.Parse
double.Parse

ComplexNumber aPlusB = a + b;
aPlusBTextBox.Text = aPlusB.ToString() ;

ComplexNumber aMinusB = a - b;
aMinusBTextBox.Text = aMinusB.ToString() ;

ComplexNumber aTimesB = a * Db;
aTimesBTextBox.Text = aTimesB.ToString() ;

}

// Perform the calculations with a real number.

private void calculateRealOnlyButton Click(
object sender, EventArgs e)

{

double x = double.Parse (realOnlyTextBox.Text) ;

ComplexNumber b = new ComplexNumber (
double.Parse (real2TextBox.Text),
double.Parse (imaginary2TextBox.Text)) ;

ComplexNumber xPlusB = x + b;
aPlusBTextBox.Text = xPlusB.ToString();

ComplexNumber xMinusB = x - b;
aMinusBTextBox.Text = xMinusB.ToString() ;

ComplexNumber xTimesB = x * b;
aTimesBTextBox.Text = xTimesB.ToString() ;

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 379

EXERCISES

1.

Providing methods that combine ComplexNumbers and doubles requires a lot of similar code.
For example, to perform addition with complexNumbers, you need to overload the + opera-
tor three times to handle complexNumber + ComplexNumber, ComplexNumber + double,
and double + ComplexNumber.

Fortunately, there’s a better approach. Just provide an implicit conversion operator to
convert a double into a ComplexNumber. Now if the program needs to perform the opera-
tion ComplexNumber + double, it automatically converts the double into a ComplexNumber
and can then perform the addition.

Copy the program you built in this lesson’s Try It and remove the code that combines
ComplexNumbers with doubles. Then add an implicit conversion operator to convert
doubles into ComplexNumbers. Verify that the program still works.

Copy the program you built for Exercise 1 and overload the complexNumber class’s / operator
to perform division using this equation:
a+bi (ac+bd)+i(bc—ad)

c+di &+ d?

Use this operator to define operators for ComplexNumber / double and double /
ComplexNumber. (Hint: Don’t perform all of the calculations for these. Convert the double
into a ComplexNumber and then use the previous definition of /.)

Change the main program to calculate A / B. Verify these calculations:
> (10+11i) / (3+2i) = 4 + 1i
> (15+24i)/3 =5 + 8i
> 4/ (1+11) =2 - 2i

Build an application with an orderItem class that has the properties Description,
Quantity, and PriceEach. Also make an order class that has the properties CustomerName
and Ttems, which is a List<OrderItems. Then overload the order class’s + operator so you
can use it to add orderItems to an order. Build a simple user interface to test the classes.
Hints:

> Give the form a class-level order object and then add items to it.
> Make the + operator return the order to which it is adding an item.

> Override the orderItem class’s Tostring method so you can easily display items in
a ListBox.

[Advanced] By default, a class’s Equals method tests reference equality. That means it
considers two variables equal if they refer to the same instance of the class. For example, it
would consider two Employee variables different if they refer to separate instances of the
class even if they have the same FirstName and LastName property values. Sometimes that
makes sense, but other times it’s inconvenient.

www.it-ebooks.info

http://www.it-ebooks.info/

380

LESSON 26 OVERLOADING OPERATORS

Make a program that defines an Employee class with FirstName and LastName properties.
Override the Tostring method to return the concatenated names.

Use the following code to override the class’s Equals method so it returns true if two
EmployeeshavethesmneFirstNameandIestNamevahm&

// Return true if the object is an Employee with
// the same first and last names as this object.
public override bool Equals(object obj)
{

if (obj == null) return false;

if (! (obj is Employee)) return false;

Employee other = obj as Employee;

return (
(FirstName == other.FirstName) &&
(LastName == other.LastName)) ;

}

The first line checks that the other object is not nul1l. (You already know that the current
“this” object isn’t null or else it couldn’t be executing this code.)

The is keyword returns true if an object can be converted into a specific type, so the
second line makes sure that obj inherits from the Employee type.

The method then converts obj into an Employee and compares its FirstName and
LastName values to the current object’s values.

If you override Equals, you should also override GetHashcode. This method converts an
object into an int that acts as a sort of shorthand representation for it. The hash code for
two equal objects must be the same. (That’s why you need to override GetHashcCode if you
override Equals.) Ideally, two different objects should also be unlikely to have the same
hash value.

For this exercise, give the Employee class the following GetHashcode method:

// Return a hash code for the object.
public override int GetHashCode ()

{
}

Now that you’ve defined the Employee class, create a Department class that has the proper-
ties Name and Employees, which is a List<Employees. Overload its + operator to add an
Employee to the Employees list.

A

return FirstName.GetHashCode () LastName.GetHashCode () ;

Give the form a class-level Department object and initialize it. Then build the user interface
shown in Figure 26-1.

When the user clicks Add, create an Employee object with the entered names, and use the
Department object’s + operator to add the Employee to the Department.

When the user clicks Remove, create an Employee object with the entered names. Use the
Ccontains method of the Department object’s Employees list to see if the Employee is in the
list. If the Employee is present, use the list’s Remove method to remove it. (The contains
and Remove methods wouldn’t work if you hadn’t overridden the Equals method. Comment
out Equals and GetHashCode to see what happens.)

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 381

ol Department Employees I;Ii-

First Name: |Samw1'se |

Last Name: |Gamgee |

| Add ‘ | Remove

Department
MName: |Department of Doing Awesome Stuff

Employees: | Bilbo Bagains
Frodo Baggins

FIGURE 26-1

Make a new program and give it a copy of the Employee class you built for Exercise 4. Use
the Equals method to overload the == and ! = operators. Then use an interface similar to the
one shown in Figure 26-2 to test the operators.

L= Employee Equality I;‘i-

First Name Last Name
Employee 1: |Nancy | |Dred |

Employee 2: |Nancy | |Drew |

==Retums: False

I=Retums: Tue

FIGURE 26-2

When the user clicks Compare, the program should create two Employee objects, use ==
and ! = to compare them, and display the results, as shown in the figure.

NOTE Please select the videos for Lesson 26 online at www . wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

27

Using Interfaces

In .NET programming, an interface is like a contract. It defines the public properties,
methods, and events that a class must provide to satisfy the contract. It doesn’t indicate how
the class must provide these features, however. That’s left up to the class’s code. It only defines
an interface that the class must show to the rest of the world.

In this lesson, you learn how to implement interfaces that are predefined by the .NET Framework.
You also learn how to define your own interfaces to make your code safer and more efficient.

INTERFACE ADVANTAGES

The following sections discuss two of the most important advantages provided by interfaces:
multiple inheritance and code generalization.

Multiple Inheritance

Suppose you define a Vehicle class with properties such as NumberofPassengers,
MilesPerGallon, and NumberofCupHolders. From this class you can derive other classes such
as Car, PickupTruck, and Unicycle.

Suppose you also define a Domicile class that has properties such as squareFeet,
NumberOfBedrooms, and HasAnnoyingNeighbor. From this class you can derive Apartment,

condo, and VacationHome.

Next you might like to derive the MotorHome class from both vehicle and Domicile so it has
the properties and methods of both parent classes. Unfortunately you can’t do that in C#. In
C#, a class can inherit from only a single parent class.

Although a class can have only one parent, it can implement any number of interfaces. For
example, if you turn the Domicile class into the IDomicile interface, the MotorHome class
can inherit from vehicle and implement IDomicile. The interface doesn’t provide the code
needed to implement such features as the HasAnnoyingNeighbor property, but at least it
defines that property so code that uses a MotorHome object knows the property is available.

www.it-ebooks.info

http://www.it-ebooks.info/

384

| LESSON 27 USING INTERFACES

NOTE To make recognizing interface names easy, you should begin interface
names with I as in IDomicile, IComparable, and IWhatever

Defining a property such as SquareFeet but not implementing it may not seem very useful, but it
lets your code treat all IDomicile objects in a uniform way. Instead of writing separate methods
to work with Duplex, RusticCabin, and HouseBoat objects, you can write a single method that

manipulates objects that implement IDomicile.

That brings us to the second big advantage provided by interfaces: code generalization.

Code Generalization

Interfaces can make your code more general while still providing type checking. They let you treat
objects that have common features as if they were of the interface type rather than their true indi-
vidual types.

For example, suppose you write the following method that displays an array of strings in a ListBox:

private void DisplayValues (string[] items, ListBox listbox)

{

listbox.Items.Clear();
foreach (string value in items)
listbox.Items.Add (value) ;

This method works reasonably well, but suppose you later decide that you need to display the
items that are in a List<strings instead of an array. You could write a new version of the method
that was nearly identical to this one but that works with a list instead of an array, as in the
following code:

private void DisplayValues (List<string> items, ListBox listbox)

{

listbox.Items.Clear();
foreach (string value in items)
listbox.Items.Add (value) ;

If you compare these two methods, you’ll see that they are practically identical, so you must write,
debug, and maintain two pieces of code that do almost exactly the same thing.

This is where interfaces can help.

Look again at the two methods. They differ only in their parameter definitions and the rest of their
code is the same. The reason is that the methods don’t really care that the parameters are arrays or
lists. All they really care about is that you can use a foreach loop to iterate through them.

The TEnumerable<s interface requires that a class provide an enumerator that a program can use to
loop through the items in the object. In particular, the enumerator supports foreach loops.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Interfaces | 385

This is a generic interface so you must provide a type parameter for it to indicate the type of the
items over which the interface can loop.

Both string[] and List<strings implement IEnumerable<strings, so you can combine and
generalize the methods by making the items parameter have the type IEnumerable<string>
instead of string[] or List<strings. The following code shows the new version of the method:

private void DisplayValues (IEnumerable<string> items, ListBox listbox)

{

listbox.Items.Clear() ;
foreach (string value in items)
listbox.Items.Add (value) ;

This version can display the items in a string[], List<strings, or any other object that
hnpknﬂﬂusIEnumerable<string>SudlasLinkedList<string>,Stack<string>,0r
SortedSet<strings.

IMPLEMENTING INTERFACES

To make a class that implements an interface, add the interface name in the class’s declaration as if
the class were inheriting from the interface. For example, the following code shows the declaration
for a Person class that implements IComparable:

class Person : IComparable

{
}

You can include a class and multiple interfaces in the inheritance list. For example, the Manager
class could inherit from Person and implement the interfaces IComparable and IDisposable.

The only other thing you need to do is implement the properties, methods, and events defined by the
interface. For example, the Tcomparable interface defines a CompareTo method that takes an object
as a parameter and returns an integer that is less than, equal to, or greater than zero to indicate
whether the object should be considered less than, equal to, or greater than the parameter.

Many interfaces come in generic versions. For example, the IComparable<Persons interface
requires a class to define a CompareTo<Person> method.

For a concrete example, suppose the Person class defines FirstName and LastName properties. The
following code implements a version of CompareTo<Person> that orders Person objects according
to their last names first:

class Person : IComparable<Person>

{

// Compare this Person to another Person.
public int CompareTo (Person other)

{

// I1If other is null, it comes first.
if (other == null) return 1;

www.it-ebooks.info

http://www.it-ebooks.info/

386

| LESSON 27 USING INTERFACES

// If our last name comes first, we come first.
if (LastName.CompareTo (other.LastName) < 0) return -1;

// If our last name comes second, we come second.
if (LastName.CompareTo (other.LastName) > 0) return 1;

// If our last names are the same, compare first names.
return FirstName.CompareTo (other.FirstName) ;

First, if the other Person object is null, the method returns 1 to indicate that the current Person
should come after it. (By convention, null values come before non-nul1 values.)

Next, the method compares the two objects’ LastName values. If the values are not the same, the
code returns -1 or 1 to indicate that the current Person comes before or after the other.

Finally, if the two LastName values are the same, the code uses the compareTo method provided by
the string class to compare the two FirstName values and returns the result.

You can write the code to implement an interface yourself, but it’s easier to let Visual Studio build a
default implementation for you. Write the class declaration including the interface. Then hover the
mouse over the interface’s name in the class declaration and look for the change suggestion lightbulb
to appear. You can see it under the word “class” in Figure 27-1.

Dd Sort People

Person.cs™ # X
[#] Sort People ~ | % Sort_People.Person ~ | M Firsthame

b k|

Snamespace Sort_People

=0 interface System.|Comparable<in T>
Defines a generalized comparison method that a value type or class implements to create a type-specific comparison method for ordering instances.

Tis Person
'Person’ does not implement interface member 'IComparable<Person>.CompareTo(Person)’

Show potential fixes

FIGURE 27-1

Click the lightbulb and select the Implement Interface command from the dropdown list, as shown
in Figure 27-2.

When you select that command, Visual Studio adds placeholder code to satisfy the interface. The
following code shows the placeholder method for the 1compare<Persons interface:

public int CompareTo (Person other)

{
}

throw new NotImplementedException() ;

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Interfaces | 387

b Sort People
Person.cs* & X
[#] Sort People

- "% Sort_People.Person ~ | & FirstMame

Flnamespace Sort_People

Implement interface €3 50535 'Person’ does not implement interface member

Implement interface explicitly '[Comparable<Person>.CompareTo(Person)’

public int CompareTo(Perszon cther)

Display the Person's first and last name.

throw new NotImplementedExceptiond{);

= public override string ToString() }
{
return FirstMame + " ° + LastMame;
¥

// Display the Person’s first and last name.
public averride string ToString()

Preview changes

Fix all occurrences in: Document | Project | Solution

FIGURE 27-2

Now you can fill in the code you want to use.

You can learn more about what an interface is for and what it does in several ways. You can always
search the online help. You can also right-click the interface’s name and select Go To Definition to
see information, as shown in Figure 27-3. Click the plus signs on the left to view detailed comments
describing the purposes of the pieces of code.

b Sort People

ICemparable [from metadata] 8 & X
[#] MetadatahsSourceProject ~ | =0 System.|Comparable<in T> ~1 @ CompareTo(T other) -
#|assembly mscorlib, Version=4.8.8.8, Culture=neutral, PublicKeyToken=| - 889 Ea
r
SInamespace System
] J."..’
Summary :
I Defines a generalized comparison method that a value type or class implements
£ to creagte & type-specific comparison method for ordering instances.
F;
7/ Type parameters: w1
T
! The type of objects to compare.This type parameter is contravariant. That is,
! you can use either the type you specified or any type that less derived. For
s more information about covariance and contravariance, iance and Contravariance
I in Generics.
public interface IComparable<in T>
+ I:lint CompareTo(T other);
}.
¥
-
89 % - 4 4

FIGURE 27-3

www.it-ebooks.info

http://www.it-ebooks.info/

388 | LESSON 27 USING INTERFACES

Finally, you can open the Object Browser (use the View menu’s Object Browser command) and
search for the interface’s name (without the generic parameters). Select the interface in the browser’s
left panel. Click an item in the upper-right panel for more details, as shown in Figure 27-4.

Object Browser * A X

Browse: My Solution - | (<] | in | Q -

icomparable - RE
=0 System./Comparable [:M CompareTo(T)

0 System.Comparable<in Tx

int CompareTo(T other) =
Member of System.|Comparable<in T>

Summary:
Compares the current object with another object of the same type.

Parameters:
other: An object to compare with this object.

Returns:
A value that indicates the relative order of the objects being compared.

FIGURE 27-4

DEFINING INTERFACES

The preceding sections give examples that implement predefined interfaces. This section explains
how you can define your own.

Defining an interface is a lot like defining a class, with two main differences:

> First, you use the keyword interface instead of class in the declaration. (You can use the
Project menu’s Add Class command and then change the keyword class to interface.)

> Second, you don’t provide any code for the properties, methods, and events that you declare
in the interface.

The following code shows a simple IDrawable interface. The code includes a using System
.Graphics directive at the top of the file to make working with Brush, Pen, and Graphics objects
easier.

interface IDrawable

{
int X { get; set; }
int Y { get; set; }
Brush Background { get; set; }
Pen Foreground { get; set; }
void Draw (Graphics gr);

A class that implements IDrawable must provide X, Y, Background, and Foreground properties and
a Draw method.

www.it-ebooks.info

http://www.it-ebooks.info/

Try lt | 389

You cannot provide an accessibility modifier such as private to the items defined by an interface
because they are always assumed to be public. That means a class that implements the interface
must declare these items as public.

The declarations for the properties look like they are providing a default implementation, but they
actually only indicate which accessors are required. For example, you could omit the set accessor to
require a read-only property.

A class that implements IDrawable must still provide its own implementations, although you
can use auto-implemented properties if you like. For example, the following code shows how the
DrawableCircle class might implement its X property:

public int X { get; set; }

NOTE This example might work better with true inheritance instead of an
interface. If you make a Drawable class that implements the X, Y, Background,
and Foreground properties, other classes such as DrawableCircle could inherit
them. In this example an interface makes sense only if the classes already inberit
from some other class so they cannot also inberit from Drawable.

TRY IT

In this Try It, you build the Vehicle class and the I1Domicile interface described earlier in this
lesson. You then make a MotorHome class that inherits from the first and implements the second.
Finally, you create an instance of the derived class.

Lesson Requirements

In this lesson, you:

> Start a new project. Create a Vehicle class with the properties NumberOofPassengers,
MilesPerGallon, and NumberOofCupHolders. Give it an initializing constructor and over-
ride its Tostring method so it returns the object’s property values separated by the escape
sequence \r\n.

> Make an IDomicile interface that defines the properties SquareFeet, NumberOfBedrooms,
and NumberofBathrooms. Also make it define a Tostring method that returns a string as
usual.

> Derive the MotorHome class from vehicle, making it implement IDomicile. Give it an
initializing constructor and override its Tostring method so it returns all of the object’s
property values separated by the escape sequence \r\n.

> Create an instance of the MotorHome class. Then use its ToString method to display its
properties in a textbox.

www.it-ebooks.info

http://www.it-ebooks.info/

390 | LESSON 27 USING INTERFACES

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox .com/go/csharp24hourtrainer2e.

Hints

> Don’t forget to make the MotorHome class’s constructor invoke the base class’s constructor. If
you don’t remember how, see the section “Invoking Other Constructors” in Lesson 24.

> You can save a little work by making the Mot orHome class’s ToString method call the
Vehicle class’s version.

Step-by-Step

> Start a new project. Create a Vehicle class with the properties NumberofPassengers,
MilesPerGallon, and NumberOfCupHolders. Give it a constructor to make it easy to
initialize a new object’s properties. Override its Tostring method so it returns the object’s
property values separated by the escape sequence \r\n.

1. Use code similar to the following:

class Vehicle

{
// Properties.
public int NumberOfPassengers { get; set; }
public double MilesPerGallon { get; set; }
public int NumberOfCupHolders { get; set; }

// Initializing constructor.

public Vehicle (int numberOfPassengers, double milesPerGallon,
int numberOfCupHolders)

{

NumberOfPassengers = numberOfPassengers;
MilesPerGallon = milesPerGallon;
NumberOfCupHolders = numberOfCupHolders;

}

// Return the object's properties.
public override string ToString()

{

return
"NumberOfPassengers: " + NumberOfPassengers +
"\r\nMilesPerGallon : " + MilesPerGallon +

"\r\nNumberOfCupHolders: " + NumberOfCupHolders;

}

> Make an IDomicile interface that defines the properties SquareFeet, NumberofBedrooms,
and NumberOfBathrooms. Also make it define a Tostring method that returns a string as
usual.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Try lt | 391

1. Use code similar to the following:

interface IDomicile

{
int SquareFeet { get; set; }
int NumberOfBedrooms { get; set; }
double NumberOfBathrooms { get; set; }
string ToString() ;

}

Derive the MotorHome class from vehicle, making it implement IDomicile. Give it a
constructor to make it easy to initialize a new object’s properties. Override its ToString
method so it returns the object’s property values separated by the escape sequence \r\n.

1. Use code similar to the following:

class MotorHome : Vehicle, IDomicile
{
// IDomicile methods.
public int SquareFeet { get; set; }
public int NumberOfBedrooms { get; set; }
public double NumberOfBathrooms { get; set; }

// Initializing constructor.
public MotorHome (int numberOfPassengers, double milesPerGallon,
int numberOfCupHolders, int squareFeet,
int numberOfBedrooms, double numberOfBathrooms)
base (numberOfPassengers, milesPerGallon,
numberOf CupHolders)

SquareFeet = squareFeet;
NumberOfBedrooms = numberOfBedrooms;
NumberOfBathrooms = numberOfBathrooms;

}

// Return the object's properties.
public override string ToString()

{

return base.ToString() +

"\r\nSquareFeet: " + SquareFeet +
"\r\nNumberOfBedrooms: " + NumberOfBedrooms +
"\r\nNumberOfBathrooms: " + NumberOfBathrooms;

}

Create an instance of the MotorHome class. Then use its Tostring method to display its prop-
erties in a textbox.

1. The following code creates an instance of the MotorHome class and displays its proper-
ties in resultTextBox:

private void Forml Load(object sender, EventArgs e)

// Make a MotorHome.
MotorHome motorHome = new MotorHome (6, 8.25, 32, 150, 3, 0.5);

www.it-ebooks.info

http://www.it-ebooks.info/

392 | LESSON 27 USING INTERFACES

// Display its properties.
resultTextBox.Text = motorHome.ToString() ;

EXERCISES

1.

Build a program that defines the 1Drawable interface described earlier in this lesson. Make
the DrawableCircle and DrawableRectangle classes implement the interface. Hints: Give
DrawableCircle an additional Radius property and give DrawableRectangle additional
width and Height properties. Use code similar to the following to draw the circle centered at
the point (X, Y):

// Draw the circle centered at (X, Y).
public void Draw(Graphics gr)

{

gr.FillEllipse (Background, X - Radius, Y - Radius,
2 * Radius, 2 * Radius);

gr.DrawEllipse (Foreground, X - Radius, Y - Radius,
2 * Radius, 2 * Radius);

}

Use code similar to the following to draw the rectangle with upper-left corner (X, Y):

// Draw the rectangle.
public void Draw(Graphics gr)

{
gr.FillRectangle (Background, X, Y, Width, Height);
gr.DrawRectangle (Foreground, X, Y, Width, Height);

}

(For bonus points, make a DrawablesStar class that has a NumberofPoints property and
draws a star with that number of points.)

[Hard] An array’s sort method can take as a parameter an object that implements the
generic IComparer interface. Because this interface is generic, you can tell it what kinds of
objects the class can compare. For example, IComparer<Car> means the class can compare
car objects.

Build a car class with the properties Name, MaxSpeed, Horsepower, and Price. Override the
ToString method to display the object’s properties formatted with fixed column widths so
the values for different cars in a ListBox will line up nicely, as shown in Figure 27-5. (The
ListBox uses the fixed-width font Courier New so all of the letters have the same width.)

ozl Fast Cars = | = -

S55C Ultimate Rerc
Bugatti Veyron 253 mph 1001 hp $1,700,000.00 ~
¥oenigsegg CCX 245 mph 206 hp 2545, 568_00 () Name
Saleen.ST Twin-Turbo 248 mph 750 hp $555,000.00 ,:::, Max Speed
Ferrari Enzo 217 mph &60 hp $670,000.00
Pagani Zonda F 215 mph &50 hp $667,321.00 (® Horsepower
Lamborghini Murcielago LP&40 211 mph €40 hp $430,000.00 —~
McLaren F1 240 mph 537 hp $370,000.00 U Price
Dorsche Carrera GT 205 mph 512 hp $440,000.00
Jaguar XEJ22Z0 217 mph 542 hp $650,000.00

FIGURE 27-5

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 393

Build a carcomparer class that implements IComparer<Cars. Give it the following
SortType enumeration:

// Different kinds of sorts.
public enum SortType

{

ByName,
ByMaxSpeed,
ByHorsepower,
ByPrice,

}

Next give CarComparer a Sort property that has type SortType.

Finally, give the carComparer a Compare method to satisfy the TComparer<Cars interface.
Use a switch statement to make the method return a value that depends on the sort value.
For example, if sort is ByPrice, then compare the two cars’ prices. Make the method sort
the MaxSpeed, Horsepower, and Price values in decreasing order.

Now create and initialize a class-level list of car objects. When the user clicks a
RadioButton, follow these steps:

> Set the ListBox control’s DataSource property to null.
> Create a CarComparer with the appropriate SortType.

> Call the car list’s sort method, passing it the comparer.
>

Set the ListBox control’s DataSource property to the car list.

NOTE Note that you have many ways to do this sort of thing. For example,
Lesson 36 explains how you can use LINQ to sort items. As with all of the
examples and exercises in this book, these examples are primarily designed to
demonstrate particular topics, in this case interfaces, rather than to provide the
perfect solution.

[Hard] If you set a ListView control’s ListViewItemSorter property equal to an object
that implements the System.Collections.IComparer interface, then the Listview

uses that object to sort its rows. To sort the rows, the control calls the object’s compare
method, passing it two ListViewItem objects. (Unfortunately the Listview control’s
ListViewItemSorter property is a non-generic IComparer, so it works with non-specific
objects instead of something more concrete like ListviewItems.)

For this exercise, make a program with a ListView control similar to the one shown in
Figure 27-6. At design time, edit the ListView’s Columns collection to define the columns.
Edit its Ttems collection to define the data and set the control’s View property to Details.

www.it-ebooks.info

http://www.it-ebooks.info/

394 | LESSON 27 USING INTERFACES

Hints

adl Car ListView - [o]
Name Max Speed | Horsepower Price
257 1183 £654,400.00
Bugatti Veyron 253 1001 £1,700.000.00
Koenigsegg CCX 245 206 £545 568.00
Saleen 57 Twin-Turbo 248 750 $555.000.00
Femar Enzo 7 660 $670,000.00
Pagani Zonda F 215 650 £667,321.00
Lamborghini Murcielage LPE4D 21 640 £430,000.00
McLaren F1 240 637 £570,000.00
Porsche Camers GT 205 612 $440,000.00
Jaguar XJZ220 217 542 £650,000.00
FIGURE 27-6

Next, make a ListViewComparer class that implements System.Collections.IComparer.
Give it a ColumnNumber property that indicates the number of the column in the Listview
that the object should use when sorting.

Finally, give the ListView a Columnclick event handler. The event handler should create
a new ListViewComparer object to sort on the clicked column and then set the ListView
control’s ListViewItemSorter property to that object.

The IEquatable interface requires a class to provide an Equals method that returns true
if two objects should be regarded as equal. Some classes, such as List, can use that inter-
face. For example, if you fill a List with objects that implement TEquatable, then the list’s
contains method can tell if the list contains an object that is equivalent to another object.

Make a person class that has the properties FirstName and LastName and that implements
IEquatable<Persons>. Then build a program similar to the one shown in Figure 27-7 to let
the user add and remove Person objects in a list. If the user tries to add a duplicate Person
or tries to remove a Person that isn’t in the list, display an error message.

ol Person List | = | @ [NBG
First Name: [Moly | [A |
Last Name: |Hnnper | | Remaove ‘
Sherock Holmes:

James Watson
Irene Adler
FIGURE 27-7

> Store the Person objects in a List<Person> named People. (Unfortunately,
the ListBox control’s Items collection doesn’t assume its contents implement
IEquatable so you can’t just store the Person objects there.)

> After modifying the list, make the ListBox display the list of people by setting the
ListBox’s DataSource property to null and then setting it equal to People.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 395

5. It’s always better to prevent the user from making a mistake than it is to display an error
message. Copy the program you wrote for Exercise 4 and make the following changes:

> Remove the previous error messages.

> Enable the Add button only if both TextBoxes have non-blank text and the list
doesn’t already contain a person with those first and last names.

> Enable the Remove button only if both TextBoxes have non-blank text and the list
contains a person with those first and last names.

6. Make a program that defines the following classes and interfaces:

> An IWolf interface with PackName and Rank properties, and a WolfInfo method
that returns a string. (In classes that implement Iwolf, make this method return the
person’s name and pack name.)

> A person class with FirstName and LastName properties and an overridden
ToString method.

> An Employee class that inherits from Person, adds a new EmployeeId property, and
makes ToString include EmployeeId.

> A werewolf class derived from pPerson and Iwolf.
> A wWereEmployee class derived from Employee and Iwolf.

Create instances of the Person, Employee, Werewolf, and WereEmployee classes. Place
them all in a List<Person> and place those that you can in a List<IWwol£>. Loop through
the lists and display the objects’ information in two ListBoxes.

7. Copy the program you built for Exercise 6 and modify it so WereEmployee inherits from
Werewolf. What are the advantages and disadvantages to this approach? Which approach
seems better? (Look at the comments in the WereEmployee class in the download to see my
thoughts.)

NOTE Please select the videos for Lesson 27 online at www.wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

28

Making Generic Classes

The section “Generic Classes” in Lesson 16 explained how to use generic collection classes.
For example, the following code defines a list that holds Employee objects:

public List<Employee> Employees = new List<Employees>();

This list can only hold Employee objects, and when you get an object out of the list, it has the
Employee type instead of the less-specific object type.

Lesson 16 also described the main advantages of generic classes: code reuse and specific type
checking. You can use the same generic List<> class to hold a list of strings, doubles, or
Person objects. By requiring a specific data type, the class prevents you from accidentally
adding an Employee object to a list of order objects, and when you get an object from the
list you know it is an Order.

In this lesson, you learn how to build your own generic classes so you can raise code reuse to
a whole new level.

NOTE Many other things can be generic. You can probably guess that you can
build generic structures because structures are so similar to classes. You can also
create generic methods (in either generic or non-generic classes), generic inter-
faces, generic delegate types, and so on. This lesson focuses on generic classes.

DEFINING GENERIC CLASSES

A generic class declaration looks a lot like a normal class declaration with one or more generic
type variables added in angled brackets. For example, the following code shows the basic
declaration for a generic TreeNode class:

class TreeNode<T>

{
}

www.it-ebooks.info

http://www.it-ebooks.info/

398 | LESSON 28 MAKING GENERIC CLASSES

The <T> means the class takes one type parameter, T. Within the class’s code, the type T means
whatever type the program used when creating the instance of the class. For example, the following
code declares a variable named rootNode that is a TreeNode that handles strings:

TreeNode<string> rootNode = new TreeNode<strings () ;

If you want the class to use multiple type parameters, separate them with commas. For example,
suppose you want to make a Matcher class that takes two kinds of objects and matches objects in
the two kinds. It might match Employee objects with Job objects to assign employees to jobs. The
following code shows how you might declare the Matcher class:

public class Matcher<Tl, T2>

{
}

The following code shows how you might create an instance of the class to match Employees
with Jobs:

Matcher<Employee, Job> jobAssigner = new Matcher<Employee, Job>();

NOTE Many developers use T for the name of the type in generic classes that
take only one type.

If the class takes more than one type, you should use more descriptive names so
it’s easy to tell the types apart. For example, the generic Dictionary class has
two type variables named TKey and TValue that represent the types of the keys
and values that the Dictionary will hold.

Inside the class’s code, you can use the types freely. For example, the following code shows more
of the TreeNode class’s code. A TreeNode object represents a node in a tree, with an associated
piece of data attached to it. The places where the class uses the data type T are highlighted in bold.

class TreeNode<T>

{
// This node's data.
public T Data { get; set; }

// This node's children.
private List<TreeNode<T>> children = new List<TreeNode<T>>() ;

// Constructor.
public TreeNode (T data)

{
}

// Override ToString to display the data.
public override string ToString()

{

Data = data;

www.it-ebooks.info

http://www.it-ebooks.info/

Using Generic Constraints | 399

if (Data == null) return "";
return Data.ToString() ;

Notice how the class uses the type T throughout its code. The class starts by defining a Data field of
type T. This is the data (of whatever data type) associated with the node.

Each node also has a list of child nodes. To hold the right kind of TreeNode objects, the children
variable is a generic List<TreeNode<T>>, meaning it can hold only TreeNode<T> objects.

The class’s constructor takes a parameter of type T and saves it in the object’s Data property.

To make displaying a TreeNode easier, the class overrides its Tostring method so it calls the
ToString method provided by the pata object. For example, if the object is a TreeNode<strings,
this simply returns the string’s value.

USING GENERIC CONSTRAINTS

The previous example overrides the TreeNode class’s Tostring method to make it call the pata
object’s Tostring method. Fortunately, all objects have a Tostring method so you know this is
possible, but what if you want to call some other method provided by the object?

For example, suppose you want to create a new instance of type T. How do you know that type T
provides a constructor that takes no parameters? What if you want to compare two objects of type
T to see which is greater? Or what if you want to compare two type T objects to see if they are the
same (an important test for the Dictionary class)? How do you know whether two type T objects
are comparable?

You can use generic constraints to require that the types used by the program meet certain criteria
such as comparability or providing a parameterless constructor.

To use a generic constraint, follow the normal class declaration with the keyword where, the name
of the type parameter that you want to constrain, a colon, and the constraint. Some typical con-
straints include:

> A class from which the type must inherit

> An interface (or interfaces) that the type must implement

> new() to indicate that the type must provide a parameterless constructor
>

struct to indicate that the type must be a value type such as the built-in value types (int,
bool) or a structure

> class to indicate that the type must be a reference type

Separate multiple constraints for the same type parameter with commas. If you want to constrain
more than one type parameter, use a new where clause.

www.it-ebooks.info

http://www.it-ebooks.info/

400

| LESSON 28 MAKING GENERIC CLASSES

For example, the following code defines the generic Matcher class, which takes two generic type
parameters T1 and T2. (Note that this code skips important error handling such as checking for
null values to keep things simple.)

public class Matcher<Tl, T2>
where Tl : IComparable<T2>, new()
where T2 : new()

private void test ()

{
Tl tl1 = new T1();
T2 t2 = new T2();

if (tl.CompareTo(t2) < 0)

{

// tl is "less than" t2.

}

The first constraint requires that type parameter T1 implement the TComparable interface for the
type T2 so the code can compare T1 objects to T2 objects. The next constraint requires that the T1
type also provide a parameterless constructor. You can see that the code creates a new T1 object
and uses its CompareTo method (which is defined by Tcomparable).

The second where clause requires that the type T2 also provide a parameterless constructor. The
code needs that because it also creates a new T2 instance.

In general, you should use as few constraints as possible because that makes your generic code
usable in as many circumstances as possible. If your code won’t need to create new instances of a
data type, don’t use the new constraint. If your code won’t need to compare objects, don’t use the
IComparable constraint.

MAKING GENERIC METHODS

In addition to building generic classes, you can also build generic methods inside either a generic
class or a regular non-generic class.

For example, suppose you want to rearrange the items in a list so the new order alternately picks
items from each end of the list. If the list originally contains the numbers 1, 2, 3, 4, 5, 6, then the
alternated list contains 1, 6, 2, 5, 3, 4.

The following code shows how a program could declare an Alternate method to return an
alternated list. The part of the code that defines the generic parameter T is shown in bold.

public List<T> Alternate<T>(List<T> list)

// Make a new list to hold the results.
List<T> newList = new List<T>();

www.it-ebooks.info

http://www.it-ebooks.info/

Try lt | 401

return newList;

}

The alternate method takes a generic type parameter T. It takes as a regular parameter a List that
holds items of type T and it returns a new List containing items of type T.

The code creates a new List<T> to hold the results. (Note that it does not need to require the type
T to have a default constructor because the code is creating a new List, not a new T.) The code then
builds the new list (not shown here) and returns it.

The following code shows how a program might use this method:

List<string> strings = new List<strings (stringsTextBox.Text.Split (' '));
List<string> alternatedStrings = Alternate<strings (strings);
alternatedStringsTextBox.Text = string.Join(" ", alternatedStrings);

The first statement defines a List<string> and initializes it with the space-separated values in the
TextBox named stringsTextBox.

The second statement calls Alternate<strings to create an alternated List<strings. Notice how
the code uses <strings to indicate the data type that Alternate will manipulate. (This is actually
optional and the program will figure out which version of Alternate to use if you omit it. However,
this makes the code more explicit and may catch a bug if you try to alternate a list containing some-
thing unexpected such as Person objects.)

The third statement joins the values in the new list, separating them with spaces, and displays
the result.

Generic methods can be quite useful for the same reasons that generic classes are. They allow code
reuse without the extra hassle of converting values to and from the non-specific object class. They
also perform type checking, so in this example, the program cannot try to alternate a List<int> by
calling Alternate<strings.

TRY IT

In this Try It, you build a generic Randomize method that randomizes an array of objects of any
type. To make it easy to add the method to any project, you add the method to an ArrayMethods
class. To make the method easy to use, you make it static, so the main program doesn’t need to
instantiate the class to use it.

Lesson Requirements
In this lesson, you:
> Start a new project and give it an ArrayMethods class.

> Create a generic Randomize method with one generic type parameter T. The method should
take as a parameter an array of T and randomize the items it contains.

> Make the main program test the method.

www.it-ebooks.info

http://www.it-ebooks.info/

402 | LESSON 28 MAKING GENERIC CLASSES

NOTE You can download the code and resources for this lesson from the website
at www . wrox .com/go/csharp24hourtrainer2e.

Hints

> Try to figure out the Randomize method’s declaration yourself before you read the step-by-
step instructions that follow.

Step-by-Step
> Start a new project and give it an ArrayMethods class.

1. This is reasonably straightforward. You don’t need to make the ArrayMethods class
generic.

> Create a generic Randomize method with one generic type parameter T. The method should
take as a parameter an array of T and randomize the items it contains.

1. The following code shows how you can implement this method:

class ArrayMethods

{

// Make a Random object to use to pick random items.
private static Random Rand = new Random() ;

// Randomize the items in an array.
public static void Randomize<T> (T[] items)
// For each spot in the array, pick
// a random item to swap into that spot.
for (int i = 0; 1 < items.Length - 1; i++)
// Pick a random item j between i and the last item.
int j = Rand.Next (i, items.Length);

// Swap item j into position i.

T temp = items[i];
items[i] = items[j];
items[j] = temp;

}
> Make the main program test the method.

1. The program I wrote uses two TextBoxes, one to hold the original items and one to
display the randomized items. When you click the Randomize button, the following
code executes:

// Randomize the items and display the results.
private void randomizeButton Click(object sender, EventArgs e)

{

// Get the items as an array of strings.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Exercises | 403

string[] items = itemsTextBox.Lines;

// Randomize the array.
ArrayMethods.Randomize<string> (items) ;

// Display the result.
randomizedTextBox.Lines = items;

}

Notice that the code uses the TextBox’s Lines property to get the entered values. That
property returns the lines in a multi-line TextBox as an array of strings.

Also notice that the code doesn’t need to make an instance of the ArrayMethods class.
That’s the advantage of making the Randomize method static.

EXERCISES

1. [Hard] The Randomize method in the Try It doesn’t actually need to work with an array.
What it really needs is to access items by index. The IList interface requires that a class
provide a Count property and indexes.

Write a new version of the generic Randomize method that takes as a parameter an IList.
(Hint: You’ll also need a type parameter for the items inside the list.) Update the program
to test both versions of the method. Note that C# cannot infer which version to use if you
don’t include type parameters when the main program invokes the method.

2. Finish building the generic Alternate method described earlier in this lesson. Add the code
needed to make the alternating version of the list. To make using the method easy, make it
static in the ArrayMethods class. Make the main program test the method with lists contain-
ing odd and even numbers of items.

3. [Hard] The solution to Exercise 1 rearranges the items in an IList randomly. The same
approach would be tricky for the Alternate method in Exercise 2 because it’s not obvious
how you would shuffle the items around in the same array without losing track of where
they all belong. (At least I couldn’t think of a good way to do it.)

However, you can use a slightly different approach. Add an Alternate method to the
ArrayMethods class that uses an intermediate array to arrange the items in an IList.

4. [Hard] Make the TreeNode class to represent a tree node associated with a piece of data of
some generic type. In addition to the code shown earlier in this lesson, give the class:

> An Addchild method that adds a new child node to the node for which the method
is invoked. Have the method take a piece of data of the class’s generic type as a
parameter and return a new TreeNode representing that piece of data.

> A private AddToListPreorder method that adds a node’s subtree to a list in preor-
der format. The preorder format lists the node’s data first and then recursively calls
the method to add the data for the node’s children. You can use code similar to the
following;:

// Recursively add our subtree to an existing list in preorder.
private void AddToListPreorder (List<TreeNode<T>> list)

{

www.it-ebooks.info

http://www.it-ebooks.info/

404 | LESSON 28 MAKING GENERIC CLASSES

// Add this node.
list.Add (this) ;

// Add the children.
foreach (TreeNode<T> child in Children)
child.AddToListPreorder (list) ;

}

> A public preorder method that returns the node’s subtree items in a list in preorder
format. The method should call addToListPreorder to do all of the work. You can
use code similar to the following;:

// Return a list containing our subtree in preorder.
public List<TreeNode<T>> Preorder ()

List<TreeNode<T>> list = new List<TreeNode<T>> () ;
AddToListPreorder (list) ;
return list;

> For extra credit, add similar methods to build lists in postorder and inorder. In
postorder, a node recursively adds its children to the list and then adds its own data.
In inorder, a node recursively adds the first half of its children to the list, then itself,
and then the rest of its children.

Make the main program build the tree shown in Figure 28-1, although it doesn’t need
to display it graphically as in the figure. Make the program display the tree’s preorder,
postorder, and inorder representations, as shown in Figure 28-2.

° adl Generic Tree | = | & -
Preorder Inorder Postorder
A______Jjc________jc]
B B D
C D B
D A F
E F H
F E G
G G |
H H E
| | A

O VWOLVL 7

FIGURE 28-1

5. Make a generic PriorityQueue class. The class is basically a list holding generic items where
each item has an associated priority. Give the class a nested TtembData structure similar to the
following to hold an item:

// A structure to hold items.
private struct ItemData

{

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 405

public int Priority { get; set; }
public T Data { get; set; }

}

This structure is defined inside the PriorityQueue class and won’t be used outside of the
class, so it can be private. Note that this structure uses the class’s generic type parameter
T for the data it holds.

The class should store its TtemData objects in a generic List.

Give the PriorityQueue class a public Count property that returns the number of items in
the list.

Give the class an AddItem method that takes as parameters a piece of data and a priority.
It should make a new Itembata object to hold these values and add it to the list.

Finally, give the class a et Item method that searches the list for the item with the smallest
priority number (priority 1 means top priority), removes that item from the list, and returns
the item and its priority via parameters passed for output. (If there’s a tie for lowest priority
number, return the first item you find with that priority.)

Make a generic sack class that holds items with weights. Give the class the following
features:

> A constructor that takes as a parameter the Sack’s total capacity.

> An add method that takes as parameters a data item and a weight. If the total
weight in the Sack exceeds the sack’s capacity, the method should throw an
ArgumentException.

> An Items method that returns a List holding the items in the sack.
> A weights method that returns a List holding the weights of the items in the sack.

Build a user interface that lets the user add items with weights to a sack with a capacity
of 100. Use two ListBoxes to display the items in the sack and their weights after each
addition.

Make a program similar to the one you built for Exercise 6 except using a Box class. A Box
should be similar to a sack class except it should have a maximum total volume in addition
to a maximum total weight.

Make a generic method that swaps its two parameters’ values.

[Advanced] The Math.Min and Math.Max methods are very useful, but they have two big
drawbacks. First, they take only two parameters. That means if you want to find the larg-
est and smallest of more than two values, you need to use them repeatedly. (Other available
methods, notably LINQ, are described in Lesson 36.)

The second drawback is that they only work with double parameters. If you pass ints or
floats into the methods, the values are promoted to the double data type so the meth-
ods still work, but their results are doubles so you’ll need to convert them if you want the
results to have the original data types.

For this exercise, write generic Min and Max methods that can take any number of param-
eters and that return a value in the parameters’ data type. Hints:

www.it-ebooks.info

http://www.it-ebooks.info/

406 | LESSON 28 MAKING GENERIC CLASSES

> To allow a method to take any number of parameters, you can use a param-
eter array. A parameter array should begin with the params keyword, should
be an array, and must come last in the method’s parameter list. For example,
DoSomething (params string[] wvalues).

>

Obviously you’ll need to be able to compare the parameters to each other.

NOTE Please select the videos for Lesson 28 online at www .wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

SECTION V
System Interactions

The lessons up to this point have explained how you can do some pretty remarkable things.
Using their techniques you can read inputs entered by the user, perform intricate calculations,
repeat a sequence of commands a huge number of times, and even build your own classes to
model complex situations.

All of the programs that you’ve written so far, however, are self-contained. They get input
from the user, but otherwise they don’t interact with the computer.

The lessons in this section explain some of the ways a program can interact with the system.
They explain how to read and write files, explore the filesystem, and print.

» LESSON 29: Using Files

» LESSON 30: Printing

NOTE A program can interact with the computer in lots of other ways. It can
interact with hardware through serial ports and special devices and connect to
websites or other programs over a network. It can use copy-and-paste and the
clipboard to interact with other programs. It even has many different ways to
interact with the same part of the system. For example, a program has many
ways to manipulate files, read and modify the Windows registry, and save and
restore program parameters. The lessons in this part of the book describe some
of the ways a program can interact with the wider system, but these are by no
means the only ways.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

29

Using Files

Files play an extremely important role on a computer. They hold text, pictures, Microsoft
Word documents, spreadsheets, and all sorts of other data. They also hold executable
programs including programs that you write, programs provided by Microsoft and other
software vendors, and even the programs that make up the operating system itself.

In this lesson you learn how to explore the filesystem. You also learn some basic techniques
for reading and writing files. Using some fairly simple techniques, you can use text files to
store and retrieve data used by a program.

NOTE This is one of those topics where there are many ways to perform the
same tasks. There are lots of approaches to searching the filesystem and manipu-
lating files. This lesson describes only a few.

FILESYSTEM CLASSES

Before you can manipulate a file, you need to be able to find it. This section describes .NET
Framework classes that let you search the computer’s filesystem.

NOTE These classes are in the System.I0 namespace so you can make using
them easier by including the directive:

using System.IO;

www.it-ebooks.info

http://www.it-ebooks.info/

410 | LESSON 29 USING FILES

Drivelnfo

The DriveInfo class provides information about the system’s drives. Its static GetDrives function
returns an array of DriveInfo objects describing all of the system’s drives. Table 29-1 summarizes
the DriveInfo class’s most useful properties.

TABLE 29-1

PROPERTY PURPOSE

AvailableFreeSpace The total number of bytes available.

DriveFormat The drive format, as in NTFS or FAT32.

DriveType The drive type, as in Fixed or CDRom.

IsReady Returns true if the drive is ready. A drive must be ready before you
can use the AvailableFreeSpace, DriveFormat, TotalSize, or
VolumeLabel properties.

Name The drive’s name, as in C:\.

RootDirectory A DirectoryInfo object representing the drive's root directory.

TotalFreeSpace The number of bytes available, taking quotas into account.

TotalSize The drive’s total size in bytes.

VolumeLabel The drive’s label.

The List Drives example program, which is in this lesson’s code download and shown in
Figure 29-1, uses DriveInfo properties and methods to show information about the computer’s
drives. For details about how the program works, download it from the book’s website

:

a! List Drives

Name:

N
Label:
Roat
Total Space:
Total Free:
Available Free:

Format:

S| (=] =] [= =N
iﬁéég/m
SESIE

Type:
|z Ready: True
FIGURE 29-1
Directorylnfo

The DirectoryInfo class provides information about directories. Table 29-2 summarizes useful
DirectoryInfo methods for manipulating directories.

www.it-ebooks.info

http://www.it-ebooks.info/

Filesystem Classes | 411

TABLE 29-2
METHOD

Create

CreateSubdirectory

Delete

GetDirectories

GetFiles

MoveTo

PURPOSE

Creates a new directory. To use this, make a DirectoryInfo object,
passing its constructor the name of the directory to create. Then call
the Create method.

Creates a subdirectory inside this directory.

Deletes the directory. If you pass no parameters to this method, it
deletes the directory only if it's empty. You can also pass it a boolean
parameter indicating whether you want to delete all of the directory’s
files and subdirectories.

Returns the directory’s immediate subdirectories. Optionally you can
include a search string to select particular subdirectories.

Returns the directory’s files. Optionally you can include a search string
to select particular files.

Moves the directory to a new path.

The DirectoryInfo class also provides a few useful properties, which are summarized in

Table 29-3.

TABLE 29-3
PROPERTY

Attributes
CreationTime
Exists
FullName
LastAccessTime
LastWriteTime
Name

Parent

Root

PURPOSE

The directory’s attributes, such as Compressed, Hidden, or System.
The time at which the directory was created.

Returns true if the directory actually exists.

Gives the directory’s fully qualified path.

The time at which the directory was last accessed.

The time at which the directory was last written.

The directory’s name without the path.

A DirectoryInfo object representing this directory’s parent directory.

The directory’s filesystem root.

Example program Use Directorylnfo (found in this lesson’s code download) uses a DirectoryInfo
object to display information about directories.

www.it-ebooks.info

http://www.it-ebooks.info/

412 | LESSON 29 USING FILES

Directory

The Directory class provides static methods for manipulating directories. Table 29-4 lists the most
used methods. For simple tasks these are sometimes easier to use than the comparable DirectoryInfo
class methods because you don’t need to create a DirectoryInfo object to use them.

TABLE 29-4
METHOD
CreateDirectory
Delete
Exists
GetCreationTime
GetDirectories
GetDirectoryRoot
GetFiles
GetLastAccessTime
GetLastWriteTime
GetParent
Move
SetCreationTime
SetLastAccessTime

SetLastWriteTime

FileInfo

PURPOSE

Creates the directory and any missing directories in its path up to the root.
Deletes a directory.

Returns true if the directory exists.

Returns the time at which the directory was created.

Returns a directory’s subdirectories.

Returns the directory’s root.

Returns a directory’s files, optionally looking for files matching a pattern.
Returns the time at which a directory was last accessed.

Returns the time at which a directory was last written.

Returns a DirectoryInfo object representing a directory’s parent directory.
Moves a file or directory to a new location.

Sets the directory’s creation time.

Sets the directory’s last access time.

Sets the directory’s last write time.

The FileInfo class, as you can probably guess at this point, provides information about files.
Table 29-5 summarizes useful FileInfo methods for manipulating files.

TABLE 29-5
METHOD PURPOSE
CopyTo Copies the file to a new location.
Decrypt Decrypts a file that was encrypted by the Encrypt method.
Delete Deletes the file.

www.it-ebooks.info

http://www.it-ebooks.info/

Filesystem Classes | 413

METHOD PURPOSE
Encrypt Encrypts the file so it can only be read by the account used to encrypt it.
MoveTo Moves the file to a new location.

The FileInfo class also provides some useful properties, summarized in Table 29-6.

TABLE 29-6
PROPERTY PURPOSE
Attributes The file's attributes, such as Compressed, Hidden, or System.
CreationTime The time at which the file was created.
Directory A DirectoryInfo object for the directory containing the file.
Exists Returns true if the file exists.
Extension Returns the file’s extension.
FullName Gives the file’s fully qualified path.
IsReadOnly Returns true if the file is marked read-only.
LastAccessTime The time at which the file was last accessed.
LastWriteTime The time at which the file was last written.
Length The file's size in bytes.
Name The file’s name without the path.

Example program Use FileInfo (which is in this lesson’s code download) uses a FileInfo object to
display information about files.

File

The File class provides static methods for manipulating files (see Table 29-7). For simple tasks these
are sometimes easier to use than the comparable FileInfo class methods because you don’t need to
create a FileInfo object to use them.

The AppendallText, ReadAllLines, ReadAllText, WriteAllLines, and WriteAllText methods
are particularly useful for reading and writing text files all at once, although you may still want
to use the StreamReader and StreamWriter classes described later in this lesson if you need to
manipulate files one line at a time.

www.it-ebooks.info

http://www.it-ebooks.info/

414 | LESSON 29 USING FILES

GetLastAccessTime

TABLE 29-7
METHOD PURPOSE
AppendAllText Appends a string to the end of a file.
Copy Copies a file to a new file.
Create Creates a file.
Decrypt Decrypts a file that was encrypted by the Encrypt method.
Delete Deletes a file.
Encrypt Encrypts the file so it can only be read by the account used to
encrypt it.
Exists Returns true if a file exists.
GetAttributes Returns a file's attributes, such as Readonly, System, or Hidden.
GetCreationTime Returns the time at which the file was created.

Returns the time at which a file was last accessed.

GetLastWriteTime Returns the time at which a file was last written.
Move Moves a file to a new location.

ReadAllBytes Returns a file’s contents in an array of bytes.
ReadAllLines Returns the lines in a text file as an array of strings.
ReadAllText Returns a text file’s contents in a string.
SetAttributes Sets a file's attributes.

SetCreationTime Sets a file's creation time.

SetLastAccessTime Sets a file's last access time.

SetLastWriteTime Sets a file's last write time.

WriteAllBytes Wirites a file's contents from an array of bytes.
WriteAllLines Wirites a text file's contents from an array of strings.
WriteAllText Writes a text file's contents from a string.

PATH

The path class provides static methods that perform string operations on file paths. For example,
you can use the ChangeExtension method to change the extension part of a file’s name. Table 29-8
summarizes the Path class’s most useful methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Streams | 415

TABLE 29-8
METHOD PURPOSE
ChangeExtension Changes a filename's extension.
Combine Combines two path strings, adding a backslash between
them if needed.
GetDirectoryName Returns the directory name part of a path.
GetExtension Returns the extension part of a filename.
GetFileName Returns the filename part of a file's path.

GetFileNameWithoutExtension Returns the filename part of a file's path without the extension.
GetTempFileName Returns a name for a temporary file.

GetTempPath Returns the path to the system’s temporary folder.

STREAMS

A computer can contain many kinds of files: web pages, video, audio, executable, and lots of others.
At some level, however, files are all the same. They’re just a series of bytes stored on a filesystem
somewhere.

Thinking about files at this very low level lets you treat them uniformly. It lets you define common
classes and methods that you can use to manipulate any kind of file.

Many programming languages, including C#, make working with files at a low level easier by
defining the concept of a stream. A stream is simply an ordered series of bytes.

NOTE Streams can also represent things other than files. For example, a stream
could represent data being sent from one program to another, a series of bytes
being downloaded from a website, or the flow of data as it moves through some
complex process such as encryption or compression. This section focuses on file
streams.

Stream objects provide methods for manipulating data at a low level. For example, the stream class
provides Read and Write methods that move bytes of data between the stream and an array of bytes
in your program.

Working with streams at this low level is convenient for some programs, but it makes day-to-day file
handling difficult. You probably don’t want to read the bytes from a text file and then reassemble
them into characters.

www.it-ebooks.info

http://www.it-ebooks.info/

416 | LESSON 29 USING FILES

The streamReader and Streamiriter classes make reading and writing text streams much easier.
As you can probably guess from their names, StreamrReader lets you read text from a stream and
StreamWriter lets you write text into a stream. If that stream happens to represent a file, then
you’re reading and writing files.

NOTE The StreamReader and StreamWriter classes are in the System. I0
namespace. To make it easier to use these classes, you can add the following
using directive to your code:

using System.IO;

Writing Files

The streamWriter class provides several constructors to build a Streamwriter associated with
different kinds of streams. One of the simplest constructors takes a filename as a parameter. It
opens the file for writing and associates the new StreamWriter with it.

NOTE Note that StreamWriter implements IDisposable, so you should use it
inside a using block to call its Dispose method automatically.

The following code shows how a program can open the file Memo . txt for writing. If the file already
exists, it is overwritten.

// Write into the file, overwriting it if it exists.
using (StreamWriter memoWriter = new StreamWriter ("Memo.txt"))

{

// Write into the file.

NOTE If you pass the constructor a filename without a path such as Memo. txt,
the program creates the file in its current directory. You can use a fully qualified
filename such as c:\Temp\Memo . txt to create the file in a particular directory.

Another version of the class’s constructor takes a second bool parameter that indicates whether you
want to open the file for appending. If you set this parameter to true, the StreamWriter opens the
existing file and prepares to add text to the end. If the file doesn’t exit, the object silently creates a
new file and gets ready to append.

www.it-ebooks.info

http://www.it-ebooks.info/

Streams | 417

The streamWriter class provides a Wwrite method to add text to the file. The writeLine method
adds text followed by a new line. Both write and writeLine have overloaded versions that write
various data types into the file: bool, char, string, int, decimal, and so on. They also provide
versions that take a format string and parameters much as the string.Format method does.

The streamwriter provides one other very important method that I want to cover here: Close.
The close method closes the streamwriter and its associated file. When you use the write and
WriteLine methods, the StreamWriter may actually buffer its output in memory and only write
to the file when it has enough data stored up. The close method forces the Streamwriter to flush
its buffer into the file, and until you call close the data may not actually be in the file. If your
program crashes or ends without calling close, there’s a very good chance that some or all of your
text will be lost.

The following code shows how a program could save the contents of a TextBox in a file:

// Write the file, overwriting it if it exists.
using (StreamWriter memoWriter = new StreamWriter ("Memo.txt"))

{

// Write the file.
memoWriter.Write (memoTextBox.Text) ;
memoWriter.Close() ;

Reading Files

The streamReader class lets you easily read text from a file. Like the streamwriter class,
StreamReader provides a constructor that takes a parameter giving the name of the file to open.

The streamReader constructor throws an exception if the file doesn’t exist, so your program should
verify that the file is there before you try to open it. For example, you can use the File class’s static
Exists method to see if the file exists.

The streamReader class provides a Read method that lets you read from the file one or more bytes
at a time, but usually you’ll want to use its ReadLine and ReadToEnd methods.

As you may be able to guess, ReadLine reads the next line from the file and returns it as a string.
ReadToEnd reads the rest of the file from the current position onward and returns it as a string.

The following code reads the file Memo . txt and displays its contents in a TextBox:
// Read the file.

using (StreamReader memoReader = new StreamReader ("Memo.txt"))

memoTextBox.Text = memoReader.ReadToEnd () ;
memoReader.Close () ;

The SstreamReader’s EndofStream property returns true if the reader is at the end of the stream.
This is particularly useful when you’re reading a stream of unknown length. For example,

the program can enter a while loop that uses ReadLine to read lines and continue as long as
EndOfStreamis false.

www.it-ebooks.info

http://www.it-ebooks.info/

418 | LESSON 29 USING FILES

TRY IT ag! Search For Files I;‘i-
In this Try It, you build the program shown in Doty [CAer \Rod Deatop A Proocte e D\ £ 20|
Figure 29-2 to let the user search for files that match a Patem: [o=]
pattern and that contain a target string. Enter a direc- Seach For: |vod |
tory at which to start the search, select or enter a file
pattern in the Pattern combo box, and enter a target o sgner cs
string in the Search For textbox. When you click R pesignercs
Search, the program searches for files matching the
pattern and containing the target string.

FIGURE 29-2

Lesson Requirements

In this lesson, you:

>

Start a new project and arrange its form, as shown in Figure 29-2. Give the combo box the
choices *.cs, *.txt, *.*, and any other patterns that you think would be useful.

Give the form a Load event handler that places the application’s startup path in the Directory
textbox (just to have somewhere to start).

Give the Search button a click event handler that searches for the desired files.

NOTE You can download the code and resources for this lesson from the website
at www .wrox .com/go/csharp24hourtrainer2e.

Hints

>

Use the DirectoryInfo class’s GetFiles method to search for files matching the pattern.

Use the FileInfo class’s Readal1Text method to get the file’s contents. Then use string
methods to see if the text contains the target string.

To ignore case, convert the target string and the files’ contents to lowercase.

Step-by-Step

>

Start a new project and arrange its form, as shown in Figure 29-2. Give the combo box the
choices *.cs, *.txt, *.*, and any other patterns that you think would be useful.

1. This is reasonably straightforward.

Give the form a Load event handler that places the application’s startup path in the Directory
textbox (just to have somewhere to start).

1. Use code similar to the following:

// Start at the startup directory.
private void Forml Load (object sender, EventArgs e)

{

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Exercises

| 419

>

directoryTextBox.Text = Application.StartupPath;

}

Give the Search button a click event handler that searches for the desired files.

1. Use code similar to the following:

// Search for files matching the pattern
// and containing the target string.

private void searchButton Click(object sender, EventArgs e)

{
// Get the file pattern and target string.
string pattern = patternComboBox.Text;
string target = targetTextBox.Text.ToLower () ;

// Clear the result list.
fileListBox.Items.Clear() ;

// Search for files.
DirectoryInfo dirinfo =

new DirectoryInfo(directoryTextBox.Text) ;
foreach (FileInfo fileinfo in

{

dirinfo.GetFiles (pattern, SearchOption.AllDirectories))

// See if we need to look for target text.
if (target.Length > 0)

{
// If this file contains the target string,
// add it to the list.
string content =
File.ReadAllText (fileinfo.FullName) . ToLower () ;
if (content.Contains (target))
fileListBox.Items.Add(fileinfo) ;
1
else
{
// Just add this file to the list.
fileListBox.Items.Add(fileinfo) ;
1

EXERCISES

1.

Write a program that sorts a text file. (Hint: Load the file’s lines of text into an array and

use Array.Sort to do the actual sorting.) Test the program on the file Names . txt included

in this lesson’s download.

Write a program that removes duplicate entries from a text file. (Hint: Copy the program

you built for Exercise 1. After you sort the array, run through the entries, copying them into
a new list. If you see a duplicate entry, skip it and write it to the Console window.) Test the

program on the file Names . txt included in this lesson’s download.

www.it-ebooks.info

http://www.it-ebooks.info/

420 | LESSON 29 USING FILES

3. Make a program that has Labels and TextBoxes for first name, last name, street, city, state,
and ZIP code. When the form closes, save the values in the TextBoxes in a text file. When the
program loads, reload the values. (Hint: Write each TextBox’s value on a separate line in the
text file.)

4. Build a Memo program that saves and loads a single memo saved in the file in a multi-line
TextBox. (This is so easy I wouldn’t even bother using it as an exercise except it’s actually
useful. You can use it to record notes during the day and easily read them the next day.)

5. Make a program that lets the user select a number from a NumericUpDown control and then
generates a text file containing a multiplication table that goes up to that number times itself.
Use formatting to make the numbers line up in columns.

6. Build a program with a TextBox, a ListBox, an Add button, and a Save button. When the
user enters a value in the TextBox and clicks Add, add the value to the ListBox. When the
user clicks Save, write the values from the ListBox into a file and then clear the ListBox.
When the form loads, make it read the values back into the ListBox.

7. Build a simple text editor. Give it a TextBox and a File menu with Open, New, and Save As
commands. Use an OpenFileDialog and a SaveFileDialog to let the user select the file to
open and save. (Don’t worry about any of the other things a real editor would need to han-
dle, such as locked files and ensuring that the user doesn’t close the program with unsaved
changes.)

NOTE Please select the videos for Lesson 29 online at www .wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

30

P [] t []
Most of the programs described in earlier lessons display output on the computer’s screen.

Lesson 29 explained how to save output in files.

This lesson explains a third method for producing output: printing. Using the techniques
described in this lesson, you can print text, shapes, images—just about anything you want.

WARNING Before you start a printing project, however, be warned that print-
ing in C# isn’t trivial. It’s easy enough to display some text or a few lines in a
printout, but producing a complex formatied document can be a lot of work.

If you need to produce a nicely formatted résumé, graph, or grid of values,

you should ask yourself whether there’s an easier way. For example, Microsoft
Word and Google Docs are great at producing nicely formatted text documents.
Similarly, Microsoft Excel does a wonderful job of making charts and graphs.
You can certainly generate these sorts of printouts using C#, but it may be a lot
faster and easier if you use another tool.

WINDOWS FORMS PRINTING

Windows Forms and WPF applications handle printing in very different ways. A Windows
Forms application responds to events and makes method calls to draw text, shapes, and
images on the printed page. In contrast, a WPF application uses objects such as the Label
and TextBox controls to represent text, shapes, and images that you can print.

The following sections explain how a Windows Forms application prints. The sections after
those explain how a WPF application prints.

www.it-ebooks.info

http://www.it-ebooks.info/

422

| LESSON 30 PRINTING

Getting Started

The PrintDocument component sits at the center of the Windows Forms printing process. To print,
a program creates an instance of this class either at design time or at run time. It adds event handlers
to catch the object’s events and then lets the object do its thing. As the object generates pieces of the
printout, it raises events to let the program supply graphics for it to print.

The PrintDocument object raises four key events:

> BeginPrint—Raised when the object is about to start printing to let the program do what-
ever it must to get ready to print.

> QueryPageSettings—Raised when the object is about to start printing a page to let the
program modify the upcoming page’s settings. For example, it might adjust the margins so
odd pages have bigger margins on the left and even pages have bigger margins on the right
to allow room for a staple in a double-sided document.

> printpage—Raised when the object needs to generate contents for a page. This is where the
program does its drawing. The event handler should set the its e .HasMorePages value to
false after it draws its last page.

> EndPrint—Raised after the object has finished printing to let the program clean up if
necessary.

The BeginPrint, QueryPageSettings, and EndPrint event handlers are optional. For simple
printouts, you often only need the printPage event handler.

The PrintPage event handler gives you a parameter named e of type PrintPageEventArgs. This
object contains:

> The HasMorePages parameter that you use to tell the PrintDocument whether this is the
last page

> A pageBounds property that tells you how big the page is
A MarginBounds property that tells you where the page’s margins are
> A Graphics object that you use to draw the page’s contents

The following section explains how a program starts the printing process. The sections after that
give simple examples that show how to draw shapes and text.

Starting a Printout

The easiest way to generate a printout using the PrintDocument object is to place the object on a
form at design time and give the object a PrintPage event handler to generate the pages. When
you’re ready to print, simply call the PrintDocument object’s Print method. The object raises
its PrintPage event, the event handler generates graphics, and the object sends the results to the
default printer.

TIP The Form Designer’s Toolbox has a Printing section that makes it easy to
find the printing-related components.

www.it-ebooks.info

http://www.it-ebooks.info/

Windows Forms Printing | 423

Once you’ve built a PrintPage event handler, it’s practically trivial to add a print preview capability
to the program. Add a PrintPreviewDialog object to the form and set its Document property to
the PrintDocument object that you already created. To display a print preview, simply call the dia-
log’s showbDialog method. When you do, the dialog uses the associated PrintDocument object to
generate the necessary preview and displays the result.

TIP The printPreviewDialog contains a print button, so for simple programs
you may not really need a print command. The program can display a preview
and the user can click the button to print.

Drawing Shapes

You’ve seen in previous lessons how to use a Graphics object’s methods to draw. To draw shapes on
a printout, you use the same methods with the PrintpPage event handler’s e.Graphics parameter.

Figure 30-1 shows the Print Shapes example program displaying a preview that contains a rectangle
and an ellipse.

adl Print Shapes = [= eE

e 8L 0D E DB Page| 17

FIGURE 30-1

The following code shows the program’s PrintPage event handler:

// Draw some shapes.
private void shapesPrintDocument PrintPage (object sender,
System.Drawing.Printing.PrintPageEventArgs e)

e.Graphics.SmoothingMode = SmoothingMode.AntiAlias;

// Draw a rectangle around the page margin.
e.Graphics.DrawRectangle (Pens.Red, e.MarginBounds) ;

www.it-ebooks.info

http://www.it-ebooks.info/

424 | LESSON 30 PRINTING

// Draw an ellipse inside the page margin.
e.Graphics.DrawEllipse (Pens.Blue, e.MarginBounds) ;

// There are no more pages.
e.HasMorePages = false;

}

This code sets the Graphics object’s SmoothingMode property. It then draws a rectangle and
an ellipse around the page’s margins. It finishes by setting HasMorePages to false to tell the
PrintDocument object to not raise its PrintPage event again.

The following code shows how the program displays print previews and generates printouts:

// Print immediately.
private void printButton Click (object sender, EventArgs e)

{
}

// Display a print preview.
private void previewButton Click(object sender, EventArgs e)

{
}

shapesPrintDocument.Print () ;

shapesPrintPreviewDialog.ShowDialog() ;

NOTE Unfortunately, there isn’t room in this lesson to really get into the draw-
ing routines that you use to generate fancier printouts. For a more complete
introduction to graphics programming in C#, see my PDF-format Wrox Blox C#
Graphics Programming available at www.wrox . com/WileyCDA/WroxTitle/pro-
ductCd-0470343494 .html.

Drawing Text

To draw shapes, the Print Shapes program described in the preceding section calls the e.Graphics
object’s DrawRectangle and DrawE1l1lipse methods. Printing text is similar except you use the
DrawStringInethOd.

Example program Print Text uses the following code to print the page number centered on four pages:

// Print immediately.
private void printButton Click (object sender, EventArgs e)
{

PageNumber = 1;

shapesPrintDocument.Print () ;

}

// Display a print preview.
private void previewButton Click(object sender, EventArgs e)

{

PageNumber = 1;
shapesPrintPreviewDialog.ShowDialog() ;

www.it-ebooks.info

http://www.wrox.com/WileyCDA/WroxTitle/pro-ductCd-0470343494.html
http://www.wrox.com/WileyCDA/WroxTitle/pro-ductCd-0470343494.html
http://www.wrox.com/WileyCDA/WroxTitle/pro-ductCd-0470343494.html
http://www.it-ebooks.info/

WPF Printing | 425

}

// The page number.
private int PageNumber;

// Draw some shapes.
private void shapesPrintDocument PrintPage (object sender,
System.Drawing.Printing.PrintPageEventArgs e)

e.Graphics.SmoothingMode = SmoothingMode.AntiAlias;
// Draw the page number centered on the form.
using (Font font = new Font ("Helvitca", 400))
using (StringFormat format = new StringFormat())
{
format.Alignment = StringAlignment.Center;
format.LineAlignment = StringAlignment.Center;
int x = e.MarginBounds.Left + e.MarginBounds.Width / 2;
int y = e.MarginBounds.Top + e.MarginBounds.Height / 2;
e.Graphics.DrawString (PageNumber.ToString (),
font, Brushes.Blue, x, y, format);
// If this is page 4, we're done.
e.HasMorePages = (++PageNumber <= 4);
}

The Print and Print Preview buttons’ event handlers first set the class-level variable PageNumber to 1
to indicate that the next page to print is page 1. The button event handlers then start the printing or
preview process.

The printPage event handler sets the Graphics object’s 3 - - eI
) lly bie font L= Print preview

SmoothingMode property and creates a really big font. 69 ODE® B oo 2age

It then creates a StringFormat object, which it can

use to arrange text. In this example, it sets the object’s

Alignment and LineAlignment properties to center the 1 2
text vertically and horizontally.

The code then finds the center of the printed page

and calls Drawstring to draw the page number. The

code finishes by incrementing PageNumber and setting

HasMorePages to true if the new value of PageNumber is 3 4
less than or equal to 4. Figure 30-2 shows the program’s

preview displaying four pages at a time.

FIGURE 30-2

WPF PRINTING

To print in a Windows Forms application, a program catches a PrintDocument object’s Print
page event handler and uses its e.Graphics parameter to generate graphics for each page of the
printout. WPF uses a different printing model that many programmers find more intuitive. Instead

www.it-ebooks.info

http://www.it-ebooks.info/

426 | LESSON 30 PRINTING

of responding to PrintPage events, a WPF program’s code can directly print visual objects that it
draws using WPF controls such as Label and TextBox. You create some sort of container; place
Label, TextBox, and other controls on it; and then print the container.

In addition to being easier to understand, this approach has a couple of other benefits. For example,
it lets the program use the same kind of code to display and print data. In Windows Forms, a pro-
gram uses controls such as TextBox and Label to display text on the screen but it uses a Graphics
object’s Drawstring method to draw text on a printout. WPF uses the same kinds of TextBox and
Label objects for both display and printing.

WPF also allows you to zoom in as much as you like without creating a pixelated result. That
means, for example, you can enlarge a window as much as you like for a printout and you’ll still
see a smooth result.

The following sections give more details explaining how to print in WPF applications.

PRINTING VISUALS

In WPF, a PrintDialog object starts the printing process. This object can display a printer selection
dialog and provides a Printvisual method that prints visual objects.

Although your code can simply call Printvisual to send output to the default printer immediately,
most programs first display the dialog so the user can select a printer. To do that, the program cre-
ates a PrintDialog object and calls its ShowDialog method. If the user selects a printer and clicks
Print, ShowDialog returns true and the program can then call the dialog’s Printvisual method,
passing it the visual object to print.

Fpr example, the Print Wm_dow program_shown. in - F— EE |
Figure 30-3 uses the following code to print an image
of its main window: Ne ome
// Print the window. First Name: Lorem
private void printButton Click(object
sender, RoutedEventArgs e) Last Name: Ipsum
{ .
// Display the print dialog and Street: 1675 N Buena Vista Dr
Ch§Ck Fhe resu%t.) City: Lake Buena Vista
PrintDialog printDialog =
new PrintDialog() ; State: I ZIP: 32830
if (printDialog.ShowDialog() == true)
{ FIGURE 30-3
// Print.

printDialog.PrintVisual (this, "Print Window Image") ;

}

The code creates a PrintDialog object and calls its ShowDialog method. If Showbialog returns
true (indicating that the user clicked the dialog’s Print button), the code calls the dialog’s
PrintVisual method, passing it the parameter this (indicating that it should print the current
window). It also passes PrintVvisual a descriptive title for the printer to display in its user interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Printing Visuals | 427

This code is simple and produces a high-resolution result, but it has a big drawback: the result
appears in the page’s upper-left corner. It might be nice to center the image and possibly scale it

to use more of the paper.

The simplicity of the previous code may make it seem like fixing these problems would be hard.

Where in that code is there room for these sorts of changes?

Fortunately, WPF provides two features that make this problem much easier to solve than you

might think:

> First, it provides transformations that let you scale, rotate, and translate images easily.

> Second, it lets you easily place most graphical objects inside other graphical objects.

Instead of trying to modify the window’s image, you can place the image inside other controls such

as a Grid or Viewbox. Then you can transform those controls to fit properly on the printed page.

Example program Print Window Centered uses the following code to print an image of the window

centered on the page. Admittedly this code is a lot longer than the previous version, but it’s not as

complicated as it seems at first glance.

// Print an image of the window centered.
private void printButton Click(object sender, RoutedEventArgs e)
{

PrintDialog printDialog = new PrintDialog() ;

if (printDialog.ShowDialog() == true)

{

PrintWindowCentered (printDialog, this, "New Customer", null);

}
}

// Print a Window centered on the printer.

private void PrintWindowCentered (PrintDialog printDialog, Window win,

String title, Thickness? margin)
{
// Make a Grid to hold the contents.
Grid drawingGrid = new Grid() ;
drawingGrid.Width = printDialog.PrintableAreaWidth;
drawingGrid.Height = printDialog.PrintableAreaHeight;

// Make a Viewbox to stretch the result if necessary.
Viewbox viewbox = new Viewbox() ;
drawingGrid.Children.Add (viewbox) ;
viewbox.HorizontalAlignment = HorizontalAlignment.Center;
viewbox.VerticalAlignment = VerticalAlignment.Center;

if (margin == null)

{
// Center without resizing.
viewbox.Stretch = Stretch.None;

}

else

{

// Resize to fit the margin.
viewbox.Margin = margin.Value;

www.it-ebooks.info

http://www.it-ebooks.info/

428

| LESSON 30 PRINTING

viewbox.Stretch = Stretch.Uniform;

}

// Make a VisualBrush holding an image of the Window's contents.
VisualBrush br = new VisualBrush (win) ;

// Make a Rectangle the size of the Window.
Rectangle windowRect = new Rectangle() ;
viewbox.Child = windowRect;

windowRect .Width = win.Width;

windowRect .Height = win.Height;
windowRect.Fill = Dbr;

windowRect.Stroke = Brushes.Black;
windowRect.Effect = new DropShadowEffect () ;

// Arrange to produce output.
Rect rect = new Rect (0, 0,

printDialog.PrintableAreaWidth, printDialog.PrintableAreaHeight) ;
drawingGrid.Arrange (rect) ;

// Print it.
printDialog.PrintVisual (drawingGrid, title);

NOTE This code adds a bropshadowEffect behind the grid. That class is
defined in the System.Windows .Media.Effects namespace, so to make using it
easier, the program includes the following using directive:

using System.Windows.Media.Effects;

When you click the Print button, the program displays a PrintDialog as before. If you select
a printer and click Print, the program calls the PrintWwindowCentered method, passing it the
PrintDialog object and the Window to print. It also passes the method a title to use for the
printout and a margin (which can be nu11).

The PrintWindowCentered method makes a Grid that fills the printer’s printable area. Inside the
Grid it places a Viewbox named viewbox. A Viewbox displays a single object that it can optionally
stretch in various ways.

If the method receives a margin parameter, the program sets the Viewbox’s margin appropriately
and makes the control stretch its contents so they are as large as possible without changing shape.
If the margin parameter is null, the code makes the viewbox not stretch its contents.

Next the code makes a VisualBrush from the Window. A VisualBrush fills an area with the image
of some visual object such as a control or, in this case, the program’s main window. The code creates
a Rectangle, places it inside the viewbox, and fills it with the brush.

At this point, all of the objects needed to display the window appropriately sized and centered on the
printed page are in place. The code only needs to perform two more steps.

First, it calls the crid’s Arrange method to make its children arrange themselves. Second, the code
calls the PrintDialog’s PrintVisual method to print the Grid.

www.it-ebooks.info

http://www.it-ebooks.info/

Printing Visuals | 429

Figure 30-4 shows a preview of the result. To make this figure, I printed the window into an
XML Paper Specification (XPS) file by selecting the Microsoft XPS Document Writer from the
PrintDialog. I then double-clicked the XPS file to display it in the XPS Viewer shown in Figure
30-4. You can see in the figure that the window’s image is centered.

Page of 1 ﬁ @
FIGURE 30-4

In Figure 30-4 the image of the window looks a bit grainy and pixelated, but that’s caused by the way
the XPS Viewer displays the document. The document itself was generated at a very high resolution. In
Figure 30-5 the viewer has enlarged the document by 265 percent, so you can see that the result is actu-
ally very smooth and the final printout can take advantage of the printer’s relatively high resolution.

First Name: Lorem

FIGURE 30-5
www.it-ebooks.info

http://www.it-ebooks.info/

430 | LESSON 30 PRINTING

The Print Window Enlarged example program is similar to the Print Window Centered program
except it uses the following code to pass a Thickness object to the PrintWwindowCentered method
to use as a margin. That makes the method stretch the window’s image to fill the printable area
minus a 50-pixel margin.

// Print an image of the window centered and stretched to fill the page.
private void printButton Click (object sender, RoutedEventArgs e)

{

PrintDialog printDialog = new PrintDialog() ;
if (printDialog.ShowDialog() == true)

PrintWindowCentered (printDialog, this, "New Customer",
new Thickness(50));

}

Figure 30-6 shows the result. Notice that the window’s image is centered and enlarged to fill most of
the printable area.

First Mame: Larem
Last Mame: Ipsurm

Strest: 1675 M Buena Vista Dr

City: Lake Buena Vista

State: ([2p 32830

FIGURE 30-6

In addition to the Printvisual method, the PrintDialog class provides a PrintDocument method
that prints multipage output or document objects such as FlowDocuments or FixedDocuments.
Unfortunately these topics are fairly complex, so they’re not described here. If you need those
capabilities, you can find more information online at:

> PrintDocument—msdn.microsoft.com/library/system.windows.controls
.printdialog.printdocument.aspx

> FixedDocument—msdn.microsoft.com/library/system.windows.documents
. fixeddocument .aspx

> FlowDocument—msdn.microsoft.com/library/system.windows.documents
. flowdocument . aspx

www.it-ebooks.info

http://www.it-ebooks.info/

Try lt | 431

TRY IT

In this Try It, you build a program that prints and displays a preview of the table shown in
Figure 30-7. You build an array of student objects and then loop through them, displaying their
values as shown in the figure.

o Print preview == -
& O~ @ [0 @@ @ @@ | Cose Page| 15
Name Test1] Test2 Test3 Test4
Ann Archer 91 92 93 94
Bob Blarth 81 82 83 84
Cyd Carter 71 72 73 74
Dan Deever 61 62 63 64
FIGURE 30-7

Lesson Requirements

In this lesson, you:

> Start a new Windows Forms project and create the program’s main form. Add
PrintDocument and PrintPreviewDialog components to do the printing and previewing.
> Add Print and Preview buttons with appropriate event handlers.

Add a student class with FirstName and LastName properties. Also give it a TestScores
property that is an array of integers.

» Create the PrintPage event handler.
> Create an array of Student objects. Initialize them using array and object initializers.
> Loop through the student objects, printing them.

> Draw a rectangle around the table.

NOTE You can download the code and resources for this lesson from the website
at www .wrox .com/go/csharp24hourtrainer2e.

Hints
> Don’t forget to set the PrintPreviewDialog’s Document property, to the PrintDocument
component.
>

This example doesn’t do anything fancy with student properties, so they can be
auto-implemented.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

432 | LESSON 30 PRINTING

> It might help to define variables %0, x1, and so on to keep track of where each column should

begin.

Step-by-Step

> Start a new Windows Forms project and create the program’s main form. Add
PrintDocument and PrintPreviewDialog components to do the printing and previewing.
1. This is reasonably straightforward.
> Add Print and Preview buttons with appropriate event handlers.
1. Use code similar to the following:
// Display a print preview.
private void previewButton Click (object sender, EventArgs e)
{
textPrintPreviewDialog.ShowDialog() ;
}
// Print.
private void printButton Click (object sender, EventArgs e)
{
textPrintDocument.Print () ;
}
>

Add a student class with FirstName and LastName properties. Also give it a TestScores
property that is an array of integers.

1. Use code similar to the following:

class Student

{

public string FirstName { get; set; }
public string LastName { get; set; }
public int[]TestScores { get; set; }

}
» Create the PrintPage event handler.

> Create an array of student objects. Initialize them using array and object initializers.

> Loop through the student objects, printing them.
> Draw a rectangle around the table.

1. Use code similar to the following:

// Print the table.
private void textPrintDocument PrintPage (object sender,
System.Drawing.Printing.PrintPageEventArgs e)

// Make some data.
Student [] students =
{
new Student () {FirstName="Ann", LastName="Archer",
TestScores=new int[] {91, 92, 93, 94}},
new Student () {FirstName:"Bob", LastName="Blarth",

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 433

i

TestScores=new int[]

{81, 82, 83, 84}},

new Student () {FirstName:"Cyd“, LastName="Carter",

TestScores=new int[]

{71, 72, 73, 74}},

new Student () {FirstName="Dan", LastName="Deever",

TestScores=new int[]

{61, 62, 63, 64}},

// Set the coordinates for the first row and the columns.

int y e.MarginBounds.Top;
int x0 e.MarginBounds.Left;
int x1 = x0 + 200;

int x2 x1 + 100;

int x3 x2 + 100;

int x4 x3 + 100;

// Make a font to use.
using (Font font = new Font ("Times New Roman',

{

20))

// Draw column headers.

e.Graphics.DrawString ("Name", font, Brushes.Black, x0, y);
e.Graphics.DrawString ("Test 1", font, Brushes.Black, x1, y);
e.Graphics.DrawString ("Test 2", font, Brushes.Black, x2, y);
e.Graphics.DrawString ("Test 3", font, Brushes.Black, x3, vy);
e.Graphics.DrawString ("Test 4", font, Brushes.Black, x4, y);
// Move Y down for the first row.
y += 30;
// Loop through the Students displaying their data.
foreach (Student student in students)
{
// Display the Student's values.
e.Graphics.DrawString(student.FirstName + " " +
student.LastName, font, Brushes.Black, x0, y);
e.Graphics.DrawString (student.TestScores [0] .ToString(),
font, Brushes.Black, x1, y);
e.Graphics.DrawString (student.TestScores [1] .ToString(),
font, Brushes.Black, x2, vy);
e.Graphics.DrawString (student.TestScores [2] .ToString(),
font, Brushes.Black, x3, vy);
e.Graphics.DrawString (student.TestScores [3] .ToString(),

font, Brushes.Black, x4, Vy);

// Move Y down for the next row.
y += 30;

}

// Draw a box around it all.
e.Graphics.DrawRectangle (Pens.Black,
x0, e.MarginBounds.Top,
x4 - x0 + 100,
y - e.MarginBounds.Top) ;

// We're only printing one page.
e.HasMorePages = false;

www.it-ebooks.info

http://www.it-ebooks.info/

434 | LESSON 30 PRINTING

EXERCISES

1. Copy the program you built in this lesson’s Try It and add lines between the rows and
columns.

2. Make a program that prints a bar chart similar to the one shown in Figure 30-8. (Hint: Pick
some “random” values for the bars.)

ol Print preview == -
&GP~ D @ M @ |Cose Page| 1
150
140
120 130 — H
100
85
< m > -
FIGURE 30-8

3. Copy the program you built for Exercise 2 and modify it so the textual values are centered
over their bars. (Hint: Use a StringFormat object.)

4. Build a program that contains a DataGridview control with the columns Item, Quantity,
Unit price, and Total. Make Print and Preview menu items that display the data in the grid.

Add printDocument and PrintPreviewDialog controls as usual. The PrintPage event
handler should:

a. Call the grid’s Endedit method to commit the current edit (if there is one).

b. Loop through the grid’s columns collection, displaying the column headers. Add each
column’s width value to the X coordinate for the next column.

C. Loop through the grid’s Rows collection. For each row, loop through the row’s cells
collection, displaying the cells’ Formattedvalue property.

5. Copy the program you built for Exercise 4, add lines between the rows and columns, and
draw a box around the table.

6. Copy the Print Window Enlarged program described in this lesson (and available in this les-
son’s downloads). Modify it so it prints the window sideways to fill more of the printed page.

Hints: This is a lof easier than it sounds. Modify the PrintWindowCentered method
so it uses the page’s printable width and height for the drawing grid’s height and width,

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 435

respectively. Then set the grid’s LayoutTransform property to a RotateTransform object
that rotates it by 90°. The code that creates the grid should look like this:

Grid drawingGrid = new Grid() ;

drawingGrid.Width = printDialog.PrintableAreaHeight;

drawingGrid.Height = printDialog.PrintableAreaWidth;
drawingGrid.LayoutTransform = new RotateTransform(90) ;

[WPF] The WPF examples described in this lesson print images of a window, but similar tech-
niques work with any visual object such as a Grid, Stackpanel, or TextBox.

For this exercise, build a WPF program that contains a TabControl. Give that control three
TabItem children. Set each TabItem’s Header property and place a Grid inside it. Place
some Labels, TextBoxes, and other controls inside the crids. Finally, give each tab a Print
button. (If you don’t want to build the controls yourself, download the Exercise 30-7a pro-
gram available in this lesson’s downloads as a starting point. That project defines the user
interface but none of the code.)

To print, use the PrintWindowCentered method used by the earlier example programs with
a few changes:

> Change the method’s name to PrintGridCentered.
> Make the method take a Grid as a parameter instead of a Window.

> The grid control doesn’t have a set width or height, so its Width and Height
properties don’t return meaningful values. Use the Actualwidth and ActualHeight
properties instead.

> To avoid repeating code, write a PrintGrid method that takes as parameters a crid,
title string, and Thickness. It should display a PrintDialog and, if the user clicks
Print, it should call PrintGridcentered to do the actual printing.

Make a Windows Forms program that previews and prints four pages containing the
following shapes outlined in 10-pixel wide lines:

> Red rectangle
> Green ellipse

> Blue triangle

> Purple diamond

Make the shapes as large as possible inside the page’s margins and outline the page’s mar-
gins with a dashed black line.

Hints: To draw the triangle and diamond, use the DrawPolygon method with an array of
Point. You can use a single pen for all of the drawing by changing its color and Dashstyle
properties as needed.

[Hard] Suppose you’re making a booklet and you want to indent odd numbered pages on the
left and even pages on the right to make room for the stapled binding. (That extra alternating
indentation is called a “gutter.”) Make a Windows Forms program that prints or previews

www.it-ebooks.info

http://www.it-ebooks.info/

436 | LESSON 30 PRINTING

10 pages with a 100-unit gutter. Draw boxes around the pages’ margins and display the page
number just inside the margins in the upper corner on the side opposite the gutter. Hints:

> Use the PrintDocument’s QueryPageSettings event to set the margins. It should
handle three cases:
> For the first page, add 100 to e.PageSettings.Margins.Left.
> For subsequent odd pages, add 100 to the left margin and subtract 100 from
the right margin.
> For even pages, subtract 100 from the left margin and add 100 to the right
margin.
>

Use a stringFormat object’s Alignment and LineAlignment properties to position
the page numbers.

Keep in mind that QueryPageSettings works with margins, not bounds. For example,
adding 100 to the right margin moves the right edge of the margin bounds 100 units farther
from the edge of the page. (Yes, this can be confusing.)

NOTE Please select the videos for Lesson 30 online at www .wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

SECTION VI
Windows Apps

The lessons in the first part of this book focused on Windows desktop applications because
they’re easy to get up and running. You don’t need to take any special steps to register a
desktop application, upload it to the Windows Store, or have it tested for safe use on a phone.
By working with Windows Forms applications, you used those lessons to focus on using con-
trols and writing C# code.

The lessons in this part of the book explain how you can use what you’ve learned to build
Windows Store apps and Windows Phone apps. You build those kinds of applications using
WPF windows and controls similar to those that you learned about in the first part of the
book. You can edit them using the Window Designer and modify their XAML code. You can
even place C# behind the controls much as you do in a WPF desktop application.

It would be nice if that were all there was to building these kinds of applications, but you have
several other to handle overcome before you can publish the next paradigm-shifting mobile
app. These lessons focus on those hurdles so you can get to the point where you can use the
knowledge you already have about controls and C# code.

These are relatively new technologies so, unlike most of C#, they do change occasionally
as Microsoft tweaks things such as Visual Studio, the Windows Store, the Windows Phone
operating system, and the Windows operating system. That means some of the techniques
described in these lessons may not work with every combination of those tools.

For example, you can’t build Windows Phone 8 apps on Windows 7. Eor this book, Lused
Windows 8.1 and Visual Studio 2015. Other combinations may-work:but there-may be some dif-
ferences. (Fortunately most of the rest of .the book deesn’t:depend on your version-of- Windows or
Visual Studio. Most of the examples should-work-in-Visual Studio 2008 if you type in the code.)

Building Windows Store and Phone apps is also a fairly involved topic so the few lessons
included here can’t cover every possible scenario. Taking full advantage of the special data,
filesystem, and device capabilities provided by tablets and phones is fairly complicated so it’s
not covered here. These lessons do, however, provide enough information to get you started.
They also explain where you can go online to find further information.

» LESSON 31: Windows Store Apps

» LESSON 32: Windows Phone Apps

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

31

Windows Store Apps

This lesson explains how you can build Windows Store—style applications. Note that you don’t
actually need to upload these applications to the Windows Store. You can build and run them
locally on your computer if you like. Here “Windows Store apps” simply means they have a
style similar to those available in the Windows Store.

NAVIGATION STYLE

Windows Store and Phone apps differ from desktop applications in several ways. One big differ-
ence is the way they handle device real estate. Desktop applications typically share the desktop
with other applications that you can minimize, maximize, resize, rearrange, and close. Store and
Phone apps typically cover the entire device. You can switch between different apps, but you
can’t resize and rearrange the apps to view more than one on the screen at the same time.

Because Store and Phone apps don’t display multiple windows at the same time, they typically
use a different navigation model than the one used by desktop applications. A desktop applica-
tion might display several dialogs and other windows that you can navigate between as needed.

In contrast, Store and Phone apps display a single window. To display other information, the
app replaces that window with a new one. Often you can tap a back button to move to the pre-
vious window, much as a web browser lets you navigate back through your browsing history.

NOTE Windows Store and Phone apps are targeted at tablets and phones. Those
devices have touch-sensitive screens, so the user taps the screen instead of click-
ing a mouse. The code handles taps with click and Tapped events that are simi-
lar to the click events you've seen before.

Those devices also support more complicated gestures such as flick, pan, pinch,
and stretch. Those are outside the scope of this book so they’re not covered here.

www.it-ebooks.info

http://www.it-ebooks.info/

440 | LESSON 31 WINDOWS STORE APPS

Many of these apps also don’t provide buttons or menu items that let the user close them. Instead
the user simply opens or navigates to another app and leaves yours sitting the background. Later the
device closes your app if it needs to free up memory.

NOTE Although many apps don’t provide a way to close them, you can close an
app by making the code call Application.Current.Exit ().

Because these apps cover the entire device, you must arrange the controls to take best advantage of
whatever space is available. You don’t have control over how large the user’s screen is, so you should
use container controls such as Grid and StackPanel to get the most out of the space you have.

APP STYLES

Visual Studio includes templates for building several different styles of Windows Store apps. The
following list summarizes the most common kinds of Windows Store templates:

>

Blank—This kind of app displays a single window with no navigation to other windows.
It’s similar to a one-window desktop application without dialogs.

Hub—This kind of app uses a Hub control. The main Hub control displays a horizontally
scrolling window divided into sections holding different kinds of information. You can tap
a section heading to open a new page that provides details about that section.

Grid—This kind of app displays sections in a grid. You can tap a section to open a list of items
in that section. If you then tap an item in the list, the app opens a full page about that item.

Split—This kind of app displays a list and a detail area. You can tap an item in the list to see
its details.

Pivot—This kind of app displays a collection of list categories. When a category is selected,
you see its list of items below it. You can scroll horizontally through the different categories.
This template is useful for displaying different views of data. For example, my phone displays
Outlook mail in a pivot view with categories All, Unread, and Urgent.

If you use one of these templates to create a new project, the app comes pre-loaded with sample data
so you can see what the finished app will look like. (In fact, you’ll probably get a better sense of how
the different templates work if you just create some sample projects and run them rather than star-
ing at the previous descriptions.)

APP IMAGES

Windows and the Windows Store can represent your app in many ways using images with different
sizes. For example, the Windows Start screen can displays your app’s tile in Small, Medium, Wide,
and Large sizes.

www.it-ebooks.info

http://www.it-ebooks.info/

App Images | 441

The kinds of images are grouped into categories, each of which includes several versions at different
sizes. If you include one image in a category and omit the others, that image is scaled if necessary to
use when the others are needed.

For example, suppose for the Square 150x150 logo category you provide an image that’s 150 pixels
wide and 150 pixels tall. Then Windows automatically scales that image if it needs images with sizes
270x270, 210x210, or 120x120 pixels.

Automatic scaling is better than nothing, but sometimes it can produce poor results. For example,
if you provide a relatively large image that contains text, when it’s scaled down to a small size the
text may turn into a fuzzy blur. Enlarged images also tend to have fuzzy edges. To provide the best
results, you should create separate images at several different scales.

The images you include in a project must match the required dimensions exactly. For example, you
can’t use a 100x100 pixel image in place of a 120x120 pixel image.

Table 31-1 lists the kinds of images you can include in a Windows Store app. The bold entries in the
Sizes column indicate required images.

TABLE 31-1
CATEGORY PURPOSE SIZES
Store Logo Used by the Windows Store's details section in app listings. 50x50
70x70
90x%0
Square 30x30 Used by Windows in several places such as when the user lists 24x24
Logo all installed apps. (Tap the down arrow button on the Start 30%30
screen to see the list.) 49542
54x54
Square 70x70 Used for the Small tile on the Windows Start screen. 56x56
Logo 70x70
98x98
126x126
Square Used for the Medium tile on the Windows Start screen. 120x120
210x210
270270
Wide 310x150 Used for the Wide tile on the Windows Start screen. 248x120
Logo 310x150
434x210
558270
continues

www.it-ebooks.info

http://www.it-ebooks.info/

442 | LESSON 31 WINDOWS STORE APPS

TABLE 31-1 (continued)

CATEGORY PURPOSE SIZES
Square Used for the Large tile on the Windows Start screen. 248%x248
310310 Logo 310x310
434x434
558x558
Splash Screen This image is displayed briefly when the app loads. You also 620x300
Logo specify a background color to display behind the splash 868x420
screen. 1116x540

The purposes of the images depend on the category that contains them, not on their sizes. For exam-
ple, the Square 70x70 Logo and Store Logo categories both contain 70x70 images but they are not
interchangeable. If you specify a 70x70 image in one category and not in the other, Windows won’t
use the one you specify for both purposes.

If you don’t specify images for the Wide 310x150 Logo or Square 310x310 Logo categories, the user
cannot use the Wide or Large tiles. To allow the user to arrange tiles flexibly, I highly recommend
that you include these images.

If you don’t specify an image in the Square 70x70 Logo category, Windows provides a small tile
by scaling an image from the Square 150x150 Logo category. (For best results, include at least one
image in each category.)

NOTE To change an app’s tile size in Windows with a mouse, go to the Start
screen, right-click the tile, select the Resize context menu item, and pick Small,
Medium, Wide, or Large.

Omn a touchscreen, go to the Start screen and press and hold on the tile to make
a taskbar appear at the bottom of the screen. Click the Resize tool and then pick
the Large, Wide, Medium, or Small option.

When you create your images, give them suggestive names such as MyApp56x56.png so you can tell
what they are for.

After you’ve created the images, you need to attach them to the project. To do that, open
Solution Explorer and double-click Package . appxmanifest to open the Manifest Editor shown in
Figure 31-1. Click the Visual Assets tab to set the app’s various images and image-related options.

www.it-ebooks.info

http://www.it-ebooks.info/

App Images | 443

Dd BlankApp

Package.appxmanifest”™ & X

The properties of the deployment package for your app are contained in the app manifest file, You can use the Manifest Designer to set or
modify one or more of the properties,

Application Visual Assets Capabilities Declarations Content URIs Packaging

Windows Store apps should support displays of different resolutions. Windows provides a simple way to do this via resource loading. This
section lists all the assets which are used in the manifest.

More information

All Image Assets Tile:

Tile Images and Logos

Short name: [My App's Mame
Square 70x70 Logo
Square 150x150 Logo Showpame: Sq.uare 130:150 Lego
Wide 310x150 Logo ‘S"'r'd231;";x5;;°f°
L
Square 310x310 Logo R e
Square 30x30 Logo Default sire: |Wide 310150 logo -|
Storellogo Foreground text: |Dark v|
Badge Logo
Splash Screen Background color:
Splash Screen:
Background color:
-
FIGURE 31-1

The following list describes the items shown in Figure 31-1:
> Short name—This is a name that may be displayed directly on top of the app’s tile.

> Show name—Check the boxes next to the tile sizes that should display the short name. For
example, you could have the short name appear on top of the Wide and Large tiles.

> Default size—Select the size that the app’s tile should be by default. This can be Square
150%x150 logo, Wide 310x150 logo, or (not set).

> Foreground text—Select Light or Dark to indicate whether the name displayed on top of the
tile should be dark or light. For example, if the tile has a light background, use dark text so
it’s visible.

> Background color—This is the tile’s background color. Parts of a tile image that are transpar-
ent appear in this color. Some displays also outline tiles with this color. If you don’t want the
outline to be visible, make this color match the colors on the edges of the tiles.

> Splash screen background color—This is the background color shown behind the splash
screen image.

In the category list on the left, you can click All Image Assets to see a list of everything, or you can
click a category to see only the images in that category. For example, Figure 31-2 shows an app’s
Square 150x150 Logo category.

www.it-ebooks.info

http://www.it-ebooks.info/

444 | LESSON 31 WINDOWS STORE APPS

Dd BlankApp

Package.appxmanifest & X

The properties of the deployment package for your app are contained in the app manifest file. You can use the Manifest Designer to set or
maodify one or more of the properties,

Application Visual Assets Capabilities Declarations Content URIs Packaging
Square 150x150 logo: s
|Assets\Logo.png ®

Scaled Assets

Scal&180 Scaj&140 Scake 80

2703 270 px [=] 210x210px [=] 150x150px [=] 120x120 px =]

4

FIGURE 31-2

Use the ellipses below the image types to select an image for that type.

DEPLOYMENT

You can deploy Windows Store apps in two main ways. First, you can deploy the app on a local or
remote computer so you can test it. Second, you can submit the app to the Windows Store so others
can download and install it. These approaches are described in the following sections.

Deploying Locally

When you build an app in Visual Studio, it is automatically deployed oy CPU [T
on your computer. If you use the system’s Search tool, you can find T2 b Loca Machine .
the app. You can then click the app to run it. You can also right-click =

_— Simulator

it and select Pin to Start, Pin to Taskbar, or Uninstall. v iR

Remote Machine

You can also manually deploy an app locally or on a remote com-

puter. To do that, open the target dropdown on the Standard tool-
bar shown in Figure 31-3 and select Simulator, Local Machine, or
Remote Machine. If you select Remote Machine, a dialog appears that lets you select the machine
where you want to deploy the app.

FIGURE 31-3

NOTE To deploy to a remote machine, that machine must have a developer’s
license, have Visual Studio Remote Tools installed, and have Remote Debugging
Monitor running.

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment | 445

After you select the deployment target, open the Build menu and select Deploy.

If you deployed to the Simulator target, you can use the Debug menu’s Start Debugging command
to run the application in the simulator. If you deployed to a local or remote machine, you should be
able to find and run the app there.

Deploying to the Windows Store

After you have tested your app and want to make it available to others, you can submit it to the
Windows Store.

Before you can submit apps to the Windows Store (or the Windows Phone Store), you need to
register for a couple of accounts.

First register for a Microsoft account at signup.live.com/signup.aspx?lic=1.

Next, register for a Windows Dev Center developer account at dev.windows . com/join.
Unfortunately this registration isn’t free. It currently costs roughly $19 for individuals and $99 for
companies (depending on your location and taxes).

Microsoft charges the fee to cover the cost of inspecting the apps that are submitted to the store.
When you submit an app, Microsoft verifies that it meets some standard criteria to make apps more
uniform. For example, you must include a description, an app tile icon, and a screen shot. Microsoft
also inspects the app to ensure that it doesn’t contain a virus or other malware.

After you have the Microsoft and Dev Center accounts, you can build and test your app. When
you’re finished, you use the unified Windows Dev Center dashboard to submit the app.

If your app fails certification, you can fix it and try again until everything is perfect. Then you can
publish the app for the world to use.

Rather than including a lot of extra details (which would probably change before you read this any-
way), this section ends with a list of links you can use to get more information:

> Sign up for a Microsoft account at signup.live.com/signup.aspx?lic=1.
> Register for a Windows Dev Center developer account at dev.windows.com/join.

» Learn about the unified Windows Dev Center dashboard at msdn.microsoft.com/library/
windows/apps/mt169843.aspx.

> Learn more about the submission process at msdn.microsoft.com/library/windows/
apps/hh694062.aspx.

> Learn more about the app certification process at msdn.microsoft.com/library/windows/
apps/mt148554 . aspx.

Read introductory articles at dev.windows . com/windows-apps.

Find a list of How-To articles for C# and XAML programming at msdn.microsoft .com/
library/windows/apps/xaml/br229566 .aspx.

> Visite the Windows Store at www.microsoft .com/windows.

www.it-ebooks.info

http://www.microsoft.com/windows
http://www.it-ebooks.info/

446 | LESSON 31 WINDOWS STORE APPS

> Visit the Apps and Games section of the Windows Store at www.microsoft.com/en-us/
windows/apps-and-games.

> Read Microsoft’s article “App features, start to finish (XAML)” at msdn.microsoft .com/
library/windows/apps/xaml/dn632431.aspx.

> Read Microsoft’s article “Create your first Windows Store app using C# or Visual Basic” at
msdn.microsoft.com/library/windows/apps/dn631757.aspx.

NOTE Windows Store and Windows Phone development are relatively new so
the details change occasionally. That means I can’t guarantee that Microsoft
won’t change the fees, UR Ls, and other details shown here. Hopefully the basic
processes won’t change too much and you can figure out the details by searching
online.

A good place to look for basic information and to use as a starting point for
searches is dev .windows . com/getstarted.

WPF TECHNIQUES

Before you get to the Try It, I want to briefly describe two more useful WPF techniques that you’ll
use in the Try It and the Exercises. Those techniques are using styles and setting dependency
properties.

NOTE [n addition to Windows Store apps, styles and dependency properties are
available to WPF desktop applications. I just didn’t have room to cover them in
earlier lessons.

Using Styles

Imagine you have an app that uses several dozen TextBlocks. Now suppose you decide that you
want to change the font size, color, or some other property for all of those TextBlocks. Editing the
XAML code to make the change would be straightforward but time-consuming.

XAML makes this easier by allowing you to define styles. A style defines some of the properties
for a particular type of control in some part of the window’s hierarchy. You define styles inside a
resource dictionary attached to some XAML object.

For example, you could give a resource dictionary to the main Grid control that contains the other
controls on the window. Next you could create a style for the TextBlock class inside that resource
dictionary. After you create the style, any TextBlock inside that Grid will use the style.

www.it-ebooks.info

http://www.microsoft.com/en-us
http://www.it-ebooks.info/

WPF Techniques | 447

The following code shows how you might create a style to set the font size for TextBlock controls:

<Grid>
<Grid.Resources>
<Style TargetType="TextBlock">
<Setter Property="FontSize" Value="20"/>
</Style>
</Grid.Resources>

<TextBlock Text="First Name:"/>
<TextBlock Text="Last Name:"/>

</Grid>

The crid contains a Resources section that defines the resource dictionary. That section contains a
Style object. The TargetType property (in this case set to TextBlock) indicates the type of object
to which the style can apply.

Inside the style, a setter object defines a property that it can set for the target type. In this exam-
ple, the setter sets the object’s FontSize property to the value 20.

Now any TextBlock objects that come later in the Grid automatically use this style. If you later
decide to change the size for the TextBlocks, you only need to change it in the style.

NOTE If a TextBlock explicitly sets its FontSize, that value overrides the value
set by the style.

There’s one other way you can use styles. If you give a style a name, then other controls can explic-
itly use that style. For example, the following code defines a named style:
<Grid>
<Grid.Resources>
<Style x:Key="BigStyle" TargetType="TextBlock">
<Setter Property="FontSize" Value="50"/>
</Style>
</Grid.Resources>

<TextBlock Text="First Name:" Style="{StaticResource BigStyle}"/>
<TextBlock Text="Last Name:"/>

</Grids>
This erid’s resource dictionary defines a style named Bigstyle. Later a TextBlock uses that
style by explicitly setting its Style property to {StaticResource BigStyle}. (The keyword

StaticResource tells the program to look in the resource dictionary for a resource that doesn’t
change after it is defined.)

Any other TextBlocks that don’t explicitly set their Style properties use default styles or an
unnamed style if one is defined.

www.it-ebooks.info

http://www.it-ebooks.info/

448

| LESSON 31 WINDOWS STORE APPS

Setting Dependency Properties

A dependency property is a property that is defined for one object by a different object. For exam-
ple, if you place a TextBox inside a Grid control, then you can set the TextBox’s Grid.Row and
Grid.cColumn properties. Those properties are defined by the crid class for any controls that are
contained inside a Grid.

In XAML code at design time, you can simply set dependency properties to a value. For example,
the following statement sets the TextBox’s Grid.Row and Grid.Column properties:

<TextBox Grid.Row="2" Grid.Column="5" Name="annualRateTextBox"/>

However, Row and Column are not truly properties of the TextBox class, so you can’t set them
directly in C# code. Instead you can use static methods provided by the crid class, passing those
methods the object for which you want to set the property (in this example the TextBox) and the
value you want to set. For example, the following code sets the Grid.Row and Grid.Column proper-
ties for the TextBox named annualRateTextBox:

Grid.SetRow (annualRateTextBox, 2);

Grid.SetColumn (annualRateTextBox, 5);

If you need to retrieve the value of a dependency property, use the corresponding Get method as in
int row = Grid.GetRow (annualRateTextBox).

TRY IT

In this Try It, you build a program that makes colorful balls bounce across the screen and make
clicking noises when they hit the screen’s edges.

Lesson Requirements

In this lesson, you:

> Start a new Windows project by selecting the Blank App. Replace the main window’s Grid
control with a canvas control named maincanvas.

Add a MediaElement to the main window’s XAML code to play the click sound.

> Create a Ball sprite class to manage balls. Give it properties and methods to create a random
ball, track the ball’s position and velocity, and move the ball.

> When the window loads, create a DispatcherTimer and give it an event handler that moves
the balls.

> Test the program with both dark and light themes.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox .com/go/csharp24hourtrainer2e.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Try lt | 449

Hints

>

Make the Ball class use an E11ipse object to display itself.

Give the Bal1l class the following using directives:

using Windows.UI.Xaml.Shapes;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media;

Give the Bal1l class a randomizing constructor, a RandomBrush method, and a Move method.

Step-by-Step

>

Start a new Windows project by selecting the Blank App. Replace the main window’s Grid
control with a canvas control named mainCanvas.

1. In Visual Studio 2015’s New Project dialog, you can find this template under Templates
> Visual C# > Windows > Windows 8 > Windows.

2. Give the canvas the same Background property that the initial Grid had. It should
look like this:

Background="{ThemeResource ApplicationPageBackgroundThemeBrush}"

This makes the canvas determine its background color at run time by looking at the theme.
(In case the user sets the theme to light or dark.)

Add a MediaElement to the main window’s XAML code to play the click sound.

1. Use the Project menu’s Add Existing Item command to add a click sound file to the
project.

2. AddaMediaElement to the main window’s XAML code. Set its x : Name property to
clickSound and set its Source property to the sound effect file you added.

Create a Ball sprite class to manage balls. Give it properties and methods to create a random
ball, track the ball’s position and velocity, and move the ball.

1. Use code similar to the following.

class Ball

{

// Used to generate random values.
static private Random Rand = new Random() ;

// All balls have black outlines.
static private Brush BlackBrush =
new SolidColorBrush (Windows.UI.Colors.Black) ;

public Ellipse MyEllipse;
public Canvas Parent;
public double X, Y, Diameter, Vx, Vy;

// Initialize a random Ball.
public Ball (Canvas parent)

{

www.it-ebooks.info

http://www.it-ebooks.info/

450 | LESSON 31

WINDOWS STORE APPS

// Save the parent.
Parent = parent;

// Create the Ball's geometry.

const int maxSpeed = 15;

Vx = Rand.Next (-maxSpeed, maxSpeed + 1);

Vy = Rand.Next (-maxSpeed, maxSpeed + 1);

Diameter = Rand.Next (50, 200) ;

X = Rand.Next (0, (int) (Parent.ActualWidth - Diameter)) ;
Y = Rand.Next (0, (int) (Parent.ActualHeight - Diameter)) ;

// Create the Ellipse.
MyEllipse = new Ellipse();
MyEllipse.Width = Diameter;
MyEllipse.Height = Diameter;
MyEllipse.Fill = RandomBrush() ;
MyEllipse.Stroke = BlackBrush;

Canvas.SetLeft (MyEllipse, X);
Canvas.SetTop (MyEllipse, Y);

// Add the new ball to the parent.
Parent.Children.Add (MyEllipse) ;

}

// Return a random brush.
static private Brush RandomBrush()

{

Brush[] brushes =

{
new SolidColorBrush (Windows.UI.Colors.Red),
new SolidColorBrush (Windows.UI.Colors.Orange),
new SolidColorBrush (Windows.UI.Colors.Yellow),
new SolidColorBrush (Windows.UI.Colors.Lime),
new SolidColorBrush (Windows.UI.Colors.Blue),
new SolidColorBrush (Windows.UI.Colors.Indigo),
new SolidColorBrush (Windows.UI.Colors.Violet),

i

return brushes [Rand.Next (0, brushes.Length)];

}

// Move the Ball. Return true if the Ball bounces.
public bool Move ()
{

// Remember if the ball bounces.

bool bounced = false;

// Update the ball's position.
X += Vx;
if (X < 0)
{
// Hit the left edge.
X = -X;
Vx = -Vx;

www.it-ebooks.info

http://www.it-ebooks.info/

Try lt | 451

bounced = true;

1
else if (X + Diameter > Parent.ActualWidth)
{
// Hit the right edge.
double overshoot = (X + Diameter) - Parent.ActualWidth;
X = Parent.ActualWidth - overshoot - Diameter;
Vx = -Vx;
bounced = true;
1
Y += Vy;
if (Y < 0)
{
// Hit the left edge.
Y = -Y;
Vy = -Vy;
bounced = true;
1
else if (Y + Diameter > Parent.ActualHeight)
{
// Hit the right edge.
double overshoot = (Y + Diameter) - Parent.ActualHeight;
Y = Parent.ActualHeight - overshoot - Diameter;
Vy = -Vy;
bounced = true;
}

// Update the Ellipse's position.
Canvas.SetLeft (MyEllipse, X);
Canvas.SetTop (MyEllipse, Y);

return bounced;

}

When the window loads, create a DispatcherTimer and give it an event handler that moves
the balls.

1. Add the XAML code Loaded="Page Loaded" to the main window’s definition.

2. Use the following code to prepare the program when the window is loaded:

// The movement timer.
private DispatcherTimer MoveTimer;

// Balls.
private const int NumBalls = 10;
private Ball[] Balls = new Ball[NumBalls];

// Used to generate random numbers.
private Random Rand = new Random() ;

// Create balls and start them moving.
private void Page Loaded (object sender, RoutedEventArgs e)

{

www.it-ebooks.info

http://www.it-ebooks.info/

452 | LESSON 31 WINDOWS STORE APPS

// Create the balls.
for (int 1 = 0; 1 < NumBalls; i++)
Balls[i] = new Ball (mainCanvas) ;

// Create the timer.

MoveTimer = new DispatcherTimer() ;
MoveTimer.Interval = new TimeSpan(0, 0, 0, 0, 20);
MoveTimer.Tick += MoveTimer Tick;
MoveTimer.Start () ;

}

3. Use the following code to move the balls when the timer’s Tick event fires:

// Move the balls.
private void MoveTimer Tick (object sender, object e)

{

// Remember if a ball bounces.
bool bounced = false;
foreach (Ball ball in Balls) if (ball.Move()) bounced = true;

if (bounced) clickSound.Play() ;

}

> Test the program with both dark and light themes.

1. Open the App .xaml file and add the code RequestedTheme="Light" to the
Application object’s definition. Test the program.

2. Change the RequestedTheme to "Dark" and test the program again.

3. After testing, remove the RequestedTheme property so the app uses the theme selected
on the user’s device.

EXERCISES

1. Make an interest calculator similar to the one shown in Figure 31-4 (shown in the Light
theme). When the user enters values and clicks Calculate, the program should enter a loop
that runs over a sequence of months. Each month it should calculate the payment and the
amount of interest for that month and update the user’s balance. The loop should run until
the balance is zero. (Hint: Give any Grid rows and columns relative sizes such as * or 1.5%*
so they will resize if you change the top-level crid’s size.)

Initial Bzlance $5,000.00 Month Payment Interest Balance
129 515.00 5208 511882
Annual Rate: q 130 §15.00 5187 $10579 A
o 18.90% 131 515.00 5167 59246
132 515.00 5146 578,91
133 515.00 §1.24 $55.15
Payment %: 4.00% 134 515.00 51.03 551.18
135 515.00 50.81 536,99
136 515.00 5058 52257
o 137 515.00 5036 §7.92 v
Min Payment: $15.00 138 $8.05 s0.12 50.00
Calculate Totzl Payments: | $8,109.24
FIGURE 31-4

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 453

Copy the program you wrote for Exercise 1 and use Style objects to set the Fontsize values
to 20 for the app’s TextBlock, TextBox, and Button controls. (Resize the app’s top-level
Grid if necessary.)

[Hard] There’s probably a bug in the program you wrote for Exercise 2. If you enter a pay-
ment percentage of 0% and a minimum payment of $15, then the monthly interest will be
greater than the monthly payments so the balance will increase over time. That means the
program’s loop will never end.

To fix that, copy the program you wrote for Exercise 2. Inside the loop, compare the pay-
ment and the interest. If the interest is greater, display an error message and break out of the
loop.

Unfortunately Windows Store apps can’t use MessageBox . Show. Instead you can use the
Windows .UI.Popups .MessageDialog class. Create a dialog, passing its constructor an error
message and a title string. Use the object’s show method to display the dialog.

The dialog’s show method is asynchronous, which means it returns immediately to the call-
ing code and then continues running in the background. That doesn’t really hurt the appli-
cation, but it does make Visual Studio issue a warning. To get rid of the warning, place the
await keyword before the call to show. That makes the code pause and wait for the call to
Show to complete before continuing. You can only use await in a method that is also asyn-
chronous, so you also need to mark the event handler with the async keyword.

[Hard] Copy the program you wrote for Exercise 3 and modify it so it displays its own
message instead of using the MessageDialog class. To do that, add a crid (or some other
container) holding the message and an “X” Button. Set the Grid’s Visibility property to
Collapsed.

Make a showMessage method that displays the message by doing the following:
> Disable the window’s TextBoxes and the Calculate Button.
> Set the main Grid control’s Opacity property to 0. 5.
> Set the message Grid’s Visibility property to Visible.
Make a HideMessage method that reverses the actions performed by ShowMessage.

(Bonus: To make the message stand out, make the message Grid use the background color
given by ApplicationForegroundThemeBrush and make the controls it contains use the
foreground color given by ApplicationPageBackgroundThemeBrush. Be sure to test in the
Dark and Light themes.)

When you create a Windows Store app, Visual Studio creates blank PNG files for the
required images. Copy the program you wrote for Exercise 4. Make the program use your
images and remove the default images. Pin the program to the Windows Start screen and
experiment with resizing the app’s tile. Notice that the app displays the splash screen image
when it starts.

Copy the program you wrote for Exercise 5 and add the Wide 310x150 and Square 310x310
images. Verify that you can now change the app’s tile to be wide or large on the Windows
Start screen.

www.it-ebooks.info

http://www.it-ebooks.info/

454 | LESSON 31 WINDOWS STORE APPS

7. Copy the program you built for the Try It and add the required Wide 310x150, and Square
310x310 images to it.

NOTE Please select the videos for Lesson 31 online at www.wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

32

Windows Phone Apps

This lesson explains how you can build Windows Phone applications. Note that you don’t
actually need to upload these applications to the Windows Store. You can build and run them
locally on your phone if you like.

BUILDING APPS

Windows Phone apps are similar to Windows Store apps in several ways. Both use XAML to
define their user interfaces. Both can use C# code behind the user interface to do whatever it is
that makes the app useful. Both also require that you define images of various sizes to repre-
sent the app. (More on that later.)

In addition to installing Visual Studio, you need to take a few other steps before you can start
building phone apps. First download the Windows Software Development Kit (SDK) for your
version of Windows. The Windows 8.1 version is available at msdn.microsoft .com/windows
/desktop/bg162891.aspx. The Windows 10 version is at dev.windows.com/downloads
/windows-10-sdk.

This SDK contains tools you can use to build phone and Windows Store apps. It’s a big
download, ranging in size from around 10MB to 1GB depending on your configuration,
so be sure you have a high-speed Internet connection.

As is the case with Windows Store development, you’ll need a Microsoft account (signup
.live.com/signup.aspx) and a Windows Dev Center developer account (dev.windows . com
/join).

After you install the SDK and sign up for Microsoft and Dev Center accounts, you can create
new phone apps by opening Visual Studio’s File menu, selecting New = Project, and using the
New Project dialog shown in Figure 32-1. Select the Windows Phone Apps category on the left
to see the phone templates.

www.it-ebooks.info

http://www.it-ebooks.info/

456 | LESSON 32 WINDOWS PHONE APPS

New Project _
P Recent .NET Framework 45.2 ~ Sort by: | Default Search Installed Templates (Ctrl+E) P~
4 |nstalled - ; -
@; Blank App (Windows Phane) Visual C# Type: Visual C#
-
4 Templates e A project for a single-page Windows
- 2 Phene app that the Wind
Hub A indows Phone) Visual C# PP that uses the Windows
4 Visual C# l'.l PR (W) Runtime and has ne predefined
4 Windows rcx)) contraols or layout.
7; Pivot App (Windows Phone) Visual C#
Universal ate! ? Application Insights
c#
4 Windows 8 @EJ WebView App (Windows Phone) Visual C# [[] Add Application Insights to Project
Universal o Help you understand and optimize
rli Class Lib ind Ph Visual C# your application.
Windows !I: ! ass Library (Windows Phone) isual Leam more
Windows Phone Cat Privacy statement
Elqi! Windows Runtime Component (Windows Phone) Visual C#
Classic Desktop -
e . i
Web L] UnitTestApp (Windows Phone] Visual C# j. There are no Azure subscriptions
Android ot associated with this account.
Cloud E Coded Ul Test Project (Windows Phone) Visual C2 Sign up fer a subscription.
Send telemetry to:
Extensibility - e _ P - e e ol s
b Online Click here to ge online and find templates. Configure settings... .
Name: Appl
Location: Ci\Users\Rod\Desktoph, 2
Solution name: [] Create directory for solution
[] Add to source control

FIGURE 32-1

At this point you can build an app. At some point you’ll want to test your app on your phone, so
you may as well set up your phone so you can use it for testing now while you’re preparing your
development environment.

Normally you install apps from the Windows Store. An app in the store has been examined by
Microsoft so it shouldn’t contain viruses and other malware. To prevent people from easily install-
ing viruses on other people’s phones, you cannot simply download an app directly to a phone. First
you need to unlock the phone for development.

To do that, connect your phone to your development computer with the USB cable that came with
your phone. Turn the phone on and unlock its screen (if you have password protection on the
phone).

Next use your computer’s search tool to find the app called Windows Phone Developer Registration.
(From the desktop, move the mouse to the lower-right corner, move the mouse up, and click the
Search tool.)

In the dialog that appears, click the Register button. The dialog will ask you to log in to your
Microsoft account and verify that it’s associated with your developer account. When you’re finished,
you should be able to download apps to your phone. (For more details about registering your phone,
including troubleshooting information, see msdn.microsoft.com/library/windows/apps
/££769508.)

At this point you can add XAML code and C# code behind it as usual. Writing a Windows Phone
app is very similar to writing a Windows Store app, although a phone can do things that a computer

www.it-ebooks.info

http://www.it-ebooks.info/

Building Apps | 457

can’t so some differences exist. For example, phones may have [bebug Team Tools Architecture Test Analyze

cameras, orientation sensors, multi-touch capable screens, - | Debug - AnycCPU - b Device - | 5
location services, near-field communication (NFC), Bluetooth, _I P Device N

and more. Using those capabilities is a fairly advanced topic so fpani ¥ Device

I won’t say any more about them in this book. ion Emulotor &1 WVGA 4 inch 312ME

Emulator 8.1 WVGA 4 inch

After you create your app, you have two options for testing it: e] AR D ey
: : : Emulator 8.1 720P 4.7 inch

running in an emulator and running on your phone. To select fon _

. h R d d . h S d d lb Emulater 8.1 1080P 5.5 inch
an option, open the Run dropdown in the Standard toolbar Lol Emulator 8.1 1080P G inch
shown in Figure 32-2. Select one of the emulators or select
Device to run on a phone. FIGURE 32-2

To run in an emulator, select an emulator from the dropdown shown in Figure 32-2 and press FS5 to
run the program as usual. For the emulator to work, your computer needs to be running Hyper-V, a
tool that allows your computer to run virtual machines.

Unfortunately Hyper-V requires you to have Windows Professional installed. If you don’t have
Windows Professional installed, you can still run your app on your phone. Select Device from the
dropdown, use a USB cable to plug your phone into the computer, turn the phone on and unlock its
screen, and press FS to run the app. Visual Studio will download the app to your phone and run it.

When you’re done testing, use the Debug menu’s Stop Debugging command or click the Stop
Debugging button on the Debug toolbar.

After you run an app on your phone, it will remain installed on the phone so you can use it later
even if the phone is disconnected from the computer. You can find the app in the phone’s list of
installed apps. Press and hold the app to pin it to the Start screen or to uninstall it.

If you pin the app to the Start screen, you can press and hold its tile to change the tile size or unpin it.
Here’s a summary of the steps you use to build and test an app:

> (Optional) Install Hyper-V if you are using Windows Professional or Enterprise
edition and you want to run Windows Phone apps in the device emula-
tor. For instructions, search the Internet or see www . howtogeek.com/196158/
how-to-create-and-run-virtual-machines-with-hyper-v/.

Install the Windows Software Development Kit (SDK) for Windows 8.1.
Register for a Microsoft account.

Register for a Dev Center account.

Unlock your phone for development.

Write the app.

To test in an emulator, select an emulator from the dropdown and run the app.

Y Y Y VY VY Y Y

To test on a phone, connect the phone, turn the phone on, unlock the phone’s screen, and
run the app.

The following sections provide some more details about the kinds of apps you can build and the
images you need to set to make them appear properly.

www.it-ebooks.info

http://www.howtogeek.com/196158
http://www.it-ebooks.info/

458 | LESSON 32 WINDOWS PHONE APPS

NAVIGATION STYLE

Like Windows Store apps, Windows Phone apps cover the entire device. You can switch between
different apps, but you can’t resize and rearrange the apps to view more than one on the screen at
the same time.

Because they display a single window at a time, phone apps typically use a simpler navigational
model than desktop applications. Some apps allow you to use a back button to move to an earlier
screen, but they don’t allow you to easily jump from screen to screen.

Phone apps also typically don’t provide buttons or menu items that let the user close them. Instead
the user opens or navigates to another app and leaves yours sitting in the background. Later the
device closes your app if it needs to free up memory.

NOTE Although many apps don’t provide a way to close them, you can close an
app by making the code call Application.Current.Exit ().

Because these apps cover the entire device, you must arrange the controls to take best advantage of
whatever space is available. You don’t have control over how large the user’s screen is, so you should
use container controls such as ¢rid and stackpPanel to get the most out of the space you have.

APP STYLES

Visual Studio includes templates for building several different styles of Windows Phone apps.
The following list summarizes the most common kinds of templates:

Blank—This kind of app displays a single window with no navigation to other windows.
It’s similar to a one-window desktop application without dialogs.

Hub—This kind of app uses a Hub control. The main Hub control displays a horizontally
scrolling window divided into sections holding different kinds of information. You can tap
a section heading to open a new page that provides details about that section.

Pivot—This kind of app displays a collection of list categories. When a category is selected,
you see its list of items below it. You can scroll horizontally through the different catego-
ries. This template is useful for displaying different views of data. For example, my phone
displays Outlook mail in a pivot view with categories All, Unread, and Urgent.

WebView—This kind of app uses the webview control. That control lets an app display
a piece of web content, although Microsoft makes it clear that this is not a full-featured
web browser. For example, you can use a webview control to display frequently updated
information rather than make new builds to update the app’s data.

If you use one of these templates to create a new project, the app comes pre-loaded with sample data
so you can see what the finished app will look like. (In fact, you’ll probably get a better sense of how
the different templates work if you just create some sample projects and run them rather than star-
ing at the previous descriptions.)

www.it-ebooks.info

http://www.it-ebooks.info/

App Images | 459

APP IMAGES

Like Windows Store apps, Windows Phone apps may be represented by images in many different sizes.
For example, the phone’s Start screen can display your app’s tile in Small, Wide, and Large sizes.

The kinds of images are grouped into categories, each of which includes several versions at different
sizes. If you include one image in a category and omit the others, then that image is scaled if neces-
sary to provide the others.

As is the case with Windows Phone apps, automatic scaling is better than nothing, but sometimes

it can produce poor results. For example, if you provide a relatively large image that contains text,
when it’s scaled down to a small size the text may turn into a fuzzy blur. To provide the best results,
you should create separate images at several different scales.

The images you include in a project must match the required dimensions exactly. For example, you
can’t use a 100x100 pixel image in place of a 99x99 pixel image.

Table 32-1 lists the kinds of images you can include in a Windows Phone app. The bold entries in
the Sizes column indicate required images.

TABLE 32-1
CATEGORY SIZES

Square 44x44 Logo 106 x 106
62 X 62
44 x 44

Square 71x71 Logo 170x 170
99 % 99
71 %71

Square 150150 Logo 360 x 360
210 x 210
150 x 150

Wide 310x150 Logo 744 % 360
434 % 210
310 x 150

Store Logo 120 x 120
70x70
50 x 50

Splash Screen 1152 x 1920
672 %1120
480 x 800

www.it-ebooks.info

http://www.it-ebooks.info/

460

| LESSON 32 WINDOWS PHONE APPS

When you create your images, give them suggestive names such as MyApp106x106.png so you can
tell what they are for.

NOTE To change an app’s tile size on your phone, press and hold the tile. Tap
the arrows that appear to cycle between the Small, Wide, and Large tile sizes.
When you've selected the desired size, tap the tile to get out of resizing mode.

After you’ve created the images, you need to attach them to the project. To do that, open

Solution Explorer and double click package . appxmanifest to open the Manifest Editor shown in
Figure 32-3. This editor lets you select the orientations that your app allows. For example, if you
only want your app to be available when the user is holding the phone in the portrait orientation,
check the Portrait box.

g Bouncing Balls

Package.appxmanifest = 3

The information the systern needs to deploy, display, or update your app is contained in the Package.appxmanifest file, and the information used for the Store listing is
contained in the StoreManifest.xml file, You can use the Manifest Designer to modify the properties in these files,

Visual Assets Requirements Capabilities Declarations Content URIs Packaging
Ps
Display name: ‘Enun:ing Balls |
Entry point: [Bouncing_Balls.App |
Default language: ‘en—US | Mare information
Description: Bouncing Balls

Supported rotations: An opticnal setting that indicates the app's orientation preferences.

- O -

[] Landscape [] Portrait [[] Landscape-flipped

SD cards: [[] Prevent installation to SD cards

FIGURE 32-3

To set the app’s images, click the Visual Assets tab to see the display shown in Figure 32-4. In the
category list on the left, you can click All Image Assets to see a list of everything, or you can click
a category to see only the images in that category. For example, Figure 32-4 shows an app’s Square
71x71 Logo category.

Use the ellipses below the image types to select an image for that type.

Options above the images let you decide whether the phone should display the app’s name on top of
the large or wide tile.

A third option lets you set the tile’s background color. If you set this color to transparent and the
image you use for the tile has a transparent background, then the phone’s Start screen image will
display behind the tile.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 461

> Bouncing Balls

Package.appxmanifest & 3

The information the system needs to deploy, display, or update your app is contained in the Package.appxmanifest file, and the information used for the Store listing is
contained in the StoreManifestxml file. You can use the Manifest Designer to modify the properties in these files.

Application Visual Assets Requirements Capabilities Declarations Content URIs Packaging
muIE wnun e -
All Image Assets Tile:

fiielipagecandilonos Show name: [Square 150x150 Logo
Square 71x71 Logo [Wide 310x150 Logo
Square 150x150 Logo
Wide 310x150 Logo Background color:
Square 44x44 Logo Square T1x71 logo:
Store Logo

Badge Logo |Assets\5quare?'\x?'\ Loge.png x

Splash Screen Scaled Assete

Scal&140 Scal&100

¥ 00

=
i
=
b=

170 % 170 px [=] 99x99px [=] 71x71px =]

FIGURE 32-4

TRY IT

In this Try It, you build a Windows Phone interest calculator similar to the app you built for
Exercise 31-3.

Lesson Requirements
In this lesson, you:
> Start a new blank Windows Phone app.

> Open the Package .appxmanifest file and allow the program to run only in the Landscape
and Landscape-flipped orientations.

> In the Window Designer, open the Design menu and select Device Window. In the Device
Window tab, set the designer’s orientation to Landscape.

> Copy the XAML and C# code you wrote for Exercise 31-3 into the new project and fix it
up so it fits nicely in the designer. You will probably need to make the fonts smaller to make
everything fit.

> Test the app in an emulator or on a phone.

NOTE You can download the code and resources for this lesson from the
website at www . wrox . com/go/csharp24hourtrainer2e.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

462 | LESSON 32 WINDOWS PHONE APPS

Step-by-Step

>

Start a new blank Windows Phone app.
1. This is straightforward.

Open the Package .appxmanifest file and allow the program to run only in the Landscape
and Landscape-flipped orientations.

1. This is also straightforward.

In the Window Designer, open the Design menu and select Device Window. In the Device
Window tab, set the designer’s orientation to Landscape.

1. This is straightforward assuming you can find the Device Window tab. It normally
appears as a tab with the Toolbox.

Copy the XAML and C# code you wrote for Exercise 31-3 into the new project and fix it
up so it fits nicely in the designer. You will probably need to make the fonts smaller to make
everything fit.

1. Copying the XAML and C# is straightforward.

2. You should experiment with the font sizes and rearrange controls slightly if necessary
to make everything fit on the designer. I set the TextBlock, TextBox, and Button
FontSize properties to 12. (This is a situation where XAML style objects come in
handy.)

Test the app in an emulator or on a phone.

1. This is straightforward.

EXERCISES

1.

Apps that look good on a tablet or desktop system don’t always look good on a phone. On
my phone, the text displayed by the Try It is so small I can barely read it.

Copy the app you wrote for the Try It and modify it to make it easier to read. Move the
TextBlocks (used as labels) so they sit above their corresponding TextBoxes. Then make the
TextBox and ListBox fonts bigger so they are easier to read. (Hint: You can give the results
StackPanel a Resources section that defines a Style to set the FontSize property for the
result TextBlocks.)

[Hard] Copy the app you wrote for Exercise 1 and modify it so it displays its warning mes-
sage in a separate Grid control as described in Exercise 31-4.

Copy the app you wrote for Exercise 2, add appropriate images to it, and make it display its
name on its wide and large tiles.

Make a bouncing ball app similar to the Windows Store app you built for the Try It in
Lesson 31.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 463

Run the app you wrote for Exercise 4 and see what happens if you change the phone’s orien-
tation while it’s running. The result is distracting and doesn’t make the app more useful (not
that it’s particularly useful to begin with), so copy the project and modify it so it only allows
the Portrait orientation.

[Games] Copy the app you wrote for Exercise 5 and modify it so when the user taps a ball,
that ball disappears with a popping sound. When the user taps the last ball, make the app
close. Hints:

> Catch the main canvas’s Tapped event and use e.GetPosition to get the tap’s posi-
tion. Then loop through the balls and determine whether the user tapped one.

> To make removing balls easy, store them in a List<Balls.

Check the balls in top-to-bottom order so the app removes the topmost ball that was
clicked.

> Feel free to add other sounds if you like such as a “tap misses” sound and a “game
over” sound.

[Hard] Make a tip calculator similar to the one shown in Figure
32-5. (This is a screen shot of the designer not the app run-
ning in the emulator because my system doesn’t have Windows
Professional installed and therefore can’t run Hyper-V.)

When the user taps a button or adjusts the percentage slider,
the app should display the corresponding tip amount in the
TextBlock above the slider. (Normally I would place the out-
put TextBlock below all of the other controls, but during test-
ing I found that my finger obscured the result when I adjusted
the percentage so this layout worked much better.) Hints:

> Only allow the Portrait orientation.

> Use a TotalCost variable to track the value entered by
the user.

> When the user taps a digit button, multiply Totalcost
by 10 and add the new digit’s value divided by 100.

Then display Totalcost and the calculated tip amount.
FIGURE 32-5

» When the user clicks the X button, reset TotalCost to 0.

> When the user adjusts the percentage slider, recalculate and display the new tip
amount.

> Protect the app from the user entering very large values such as $1 billion. (I don’t
think people tip when they buy soccer stadiums or nuclear submarines anyway.)

Copy the app you built for Exercise 7, add appropriate images to it, and make it display its
name on its wide and large tiles.

Make a simple score-keeping application like the one shown in Figure 32-6. The user should
be able to enter team names in the TextBoxes at the top and use the arrow buttons to

www.it-ebooks.info

http://www.it-ebooks.info/

464 | LESSON 32 WINDOWS PHONE APPS

increase or decrease the scores. If the user taps the 0-0 button, reset both scores to 0. (Hint:
Only allow the Landscape and Landscape-flipped orientations.)

Crimson Cyborgs Waffle Mafia

FIGURE 32-6

10. Copy the app you built for Exercise 9, add appropriate images to it, and make it display its
name on its wide and large tiles. Use images of volleyballs, flaming soccer balls, racing ducks,
or whatever else is appropriate for your favorite sport.

NOTE Please select the videos for Lesson 32 online at www.wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

SECTION Vi
Specialized Topics

Most of the lessons so far have dealt with general programming topics. For example, every
desktop application needs to use controls and most also need to use variables, classes, and files.

The lessons in this section explain more specialized topics. They describe ideas and techniques
that you won’t need for every program you write, although you will still find them useful
under many circumstances.

» LESSON 33: Localizing Programs

» LESSON 34: Programming Databases, Part 1
» LESSON 35: Programming Databases, Part 2
» LESSON 36: LINQ to Objects

» LESSON 37: LINQ to SQL

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

33

Localizing Programs

Many programmers write applications that are used only in their countries. It’s easy enough to
find plenty of customers for a small application without looking for customers long distance.

However, the world has grown smaller in the past few decades, and it’s not too hard to pro-
vide programs for people all over the world. Customers can download your software over the
Internet and pay for it using online payment systems in a matter of minutes. Web applications
that run in a browser are even more likely to be used by people all over the world.

With such a potentially enormous market, it makes sense in some cases to make programs
accessible to people in different countries, particularly since C# and Visual Studio make it
relatively easy.

In this lesson, you learn how to make a program accessible to customers in other countries
with different cultures. You learn how to make multiple interfaces for a program so users can
work in their own languages. You also learn how to work with values such as currencies and
dates that have different formats in different locales.

WARNING Localization is a huge topic so there isn’t room to cover everything
there is to know about it here. In particular, you should always get a native of a
particular locale to help in localizing your application whenever possible. Unless
you are extremely well versed in a locale’s language, customs, and idioms, it’s
very easy to make sometimes embarrassing mistakes. (For examples, search the
Internet for “funny translation mistakes” to see hundreds if not thousands of
cases where someone thought they didn’t need help from a native speaker. One
of my favorites is, “Do not disturb. Tiny grass is dreaming.”)

Note that 1 am not fluent in all of the locales that this lesson uses. I used the
Babel Fish automatic translation tool at www.babelfish.com fo make the simple
translations shown here. You can use Babel Fish or a similar tool for practice
and for this lesson’s exercises, but you should get human help before releasing a
program to users.

www.it-ebooks.info

http://www.babelfish.com
http://www.it-ebooks.info/

468 | LESSON 33 LOCALIZING PROGRAMS

UNDERSTANDING LOCALIZATION

A computer’s locale is a setting that defines the user’s language, country, and cultural settings that
determine such things as how dates and monetary values are formatted. For example, the Format
Values example program shown in Figure 33-1 (and available in this lesson’s downloads) displays
the same values in American, British, German, and French locales.

o Format Values - [a [
American English British English

5123456 £123456
123456 123456
Wednesday, December 1, 2010 01 December 2010
12/1/2010 01/12/2010
1:45PM

Geman French
123456 € 1234568
123456 123456
Mittwoch, 1. Dezember 2010 mercredi 1 décembre 2010
01.12.2010 01/12/2010

FIGURE 33-1

If you look closely at Figure 33-1, you can see that the same values produce very different results in
the different locales. For example, the value 1234.56 displayed as currency appears variously as:

> $1,234.56
> £1,234.56
> 1.234,56 €
> 1234,56 €

Not only do these results use different currency symbols, but they even use different decimal and
thousands separators.

culture.

NOTE Globalization is the process of building an application that can be used
by users from different cultures.

Localization is the process of customizing a globalized application for a specific

Localizing an application involves two main steps: building a localized user interface and processing

locale-specific values.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Localizations | 469

BUILDING LOCALIZED INTERFACES

At first this may seem like a daunting task. How do you build completely separate interfaces for
multiple locales? Fortunately this is one thing that C# and Visual Studio do really well (at least for
Windows Forms applications).

To build a globalized program, start by creating the form as usual. Add controls and set their
properties as you want them to appear by default.

After you’ve defined the program’s default appearance, you can localize it for other locales. To do
that, set the form’s Localizable property to true. Then select a new locale from the dropdown
list provided by the form’s Language property. Now modify the form to handle the new locale. You
can change control properties such as the text they display. You can also move controls around and
change their sizes, which is particularly important because the same text may take up a different
amount of room in different languages.

At run time, the program automatically checks the computer’s locale settings and picks the
program’s localization that gives the closest match.

Note that many languages have several sub-locales. For example, English comes in the varieties
used in India, Ireland, New Zealand, and more than a dozen other locales.

There’s also locale listed simply as “English.” If the user’s com- « Localized Weekdays | = | & [NEG|
puter is set up for one of the English locales that the program
doesn’t support, the program falls back to the generic English Pick a weekday.
locale. If the program can’t support that locale either, it uses the O Monday
default locale that you used when you initially created the form. ® Tuesday
The Localized Weekdays example program (available in this les- fhid::::ay
son’s code download) is localized for English (the form’s default) O Frday
and German. Figure 33-2 shows the form’s English interface and O Saturday
Figure 33-3 shows its German interface. © Sunday
FIGURE 33-2

TESTING LOCALIZATIONS

Having the program check the computer’s locale
automatically at run time is convenient for the user
but it makes testing different locales tricky.

ol Beschrankte Wochentage I;‘i-

Wahlen Sie einen Wochentag aus.
() Mortag @ Dienstag () Mitwoch () Donnerstag

) Freitag () Samstag () Sonntag

One way to force the program to pick a particular
locale so you can test it is to select the locale in FIGURE 33-3

code. You must do this before the form is initial-

ized because after that point the form’s text and other properties are already filled in and setting the
locale won’t reload the form.

When you create a form, Visual Studio automatically creates a constructor for it that calls the
InitializeComponent function. Place your code before the call to InitializeComponent.

www.it-ebooks.info

http://www.it-ebooks.info/

470 | LESSON 33 LOCALIZING PROGRAMS

The following code shows how the Localized Weekdays program explicitly selects either the English
or the German locale:

using System.Threading;
using System.Globalization;

public Forml ()

{

// English.
//Thread.CurrentThread.CurrentCulture =
// new CultureInfo("en-US", false);
//Thread.CurrentThread.CurrentUICulture =
// new CultureInfo("en-US", false);

// German.

Thread.CurrentThread.CurrentCulture =
new CultureInfo("de-DE", false);
Thread.CurrentThread.CurrentUICulture =
new CultureInfo("de-DE", false);

InitializeComponent () ;

}

This code contains statements that set the locale to English or German. Simply comment out the one
that you don’t want to use for a given test.

NOTE For a list of more than 100 culture values that you can use in code, such
as en-US and de-DE, see msdn.microsoft .com/library/ee825488 .aspx.

Setting the currentculture makes the program use locale-specific methods when processing dates,
currency, numbers, and other values in the code. Setting the currentUIculture makes the program
load the appropriate user interface elements for the form.

NOTE After you finish testing a form’s localized version, be sure to remove
the code that selects the culture so the program can use the system’s settings.
Otherwise you may end up with some very confused users.

PROCESSING LOCALE-SPECIFIC VALUES

Inside C# code, variables are stored in American English formats. To avoid confusion, Microsoft
decided to pick one locale for code values and stick with it.

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Locale-Specific Values | 471

When you move data in and out of the program, however, you need to be aware of the computer’s
locale. For example, suppose the program uses the following code to display an order’s due date:

dueDateTextBox.Text = dueDate.ToString("MM/dd/yy")
If the date is November 20, 2010, this produces the result “11/20/10,” which makes sense in the
United States but should be “20/11/10” in France and “20.11.10” in Germany.

The problem is that the program uses a custom date format that is hard-coded to use an American-
style date format. To produce a format appropriate for the user’s system, you should use standard
date, time, and other formats whenever possible. The following code uses the standard short date
format:

dueDateTextBox.Text = dueDate.ToString("d")

This produces “11/20/2010” on an American system and “20/11/2010” on a French system.

You can run into the same problem if you assume the user will enter values in a particular format.
For example, suppose you want to get the whole number part of the value 1,234.56 entered by the
user. If you assume the decimal separator is a period and just use whatever comes before it as the
integer part, then you’ll get the answer 1 when a German user enters “1.234,56” and the program
will crash when a French user enters the value “1 234.56.”

To avoid this problem, use locale-aware functions such as the numeric classes’ Parse methods to
read values entered by the user. In this example, a good solution is to use float .Parse to read the
value and then truncate it as shown in the following code:

value = (int)float.Parse(valueTextBox.Text) ;

For a list of standard numeric formats, see msdn.microsoft.com/library/dwhawy9k.aspx.
For a list of standard date and time formats, see msdn.microsoft.com/library/az4se3kl.aspx.

For more information on parsing strings, see msdn.microsoft.com/library/b4w53z0y.aspx.

NOTE Previous lessons have shown how to use parse methods to parse cur-
rency values. For example, the following statement parses a currency value
entered by the user:

value = decimal.Parse (valueLabel.Text, NumberStyles.Any) ;

This isn’t completely foolproof. If the user has a German system but types a
value in a French format, the program will crash, but it seems reasonable to ask
a German user to enter German values.

The Localized Parsing example program shown in Figure 33-4 (and available in
this lesson’s code download) parses currency values displayed in labels in differ-
ent languages, doubles the parsed decimal values, and displays the results. For
each language, it selects the appropriate culture so it can parse and display the
correct formats.

www.it-ebooks.info

http://www.it-ebooks.info/

472 | LESSON 33 LOCALIZING PROGRAMS

id Localized Parsing [= [= [el Select Colars |- [= [

Language Text Doubled Value Foreground Color Background Calar

O Red O Red
Amenican English £1.23456 $2.469.12 O Green O Green
British English £123456 O Bue O Blue
Geman 1214 56€ 2.463,12€ ® Black) Black
French 1214 56€ 2469128 O White ® White

FIGURE 33-4
FIGURE 33-5

TRY IT

In this Try It, you write the program shown in Figures 33-5
and 33-6, which lets you select foreground and background
colors in American English and Mexican Spanish.

Lesson Requirements
In this lesson, you:
> Build the default interface.
> Add code to handle the RadioButtons’ Click events.
> Localize the application for Mexican Spanish.
>

Add code to let you test the form for either locale.

« Seleccione los colores | = | 2 NG
Color del primero plano Color de fondo
O Rojo O Rojo
O Verde O Verde
O Aaul O Azl
® Negro O Negmo
O Blanco ®) Blanco
FIGURE 33-6

website at www . wrox . com/go/csharp24hourtrainer2e.

NOTE You can download the code and resources for this lesson from the

Hints

> There’s no need to build a separate event handler for each RadioButton. Use one event han-
dler for all of the foreground buttons and one for all of the background buttons.

> These event handlers must figure out which button was clicked, but they cannot use the
buttons’ text because that will change depending on which locale is selected. They could use

the buttons’ names because they don’t change, but it’s even

easier to store the corresponding

colors’ names in their Tag properties and then use the Color class’s FromName method to get

the appropriate color.

Step-by-Step

» Build the default interface.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Trylt | 473

>

>

>

1. Build a form that looks like the one shown in Figure 33-5.

2. Store the color names (red, green, blue, and so forth) in the RadioButtons’ Tag
properties.

Add code to handle the RadioButtons’ Click events.

1. Write an event handler similar to the following:

// Set the foreground color.

private void Foreground Click (object sender, EventArgs e)
// Get the sender as a RadioButton.
RadioButton rad = sender as RadioButton;

// Use the color.

Color clr = Color.FromName (rad.Tag.ToString()) ;
this.ForeColor = clr;

fgGroupBox.ForeColor = clr;
bgGroupBox.ForeColor = clr;

This code converts the sender object into a RadioButton and uses its Tag property
to get the corresponding color. It then applies that color to the form and the two

GroupBoxes.
2. Connect the foreground RadioButtons to this event handler.
3. Repeat these steps for the background RadioButtons.

Localize the application for Mexican Spanish.

1. Set the form’s Localizable property to true. Click the Language property, click the

dropdown arrow to the right, and select “Spanish (Mexico).”

2. Change the controls’ Text properties so they have the values shown in Figure 33-6.

Add code to let you test the form for either locale.

1. Use code similar to the following in the form’s constructor:

// Select a locale for testing.
public Forml ()

{

// English.
//Thread.CurrentThread.CurrentCulture =
// new CultureInfo("en-US", false);
//Thread.CurrentThread.CurrentUICulture =
// new CultureInfo("en-US", false);

// Spanish.

Thread.CurrentThread.CurrentCulture =
new CultureInfo("es-MX", false);
Thread.CurrentThread.CurrentUICulture =
new CultureInfo("es-MX", false);

InitializeComponent () ;

www.it-ebooks.info

http://www.it-ebooks.info/

474 |

LESSON 33 LOCALIZING PROGRAMS

1.

EXE RCISES adl Selezioni i colori [= | & -
. . Colore della priorita alta Colore della priorita bassa

Copy this lesson’s Try It and add support for Italian O Foso O Roso
(it-IT) as shown in Figure 33-7. Don’t forget to add O Verde O Verde
code to let you test it. O Bu O 8

. ® linero O Il nero
When a program reads data from a file, it must use — ® Biacro
the correct locale. Download the files butch. txt,
German.txt, and English.txt from the book’s

FIGURE 33-7

website and make a program that can read them. The
program should let the user select a file, check the filename to see which locale it should use,
and select the correct locale. It should read and parse the values into appropriate data types
and then display the values in a DataGridview control. Hints:

> Use locale names en-US for English, de-DE for German, and nl-NL for Dutch. Use
code similar to the following to select the proper locale before you parse the values:

Thread.CurrentThread.CurrentCulture =
new CultureInfo("en-US", false);

> The values within a line in the file are separated by tabs, so use File.ReadAllLines
to get the lines and split to break each line into fields.

The following text shows the values in the file Dutch. txt:

Potlood € 0,10 12 € 1,20
Blocnote € 1,10 10 € 11,00
Laptop € 1.239,99 1 € 1.239,99

[Hard] Actually you can change a form’s localization after it is loaded: it’s just somewhat
complicated. The following method sets the locale for a form and makes its controls reload
their localizable properties:

// Set the form's culture.
private void SetFormCulture (Form form,

{

string culture)

// Make the CultureInfo.
CultureInfo cultureInfo = new CultureInfo(culture);

// Make a ComponentResourceManager.
ComponentResourceManager resourceManager =
new ComponentResourceManager (form.GetType()) ;

// BApply resources to the form.

resourceManager.ApplyResources (form, "s$this", cultureInfo);

// BApply resources to the form and its controls.
SetControlCulture (form, cultureInfo, resourceManager) ;

}

The setFormculture method creates a CultureInfo object to represent the desired culture.
It then creates a ComponentResourceManager for the form and uses it to load the form’s
localized resources. Resources for use by the form are identified by the special name $this.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 475

The method then calls the following setControlculture method for the form:

// Set the control's culture using the indicated

// CultureInfo and ComponentResourceManager.

private void SetControlCulture (Control control,
CultureInfo culturelInfo,
ComponentResourceManager resourceManager)

// Apply resources to the control.
resourceManager .ApplyResources (
control, control.Name, culturelInfo);

// Apply resources to the control's children.
foreach (Control child in control.Controls)
SetControlCulture(child, culturelInfo, resourceManager) ;

}

The setcontrolculture method uses the resource manager to load culture-specific
resources for the control. The method uses the control’s name to identify the resource val-
ues to use. (When SetFormculture calls this method, it first sets properties for the form.
However, the form’s resources are stored with the special name $this, so that first call to
ApplyResources doesn’t do anything.)

After making the control reload its resources, the code loops through the control’s children
and calls setCcontrolculture to reload their resources. This is necessary to handle controls
inside containers such as GroupBoxes or TabControls.

Copy the program you wrote for Exercise 1, remove the testing code that selects a locale,
and add English, Espafiol, and Italiano RadioButtons to the top of the form. When the user
selects one of them, use the SetFormCulture and SetControlculture methods to make
the form use the appropriate localization. (Hint: Store the locale name in the RadioButtons’
Tag properties.)

Unfortunately some properties are not localizable. For example, you can’t localize a
PictureBox’s Image property. (I asked people at Microsoft about this and they said, “Gee,
we never thought anyone would want to localize that.”)

Copy the program you wrote for Exercise 3 and add a PictureBox to display an image of
the selected country’s flag. Add code to the RadioButtons’ clicked event handler to display
the correct flag. (Hint: Add the flag images to the project’s resources by selecting Project =
Properties, clicking the Resources tab, opening the Add Resource dropdown, and selecting
Add Existing File. Then make the code set the PictureBox’s Image property to a value such
as Properties.Resources.MexicanFlag.)

[WPF, Hard] To localize a WPF application, follow these steps:

a. Create a new application. In Solution Explorer, expand the Properties entry and
double-click Resources. resx.

b. In the resources editor shown in Figure 33-8, create the resources that you want to
localize. For example in Figure 33-8, I created a string resource named LeftHeader
and set its value to “Foreground Color.”

www.it-ebooks.info

http://www.it-ebooks.info/

476 | LESSON 33 LOCALIZING PROGRAMS

Dd WPF Select Colors

Resourcesresy 7 X
Strings ~ *3 Add Resource ~) Remove Resource | - | Access Modifier Public -
Name Value Comment
3 Foreground Color
RightHeader Background Color
Red Red
Green Green
Blue Elue
Black Black
White White
*
FIGURE 33-8

C. Set the resource file’s Access Modifier (in the upper-right corner in Figure 33-8) to
Public.

d. Build the program’s XAML code as usual, but use the resources for the values that you
want to localize. To make that easier:

I Add the following statement with the other namespace statements at the top of
the XAML code:

xmlns:res="clr-namespace:WPF_Select Colors.Properties"

This statement lets you use the name res to represent the application’s proper-
ties. (In this example, the application’s root namespace is WPF_Select Colors.)

Use code similar to the following to use a resource. The code in bold makes this
GroupBox use the value of the LeftHeader resource:

<GroupBox Grid.Row="0" Grid.Column="0"
Header="{x:Static res:Resources.LeftHeader}">

€. To make a resource file for another locale, follow these steps:

i In Solution Explorer, use Ctrl+C and Ctrl+V to copy and paste the Resources
.resx file. Rename it to include the locale identifier as in Resources.es-MX.resx.

ii. Place the localized values in the new resource file.

When the program runs, it will select the appropriate resource file. You can test the pro-
gram by setting its CurrentCulture and CurrentUICulture in the main window’s con-
structor just as you would for a Windows Forms application.

For this exercise, create a WPF program similar to the program you built for Exercise 1.
Hints:

> Use code similar to the following to convert a color name into a brush:

Color clr = (Color)ColorConverter.ConvertFromString ("Red") ;
Brush brush = new SolidColorBrush(clr) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 477

> To set the foreground color, you only need to set the window’s Background
property.
> To set the background color, set the GroupBoxes’ Background properties. Then loop

through children collections of the controls (probably stackPanels) that hold the
RadioButtons and set the children’s Background properties.

[WPF, Hard] I have not found a good way to reload a WPF project’s resources at run
time, but there is a straightforward albeit verbose way. Simply set the application’s
CurrentCulture and CurrentUICulture as usual. Then use code similar to the following to
reload all of the localized properties:

fgGroupBox .Header = Properties.Resources.LeftHeader;

redFgButton.Content = Properties.Resources.Red;
greenFgButton.Content = Properties.Resources.Green;

You can place all of those statements in a method to make them easier to call.

Copy the program you wrote for Exercise 5 and modify it so it allows the user to change
locales at run time (much as you did for Exercise 3).

[WPF] Loading images from resources into WPF controls at run time is relatively difficult,
but there’s an easy way to localize images. Create multiple Tmage controls holding the pic-
tures you want to display and then change their visibility properties at run time. Copy the
program you wrote for Exercise 6 and modify it so it displays appropriate flag images when
the user changes locales (much as you did for Exercise 4).

NOTE Please select the videos for Lesson 33 online at www.wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

34

Programming Databases,
Part 1

Database programming is another truly enormous topic, so there isn’t room to cover it all
here. However, Visual Studio provides tools that make some simple kinds of database
programs so easy to write that your education won’t be complete until you’ve written a few.

In this lesson, you learn how to make a simple database application. You learn how to connect
to a database, load data, let the user navigate through records, and save any changes.

CONNECTING TO A DATABASE

The first step in building a database program is giving it a connection to the data. You can
easily do this interactively at design time, although it requires quite a few steps:

NOTE If you want to following along with these instructions, you may want
to download the database file Contacts.mdb, which is available in this lesson's
downloads.

1. First open the Project menu and select Add New Data Source to display the dialog
shown in Figure 34-1. As you can see in the figure, you might want the program to get
data from several different places. The data source used in this example is a database,
so select Database and click Next.

2. The dialog’s next screen lets you decide whether you want to use a data set or an
entity data model for your data. (The entity data model option won’t be there if you
don’t have the entity framework tools installed. You won’t be using an entity data
model in this lesson, so if that option doesn’t appear, don’t worry about it.) For

www.it-ebooks.info

http://www.it-ebooks.info/

480 | LESSON 34 PROGRAMMING DATABASES, PART 1

this example, pick Dataset and click Next to make the dialog display the screen shown in
Figure 34-2.

Data Source Configuration Wizard _

i:_ll) Choose a Data Source Type

Where will the application get data from?

" e § o

. Database | Service Object SharePoint

Lets you connect to a database and choose the database objects for your application.

FIGURE 34-1

Data Source Configuration Wizard _

i:_ll) Choose Your Data Connection

Which data connection should your application use to connect to the database?

| "| New Connection...

Connection string that you will save in the application (expand to see details)

< Previous Next > Finizh Cancel

FIGURE 34-2

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting to a Database | 481

NOTE A data set is an in-memory representation of a data source. A data set
can include multiple tables that are related with complex database relationships,
although this example’s database contains only a single table.

If you have previously built data connections, you can pick one from the dropdown list.
Otherwise, click the New Connection button to display the dialog shown in Figure 34-3.

Choose Data Source _

Data source:

S

Microsoft ODBC Data Source Use this selection to connectto a
Microsoft SOL Server Microsoft Access database file through
Microsoft SOL Server Database File the .NET Framework Data Provider for
Oracle Database OLE DB.

<others

Data provider:

| MET Framework Data Provider for OLEL w |

[#] Always use this selection | Continue | | Cancel

FIGURE 34-3

For this example, select Microsoft Access Database File and click Continue to see the
dialog shown in Figure 34-4.

Add Connection _

Enter information to connect to the selected data source or click
"Change" to choose a different data source and/or provider.

Data source:

|Microsoft Access Database File (OLE DB) | | Lhange... |

Database file name:

|\RDd\Desk‘tDp\C#Projects\srcM\Contacts‘mdb|| Browse... |

Log on to the database

User name: |Admin |

Password: | |
[] Save my password
Test Connection | | 0K | | Cancel |
FIGURE 34-4

www.it-ebooks.info

http://www.it-ebooks.info/

482 | LESSON 34 PROGRAMMING DATABASES, PART 1

Enter the name of the database in the textbox or click the Browse button and select it. When
you’re finished, if you like, you can click Test Connection to see if Visual Studio can connect
to the database.

Click OK to create the new connection and return to the dialog shown in Figure 34-2.

TIP If you click the plus sign at the bottom of the dialog shown in Figure 34-2,
you can see the connection string Visual Studio built to connect to the database.
You won’t need that string now, but you may want it later if you use code to
connect to a database.

PICKING A DATABASE

Picking the right database product is a tough decision. Microsoft Access databases
have the advantage that a C# program can read and manipulate one even if Access
isn’t installed on the computer. That means you can build a database on one com-
puter that has Access installed and then copy it to another computer that doesn’t
have Access and use it there.

SQL Server, Oracle, MySQL, and similar database products tend to provide
more database features than Access. For example, they support bigger databases,
triggers, views, and other features that Access doesn’t provide.

A common choice is to start development with SQL Server Express Edition, a

free version of SQL Server that has some size restrictions. Later if you decide you
need the extra space provided by the full version of SQL Server, you can upgrade
relatively easily. You can learn more about SQL Server Express and download it at
www.microsoft.com/express/Database.

Unfortunately a C# program cannot use these more powerful databases unless
you have them installed, an assumption I don’t want to make, so this lesson works
with Access databases. You can get the necessary databases from the lesson’s code
download and use them even if you don’t have Access installed.

If you’re planning to do more database programming, I encourage you to install
one of the more powerful database products, particularly since SQL Server Express
and MySQL are free.

4. When you click Next, Visual Studio asks whether you want to include the database in the
project. Click Yes to copy the database file into the project so it can easily be distributed with
the program.

5. The dialog’s next page asks whether you want to include the database connection string in
the program’s configuration file so the program can use that string to connect to the database

www.it-ebooks.info

http://www.microsoft.com/express/Database
http://www.it-ebooks.info/

Displaying Data in a Grid | 483

7.

at run time. This is often convenient because it lets you change the connection string without
rebuilding the application. Note, however, that you shouldn’t store database passwords in
the configuration file, so if the database requires a password, you may want to leave the con-
nection string out of the configuration file.

When you click Next again, you see the page shown in Figure 34-5.

Data Source Configuration Wizard _

i:_ll) Choose Your Database Objects

Which database objects do you want in your dataset?

4 V| Contacts
B FirstName
B LastName
B Street
B city
B state
B Zip
B Phone
B cel
B Email
& views

DataSet name:
ContactsDataSet ‘

< Previous Next = Finizh | ‘ Cancel |

FIGURE 34-5

Expand the database object treeview and select the tables and fields that you want the
program to use. In this example, the database contains only one table. In Figure 34-5 I
selected the Tables entry and that selected the database’s single table and all of its fields.

When you click Finish, Visual Studio defines a data set that can hold the data in the database.
It also adds some code to make working with the data set easier.

Now that you’ve added a data source to the project, Visual Studio provides easy ways to make two
simple kinds of database programs: one that displays data in a grid and one that displays data one
record at a time.

DISPLAYING DATA IN A GRID

To display data in a grid, first open the Data Sources window. If you can’t find it, use the View =
Other Windows = Data Sources command to find it. Figure 34-6 shows the Data Sources window
after I connected to a Microsoft Access database named Contacts.mdb.

www.it-ebooks.info

http://www.it-ebooks.info/

484 | LESSON 34 PROGRAMMING DATABASES, PART 1

TIP Often developers make the Data Sources window a tab in the same window
as the Toolbox.

Data Sources * 0 X
- RN
4 ¥ ContactsDataSet
PR=:1 Contacts u
FirstMame
LastMName
Street
City
State
Zip
Phone
Cell
Email
FIGURE 34-6

To display data in a grid, click a table in the Data Sources window and drag it onto the form. When
you drop the table, Visual Studio adds several objects to the form to help manage the table’s data.
A few of these objects appear on the form itself, but most of them appear in the Component Tray
below the form. When you drop the table on the form, Visual Studio adds:

>

>

>

A DataGridView—This control displays the data.
A data set—This data set can hold the table’s data at run time.

A BindingSource—This object encapsulates the data source. It provides a link between the
form’s controls and the data source.

A data adapter—This object provides methods to move data between the database and the
data set.

A table adapter manager—This object helps coordinate movement of data by the data
adapter.

Binding navigator—This object provides navigation services for the controls on the form. For
example, buttons that move to the next or previous record use these navigation services.

This seems like a confusing assortment of objects. Fortunately you don’t need to do much with them
for the simple database applications described in this lesson.

Figure 34-7 shows the program created by Visual Studio at run time. The only changes I made were
to resize the form and dock the bataGridview control to make it fill the form.

The pDataGridview and the BindingNavigator (which provides the buttons at the top) automati-
cally let the user perform a lot of simple database tasks, including:

>

>

Clicking a cell and typing to change its value

Selecting a row and pressing Delete to delete the corresponding record

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Data in a Grid | 485

\/

Y VY Y Y Y

Clicking and dragging on the left of the data to select multiple rows, which the user can then

delete all at once

Using the navigation buttons to move through the records

Entering values in the last row to create a new record

Resizing rows and columns

Clicking the floppy disk button to save changes to the data

Clicking a column header to sort the records using that column

ol Form1 - [
H 4|1 of 0| b M [k X W
FirstMame LastName Strest City State fip Phone
3 im Bateman 3670 Rairtree Blvd | Indianapolis IN 46278 352-324
Charles Curie 3533 Rhapsody St | Howey In The Hills [A 34737 530-270
Audrey Colling 3444 Garfield Rd | Peoria IL 61614
James Townsend 3878 Lambets Br... | Miami FL 31N 786-524]
June Meclure AD042 Franklin Av... | Daytona Beach FL 32114 386-254|
Alice Famell 3444 Spring Hav... | Teterboro MJ 07608 9?3638]
Christopher Hettinger T17 Atthur Ave Dekalb IL 60115 315—793|
Pamela Lusk 4739 Saint Marys... | Whitesboro NY 13452 315768{
Hamy Walker 4489 Penn Street | Oran MO 6371 B73-262]
Shannon Dion-Swain 1883 Ingram Road |Ekin MNC 28621
-
£ m >
FIGURE 34-7

NOTE [this kind of program, changes are made locally to the data set and are
not copied to the database until the user clicks the Save button.

NOTE If you build a program as described so far, make a change, and click the
BindingNavigator’s Save button, you may be surprised to find that the changes
don’t seem to be saved. They actually are saved, but by default the project copies
the database into the executable directory every time it runs, and the new copy
of the database overwrites the saved data so it looks like the changes weren’t
saved.

Omne way to fix this is to not include the database in the project or to use
Solution Explorer to set its Copy to Output Directory property to Do not

copy Or Copy if newer.

You should add a few things that this automatically generated program doesn’t do to this simple exam-
ple. The most important of these is to check for unsaved changes before allowing the form to close.

www.it-ebooks.info

http://www.it-ebooks.info/

486 | LESSON 34 PROGRAMMING DATABASES, PART 1

The following FormClosing event handler prevents the user from accidentally closing the form with
unsaved changes:

// Check for unsaved changes.
private void Forml FormClosing(object sender, FormClosingEventArgs e)
// See if there are unsaved changes.
if (this.contactsDataSet.HasChanges())
// Make the user confirm.
DialogResult result = MessageBox.Show (
"Do you want to save changes before closing?",
"Save Changes?",
MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question) ;
if (result == DialogResult.Cancel)
// Cancel the close.
e.Cancel = true;

}

else if (result == DialogResult.Yes)

{

// Save the changes.
contactsTableAdapter.Update (contactsDataSet) ;

// Make sure the save worked.
// If we still have unsaved changes, cancel.
e.Cancel = (this.contactsDataSet.HasChanges());

}

// Else the user doesn't want to save
// the changes so just keep going.

If the data set has unsaved changes, the code asks the user whether it should save the changes. If the
user clicks Cancel, the code sets e.cancel to true so the program doesn’t close the form.

If the user clicks Yes, the code calls the table adapter’s Update method to save the data set’s changes
back to the database.

If the user clicks No, the code just continues and lets the form close without saving the changes.

DISPLAYING DATA ONE RECORD AT A TIME

Instead of displaying a table’s records in a grid, you can display the data one record at a time, as
shown in Figure 34-8.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Data One Record at a Time | 487

agl Form1 - [o [
1 of 10 [b Pl [k X W
Last Name: Cel: [907-980-6216
-
Zip: 46278
FIGURE 34-8

With this kind of interface, you can click the navigation buttons on the BindingNavigator to
move through the records. You can use the display controls (TextBoxes in Figure 34-8) to change a
record’s values.

To build this interface, first create a data source as before. Then, instead of dragging a table from
the Data Sources window onto the form, drag individual fields onto the form. For each field, Visual
Studio adds a Label and an appropriate display control (such as a TextBox) to the form.

This version of the interface does most of the things the grid-based version does but in different
ways. For example, to create a new record you can’t simply type values into a new row in a grid.
Instead you need to click the BindingNavigator’s Add New button (which appropriately looks like
a plus sign).

As in the grid-style example, the code created by Visual Studio doesn’t check for unsaved changes
before the form closes. You can solve this problem by adding a Formclosing event handler to check
for unsaved changes as before.

This version of the program works a little differently than the previous grid-style version, however.
The DataGridview control used by the previous program automatically marks the data as modified
when the user starts changing a value. In contrast, the new program marks the data as modified
only when the user changes a value and then moves to a new record. That means if the user changes
a value and then tries to close the form without moving to a new record, the program doesn’t know
there is an unsaved change and closes.

To prevent that, you can add the following two lines to the beginning of the FormClosing event

handler:
this.Validate() ;

this.contactsBindingSource.EndEdit () ;

These lines make the program officially finish editing any fields that the user is modifying so the
data set knows that it has a pending change. After that, the FormClosing event handler works
exactly as before.

www.it-ebooks.info

http://www.it-ebooks.info/

488 | LESSON 34 PROGRAMMING DATABASES, PART 1

TRY IT

In this Try It, you have a chance to practice the techniques described in this lesson. You create an
application that displays contact information in a grid.

Lesson Requirements

In this lesson, you:

>

Start a new project. Download the contacts.mdb database from the book’s website
and place it in the project directory.

Add a new data source for this database.
Open the Data Sources window and drag the Contacts table onto the form.

Add code to the Formclosing event handler to check for unsaved changes.

NOTE You can download the code and resources for this lesson from the
website at www.wrox.com/go/csharp24hourtrainer2e.

Hints

>

Dock the DataGridview control so it fills the form.

Resize the form so all fields are visible. Add a little extra width for a vertical scrollbar on the
right.

Don’t forget to set the database file’s Copy to Output Directory property to Copy if newer.

Step-by-Step

>

Start a new project. Download the contacts.mdb database from the book’s website and
place it in the project directory.

1. This is straightforward.

Add a new data source for this database.

1. Follow the steps described earlier in this lesson.

Open the Data Sources window and drag the Contacts table onto the form.
1. This is straightforward.

Add code to the Formclosing event handler to check for unsaved changes.

1. Use the code shown earlier in this lesson.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Exercises | 489

EXERCISES

1.

Make a program similar to the one you built for the Try It except make it display one record
at a time instead of use a grid. Anchor the TextBoxes so they widen if the form widens.
Don’t forget to add the FormCclosing event handler.

Copy the program you built for this lesson’s Try It. That program’s grid lets the user navigate
through the records, add records, and delete records, so you don’t really need all of those
buttons on the BindingNavigator. Select the BindingNavigator. In the Properties window,
click the Items property and click the ellipsis to the right. Set the visible property to false
for every item except the Position, Count, and Save items.

Copy the program you built for Exercise 1. Add a Menustrip with a Data menu that has
items First, Previous, Next, Last, Add New, Delete, and Save. Set the visible property on
the corresponding BindingNavigator buttons to false.

To make the menu items work, use the BindingSource’s CurrencyManager. That
object’s properties and methods let you manipulate the current record (hence the name
CurrencyManager). For example, the following code sets the current position to the first
record:

this.contactsBindingSource.CurrencyManager.Position = 0;

Add or subtract one from Position to move to the next or previous record. Set Position to
the CurrencyManager’s List.Count - 1 value to move to the end of the list.

Use the Removeat method to delete the current record.
Finally, enter the necessary code for the Save menu item.

[WPF] You can use the techniques described in this lesson to make simple database applica-
tions in WPF, too. The results are similar, but some differences exist. In particular Visual
Studio doesn’t place a BindingNavigator on the WPF window. The program also includes
data set and table adapter objects, but they’re hidden inside the code.

For this exercise, repeat the Try It with a WPF application. After you create the database
connection, run the program to let it build some data structures that it needs. Then drag the
Contacts table onto the window and arrange it as before.

Because Visual Studio doesn’t create a BindingNavigator, add a File menu with a Save item
that uses the following code to save changes to the data:

private void saveMenuItem Click (object sender, RoutedEventArgs e)
{
// Save the changes.
ContactsDataSet contactsDataSet =
(ContactsDataSet) this.FindResource ("contactsDataSet") ;
ContactsDataSetTableAdapters.ContactsTableAdapter
contactsDataSetContactsTableAdapter =
new ContactsDataSetTableAdapters.ContactsTableAdapter () ;
contactsDataSetContactsTableAdapter.Update (contactsDataSet) ;

www.it-ebooks.info

http://www.it-ebooks.info/

490 | LESSON 34 PROGRAMMING DATABASES, PART 1

Use the following window Closing event handler to protect the user from losing changes
when the program closes:

private void Window Closing(object sender,
System.ComponentModel .CancelEventArgs e)
{

ContactsDataSet contactsDataSet =
(ContactsDataSet) this.FindResource ("contactsDataSet") ;

// See if there are unsaved changes.
if (contactsDataSet.HasChanges())

{

// Make the user confirm.

MessageBoxResult result = MessageBox.Show (
"Do you want to save changes before closing?",
"Save Changes?", MessageBoxButton.YesNoCancel,
MessageBoxImage.Question) ;

if (result == MessageBoxResult.Cancel)

{

// Cancel the close.
e.Cancel = true;

}

else if (result == MessageBoxResult.Yes)

{

// Save the changes.
ContactsDataSetTableAdapters.ContactsTableAdapter
contactsDataSetContactsTableAdapter =
new ContactsDataSetTableAdapters.ContactsTableAdapter () ;
contactsDataSetContactsTableAdapter.Update (contactsDataSet) ;

// Make sure the save worked.
// If we still have unsaved changes, cancel.
e.Cancel = (contactsDataSet.HasChanges()) ;

}

// Else the user doesn't want to save
// the changes so just keep going.

}

This code is similar to the version used by the Windows Forms application except it’s more
work getting the data set and table adapter.

5. [WPF] Repeat Exercise 1 for a WPF application. As in Exercise 4, after you create the data-
base connection, run the program to let it build some data structures that it needs. Then drag
the Contacts table fields onto the window and align the Labels and TextBoxes.

Add the window’s Closing event handler as in Exercise 4 but don’t worry about adding
Previous, Next, Save, and other commands. You’ll do that in later exercises.

Run the program and verify that you can see the first record in the data set and that you can
save changes to it. (Hint: Don’t forget to set the database’s Copy to Output Directory

property.)

6. [WPF, Hard] In Exercise 5, Visual Studio put the Label and TextBox for each database field
inside a separate Grid control. Those Grids sit inside the main grid control. That works, but

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 491

it makes it hard to rearrange the controls. For example, each TextBox’s width is explicitly
set to 120.

To make the program more flexible, copy the program you built for Exercise 5 and give the
main Grid control nine rows with heights auto and two columns with widths auto and *.
Add the following property to the grid:

DataContext="{StaticResource contactsViewSource}"

The pataContext property tells the controls inside the crid where they should look
for data.

Next give the main Grid a resource dictionary containing two Styles that set the proper-
ties for Labels and TextBoxes. Make the styles set all of the property values shared by the
automatically created controls except set the TextBox HorizontalAlignment property to
Stretch and omit the TextBox Width property.

Now when you run the program, the TextBoxes should resize to use the available width.

[WPF, Hard] Copy the program you wrote for Exercise 6 and add navigation buttons. To do
that, make the window’s main control be a DockPanel. Dock a ToolBar to the top and dock
the previous Grid control below that.

Give the ToolBar the buttons First, Previous, Next, Last, Add, Delete, and Save.

To make managing the data easier, use the following code to make class-level variables to
hold the data set, the table adapter, and the view source:

private ContactsDataSet DataSet;
private ContactsDataSetTableAdapters.ContactsTableAdapter TableAdapter;
private CollectionViewSource ViewSource;

Modify the window Loaded event handler so it initializes and uses the class-level variables.
Also modify the window Closing event handler so it uses the variables.

Next give the buttons the following code:

private void firstButton Click(object sender, RoutedEventArgs e)

{
}

private void previousButton Click (object sender, RoutedEventArgs e)

{
}

private void nextButton Click(object sender, RoutedEventArgs e)

{
}

private void lastButton Click(object sender, RoutedEventArgs e)

{
}

private void addButton Click (object sender, RoutedEventArgs e)

ViewSource.View.MoveCurrentToFirst () ;

ViewSource.View.MoveCurrentToPrevious () ;

ViewSource.View.MoveCurrentToNext () ;

ViewSource.View.MoveCurrentToLast () ;

www.it-ebooks.info

http://www.it-ebooks.info/

492 | LESSON 34 PROGRAMMING DATABASES, PART 1

ContactsDataSet.ContactsRow row =
DataSet.Contacts.NewContactsRow () ;
row.FirstName = "<missing>";
row.LastName = "<missing>";
DataSet.Contacts.AddContactsRow (row) ;
ViewSource.View.MoveCurrentToLast () ;

}

private void deleteButton Click(object sender, RoutedEventArgs e)

{

int rownum = ViewSource.View.CurrentPosition;
DataSet.Contacts.Rows [rownum] .Delete () ;

}

private void saveButton Click (object sender, RoutedEventArgs e)

{
}

8. [WPF] Copy the program you wrote for Exercise 7 and add a Label at the bottom of
the form that displays the current record’s number as in “Record 7 of 12.” Update the
position when the program starts and when the viewSource.view object receives a
CurrentChanged event.

TableAdapter.Update (DataSet) ;

Q. [WPF] The MoveCurrentToPrevious and MoveCurrentToNext methods can move the
current record beyond the beginning or end of the data set. In that case, the bound
TextBoxes are blank and the user is probably confused. Fortunately those methods return
true if they successfully move to a new record and false if they fall off the data set.

Copy the program you wrote for Exercise 8 and modify the code to check the values
returned by MoveCurrentToPrevious and MoveCurrent ToNext. If they return false, move
to the first or last record.

10. [WPF] Copy the program you wrote for Exercise 9 and make the ToolBar Buttons display
appropriate images.

11. [WPF] Copy the program you wrote for Exercise 10 and enable and disable the ToolBar
Buttons when appropriate. Hints:

» To enable a Button, set IsEnabled = true and Opacity = 1.
» To disable a Button, set IsEnabled = false and Opacity = 0.5.

> Make the existing CurrentChanged event handler enable and disable the movement
Buttons as appropriate.

» Catch the pataSet.Contacts.RowChanged event and enable the Save Button when
a record is modified by the user.

NOTE Please select the videos for Lesson 34 online at www .wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

35

Programming Databases, Part 2

The simple programs described in the previous lesson are hardly commercial-caliber database
applications, but they do let you perform basic database operations with amazingly little code.

In this lesson, you learn how to add a few new features to the programs described in
Lesson 34. You learn how to add searching, filtering, and sorting to the programs to make
finding data easier.

SEARCHING

In a large database, it can be hard to locate a particular value. A program can make finding
records easier by using the BindingContext’s Find method. This method takes as parameters
the name of a field to search and the value that it should find. It returns the index of the first
record that has the desired value.

For example, the following code searches the data in the BindingSource named
contactsBindingSource for a record with FirstName value equal to Kim:

int recordNumber = contactsBindingSource.Find("FirstName", "Kim");

Having found the index of the target record, you can then highlight it in some way for the user
to see. For example, recall that a BindingSource’s CurrencyManager controls the current
position within the data. The following code makes the current record be the record found by
Find so any controls displaying the data will show this record:

contactsBindingSource.CurrencyManager.Position = recordNumber;

WARNING Find returns -1 if it cannot find the target string. Be careful not to
try to do anything explicitly with record number —1 or your program may crash.
That means the previous line of code should really be

if (recordNumber != -1)
contactsBindingSource.CurrencyManager.Position = recordNumber;

www.it-ebooks.info

http://www.it-ebooks.info/

494 | LESSON 35 PROGRAMMING DATABASES, PART 2

If the program is displaying data in a grid, focus moves to the found record’s row. If the program is
displaying data in field controls, those controls now show the found record’s data.

FILTERING

The Find method is somewhat restrictive. It only searches for exact matches in a single field and
only returns the index of the first record that matches. Often you might prefer more flexibility
such as searches that can check conditions (Age > = 21), look for partial matches (LastName begins
with S), and combine multiple tests (state is VA or DC). It might also be nice to see all of the
records that meet a condition instead of just the first record.

Filters let you perform these kinds of searches. A filter tests each record in a BindingSource’s data
and selects those that satisfy the test. Any display controls attached to the BindingSource show
only the selected records.

To use a filter, set the BindingSource’s Filter property to a string describing the records that you
want to select. The filter compares each record’s fields to values and selects the records that match.
For example, the clause state="FL' selects records where the state field has the value FL.

String values should be delimited with single or double quotes. (Single quotes are generally easier
to type into a string that is itself delimited by double quotes.) Numeric values should not have
delimiters.

Table 35-1 lists the operators that you can use to compare fields to values.

TABLE 35-1
OPERATOR PURPOSE
= Equal to
<> Not equal to
< Less than
> Greater than
&= Less than or equal to
>= Greater than or equal to
LIKE Matches a pattern
IN Is in a list of values

The LIKE operator performs pattern matching. Use * or % as a wildcard that matches zero or more
characters.

You can use the AND, OR, and NOT logical operators to combine the results of multiple comparisons.
Use parentheses to determine the evaluation order if necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Trylt | 495

Table 35-2 lists some example filters.

TABLE 35-2
FILTER SELECTS
LastName = 'Johnson' Records where LastName is Johnson
FirstName = 'Ann' OR FirstName = 'Anne' Records where FirstName is Ann or Anne
FirstName LIKE 'Pam%' Records where FirstName begins with

Pam

State IN('NY',6 'NC', 'NJ') Records where state is NY, NC, or NJ
(Balance < -50) OR ((Balance < 0) AND Records where the account is overdrawn
(DaysOverdue > 30)) by more than $50 or where the account

has been overdrawn by any amount for
more than 30 days

You can use the BindingSource’s RemoveFilter method to remove the filter and display all of the
records again.

SORTING

If you display data in a DataGridview, you can click a column’s header to sort the records based
on the values in that column. Clicking again reverses the sort order. Sorting doesn’t get much easier
than that.

If you’re displaying the data in fields rather than a grid, however, you don’t get automatic sorting.
Fortunately, you can make a BindingSource sort simply by setting its Sort property to the name of
the field on which you want to sort. Use its RemoveSort method to cancel the sort and display the
records in their original order.

TRY IT

In this Try It, you add filtering to a program that displays records in a grid. You let the user enter a
filter and you make the program display only records that match the filter.

Lesson Requirements
In this lesson, you:

> Copy the program you built for the Try It in Lesson 34 (or download Lesson 34’s version
from the book’s website).

Add a Toolstrip containing a TextBox and a Button.

> When the user clicks the Button, apply the filter entered in the TextBox.

www.it-ebooks.info

http://www.it-ebooks.info/

496 | LESSON 35 PROGRAMMING DATABASES, PART 2

Hints

>

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox .com/go/csharp24hourtrainer2e.

Be sure to protect the program in case the user enters an invalid filter.

Step-by-Step

>

>

>

Copy the program you built for the Try It in Lesson 34 (or download Lesson 34’s version
from the book’s website).

1. This is straightforward.
Add a Toolstrip containing a TextBox and a Button.
1. This is straightforward.

When the user clicks the Button, apply the filter entered in the TextBox.
1. Use code similar to the following:

// Rpply the filter.
private void filterButton Click(object sender, EventArgs e)

{

string filter = filterTextBox.Text.Trim() ;
if (filter.Length == 0)

// No filter.
contactsBindingSource.RemoveFilter() ;

}

else

// Add the filter.
try

{
}
catch (Exception ex)

{
}

contactsBindingSource.Filter = filter;

MessageBox.Show (ex.Message) ;

EXERCISES
1.

Copy the program you built for the Try It and replace the Too1Bar’s TextBox and Button
with a “State:” Label and a ComboBox. Make the ComboBox list the state abbreviations pres-
ent in the database (just hard-code them) plus a blank choice. When the user selects a value,
use the selected state to filter the data.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Exercises | 497

Copy the program you built for Exercise 34-1 and add RadioButtons to the right of the
TextBoxes, as shown in Figure 35-1. When the user clicks a RadioButton, make the pro-
gram sort its data using the corresponding field. (Hint: Set each RadioButton’s Tag property
to the name of the field it represents.)

o Exercise 35-2 = | = -

1 of 10 [b b |k X W

First Name: ‘NICE | ®

Last Name: ‘ Famell

|
Street: ‘3444 Spring Haven Tr | (@]
|

)
Ciy: ‘Teierbom Q
Sie: o}
Zp: O
Phone: 973-698-8380 Q
T — 0
Email: ‘.NiceFarrell@csharphelper.cum Q

FIGURE 35-1

Copy the program you built for Exercise 1. Add a “First Name:” Label and a TextBox
to the ToolBar. When the user enters a name, find and highlight the first record with that
FirstName value. (Hint: If the user selects a new State filter, the program must find the

name again.)

[Hard] Copy the program you built for Exercise 3 and make the program load the states
ComboBox’s items from the database when it starts. Hints:

> Set the comboBox’s Sorted property to true.

> Create a class-level variable List<string> named States to keep track of the states
in the database.

> Use the following code to initialize the list and make the comboBox use it:

// See what State values are in the data.

States = new List<string>();

States.Add("") ;

foreach (DataRow row in contactsDataSet.Contacts.Rows)

{

string state = row.Field<strings>("State");
if (!States.Contains(state)) States.Add(state);

}

// Load the stateComboBox's items.
stateComboBox.ComboBox.DataSource = States;

Copy the program you built for Exercise 2 and add a Filter feature similar to the one you
added for this lesson’s Try It.

Copy the program you built for Exercise 2 and add a Filter by State feature similar to the one
you added for Exercise 1.

www.it-ebooks.info

http://www.it-ebooks.info/

498 | LESSON 35 PROGRAMMING DATABASES, PART 2

7. [WPF, Hard] Naturally filtering records is more difficult in WPF than it is in Windows
Forms. Copy the program you wrote for Exercise 34-4 and add a ToolBar, “State:” Label,
and comboBox much as you did for Exercise 1. (You may want to rearrange the program’s
controls to use a DockPanel.) Use the following code to filter the data:

// Filter with the selected state.

private void stateComboBox SelectionChanged (object sender,
SelectionChangedEventArgs e)

{

// Get the dataset.
ContactsDataSet contactsDataSet =
(ContactsDataSet) this.FindResource ("contactsDataSet") ;

// Get the selected state.

ComboBoxItem item = stateComboBox.SelectedItem as ComboBoxItem;
string state = item.Content.ToString();

Console.WriteLine ("Filtering by state " + state);

// Set the filter.

CollectionViewSource contactsViewSource =
(CollectionViewSource)FindResource ("contactsViewSource") ;

BindingListCollectionView view =
(BindingListCollectionView)contactsViewSource.View;

if (state.Length == 0) view.CustomFilter = "";
else view.CustomFilter = "State = '" + state + "'";

}

8. [WPF, Hard] Copy the program you built for Exercise 34-11 and add a “State:” Label and a
ComboBox as you did in Exercise 7. You’ll also need to make two additional changes.

First, after you change the filter, you need to update the position label.

Second, you need to change the way you display the current record’s position so it uses the
selected records and not the entire data table. Modify the showPosition method so it uses
the following code to determine the number of records selected:

// Get the number of records selected.

CollectionViewSource contactsViewSource =
(CollectionViewSource)FindResource ("contactsViewSource") ;

BindingListCollectionView view =
(BindingListCollectionView)contactsViewSource.View;

int numselected = view.Count;

NOTE Please select the videos for Lesson 35 online at www .wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

36

LINQ to Objects

Lessons 34 and 35 explain how you can use Visual Studio’s wizards to build simple database
programs. They show one of many ways to connect a program to a data source.

Language-Integrated Query (LINQ) provides another method for bridging the gap between a
program and data. Instead of simply providing another way to access data in a database, how-
ever, LINQ can help a program access data stored in many places. LINQ lets a program use
the same techniques to access data stored in databases, arrays, collections, or files.

LINQ provides four basic technologies that give you access to data stored in various places:
> LINQ to SQL—Data stored in SQL Server databases
> LINQ to Dataset—Data stored in other databases
> LINQ to XML—Data stored in XML (eXtensible Markup Language) files
>

LINQ to Objects—Data stored in collections, lists, arrays, strings, files, and so forth

In this lesson you learn how to use LINQ to Objects. You learn how to extract data from lists,
collections, and arrays and how to process the results.

LINQ BASICS

Using LINQ to process data takes three steps:
1. Create a data source.
2. Build a LINQ query to select data from the data source.
3. Execute the query and process the result.
You might expect the third step to be two separate steps, “Execute the query” and “Process

the result.” In practice, however, LINQ doesn’t actually execute the query until it must—when
the program tries to access the results. This is called deferred execution.

For example, the following code displays the even numbers between 0 and 99:

www.it-ebooks.info

http://www.it-ebooks.info/

500 | LESSON 36 LINQTO OBJECTS

// Display the even numbers between 0 and 99.
private void Forml Load(object sender, EventArgs e)

{

// 1. Create the data source.
int [] numbers = new int[100];
for (int i = 0; i < 100; i++) numbers[i] = 1i;

// 2. Build a query to select data from the data source.
var evenQuery =

from int num in numbers

where (num % 2 == 0)

select num;

// 3. Execute the query and process the result.
foreach (int num in evenQuery) Console.WriteLine (num.ToString()) ;

The program starts by creating the data source: an array containing the numbers 0 through 99. In
this example the data source is quite simple, but in other programs it could be much more complex.
Instead of an array of numbers, it could be a list of customer objects or an array of order objects
that contain lists of orderItem objects.

Next the program builds a query to select the even numbers from the list. I explain queries in more
detail later, but the following list describes the key pieces of this query:

>

var—This is the data type of whatever is returned by the query. In this example the result
will be an TEnumerable<ints but in general the results of LINQ queries can have some very
strange data types. Rather than trying to figure out what a query will return, most developers
use the implicit data type var. The var keyword tells the C# compiler to figure out what the
data type is and use that so you don’t need to use a specific data type.

evenQuery—This is the name the code is giving to the query. You can think of it as a vari-
able that represents the result that LINQ will later produce.

from int num in numbers—This means the query will select data from the numbers array.
It will use the int variable num to range over the values in the array. Because num ranges over
the values, it is called the query’s range variable. (If you omit the int data type, the compiler
will implicitly figure out its data type.)

where (num % 2 == 0)—This is the query’s where clause. It determines which items are
selected from the array. This example selects the even numbers (where num mod 2 is 0).

select num—This tells the query what to return. In this case the query returns whatever is
in the range variable num for the values that are selected. Often you will want to return the
value of the range variable but you could return something else such as 2 * num or a new
object created with a constructor that takes num as a parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

where Clauses | 501

NOTE I don’t recommend using var for variables in general if you can figure
out a more specific data type. When you use var, you can’t be sure what data
type the compiler will use. That can lead to confusion if the compiler picks dif-
ferent data types for variables that must later work together.

For example, in the following code the third statement is allowed because you
can store an int value in a double but the fourth statement is not allowed
because a double may not fit in an int:

var x = 1.2; // double.
var y = 1; // int.

X = V; // Allowed.

y = X; // Not allowed.

If you do know the data type, just use that instead of var.

In the final step to performing the query, the code loops through the result produced by LINQ. The
code displays each int value in the Console window. It’s only when the program tries to iterate over
the results of the query that the query is actually executed.

The following sections provide more detailed descriptions of some of the key pieces of a LINQ
query: where clauses, order by clauses, and select clauses.

WHERE CLAUSES

Probably the most common reason to use LINQ is to filter the data with a where clause. The where
clause can include normal boolean expressions that use &&, | |, >, and other boolean operators. It
can use the range variable and any properties or methods that it provides (if it’s an object). It can
even perform calculations and invoke functions.

NOTE The where clause is optional. If you omit it, the query selects all of the
items in its range.

For example, the following query is similar to the earlier one that selects even numbers, except this
one’s where clause uses the IsPrime method to select only prime numbers. (How the IsPrime func-
tion works isn’t important to this discussion, so it isn’t shown here. You can see it in the Find Primes
program in this lesson’s download.)
var primeQuery =
from int num in numbers

where (IsPrime (num))
select num;

www.it-ebooks.info

http://www.it-ebooks.info/

502 | LESSON 36 LINQTO OBJECTS

The Find Customers example program shown in Figure 36-1 (and available in this lesson’s code
download on the website) demonstrates several where clauses.

o Find Customers (4/1/2020) = | = -

All Customers MNegative Balance
Ann Ashler $100.00 3/10/2020 Cindy Camuthers ($50.00) 3/17/2020
Bob Bogaart $150.00 2/5/2020 Dan Dent (575.00) 2/10/2020
Cindy Camuthers ~ (350.00) 3/17/2020 Frank Finkle (895.00) 3/9/2020
Dan Dent (875.00) 2/10/2020 Gina Gara (810.00) 373042020
Eve Edwards 50.00 2/10/2020
Frank Finkle (895.00) 3/9/2020
Gina Gama (510.00) 3/30/2020
Owes more than $50 Overdue
Cindy Cam.thers ($50.00) 3/17/2020 Dan Cent $75.00) 2/10/2020
Dan Dent (875.00) 2/10/2020
Frank Finkle (895.00) 3/9/2020

FIGURE 36-1

The following code shows the customer class used by the Find Customers program. It includes some
auto-implemented properties and an overridden Tostring method that displays the customer’s
values:

class Customer

{
public string FirstName { get; set; }
public string LastName { get; set; }
public decimal Balance { get; set; }
public DateTime DueDate { get; set; }

public override string ToString()

{

return FirstName + " " + LastName + "\t" +
Balance.ToString("C") + "\t" + DueDate.ToString("d");

The following code shows how the Find Customers program displays the same customer data
selected with different where clauses:

// Display customers selected in various ways.
private void Forml Load (object sender, EventArgs e)
DateTime today = new DateTime (2020, 4, 1);
//DateTime today = DateTime.Today;
this.Text = "Find Customers (" + today.ToString("d") + ")";

// Make the customers.
Customer[] customers =

new Customer () { FirstName="Ann", LastName="Ashler",
Balance = 100, DueDate = new DateTime (2020, 3, 10)},

www.it-ebooks.info

http://www.it-ebooks.info/

where Clauses |

503

new Customer () { FirstName="Bob", LastName="Boggart",
Balance = 150, DueDate = new DateTime (2020, 2, S)L
// ... Other Customers omitted

}i

// Display all customers.
allListBox.DataSource = customers;

// Display customers with negative balances.
var negativeQuery =
from Customer cust in customers
where cust.Balance < 0
select cust;
negativelListBox.DataSource = negativeQuery.ToArray () ;

// Display customers who owe at least $50.
var owes50Query =
from Customer cust in customers
where cust.Balance <= -50
select cust;
owes501listBox.DataSource = owes50Query.ToArray () ;

// Display customers who owe at least $50
// and are overdue at least 30 days.
var overdueQuery =
from Customer cust in customers
where (cust.Balance <= -50) &&
(DateTime.Now.Subtract (cust.DueDate) .TotalDays > 30)
select cust;
overdueListBox.DataSource = overdueQuery.ToArray () ;

The program starts by creating a DateTime named today and setting it equal to April 1, 2020.

In a real application you would probably use the current date (commented out), but this program
uses that specific date so it works well with the sample data. The program then displays the date in
its title bar (so you can compare it to the customers’ due dates) and creates an array of Customer
objects.

Next the code sets the al1ListBox control’s DataSource property to the array so that ListBox
displays all of the customer objects. The customer class’s overridden Tostring method makes it
display each customer’s name, balance, and due date.

The program then executes the following LINQ query:

// Display customers with negative balances.
var negativeQuery =
from Customer cust in customers
where cust.Balance < 0
select cust;
negativeListBox.DataSource = negativeQuery.ToArray () ;

This query’s where clause selects Customers with Balance properties less than 0. The query returns

an IEnumerable, but a ListBox’s DataSource property requires an IList or IListSource and

www.it-ebooks.info

http://www.it-ebooks.info/

504 | LESSON 36 LINQTO OBJECTS

IEnumerable doesn’t satisfy either of those interfaces. To handle that problem, the program calls
the result’s Toarray method to convert it into an array that the Datasource property can handle.

After displaying this result, the program executes two other LINQ queries and displays their results
similarly. The first query selects Customers who owe at least $50. The final query selects Customers
who owe at least $50 and who have a Duebate more than 30 days in the past.

ORDER BY CLAUSES

Often the result of a query is easier to read if you sort the selected values. You can do this by insert-
ing an order by clause between the where clause and the select clause.

The order by clause begins with the keyword orderby followed by one or more values separated by
commas that determine how the results are ordered.

Optionally you can follow a value by the keyword ascending (the default) or descending to
determine whether the results are ordered in ascending (1-2-3 or A-B-C) or descending (3-2-1 or
C-B-A) order.

For example, the following query selects Customers with negative balances and orders them so
those with the smallest (most negative) values come first:
var negativeQuery =
from Customer cust in customers
where cust.Balance < 0

orderby cust.Balance ascending
select cust;

The following version orders the results first by balance and then, if two customers have the same
balance, by last name:
var negativeQuery =
from Customer cust in customers
where cust.Balance < 0

orderby cust.Balance, cust.LastName
select cust;

SELECT CLAUSES

The select clause determines what data is pulled from the data source and stored in the result.

All of the previous examples select the data over which they are ranging. For example, the Find
Customers example program ranges over an array of Customer objects and selects certain Customer
objects.

Instead of selecting the objects in the query’s range, a program can select only some properties of
those objects, a result calculated from those properties, or even completely new objects. Selecting a
new kind of data from the existing data is called transforming or projecting the data.

www.it-ebooks.info

http://www.it-ebooks.info/

select Clauses | 505

The Find Students example program shown in Figure 36-2 (and available in this lesson’s code down-
load on the website) uses the following simple student class:

class Student
public string FirstName { get; set; }
public string LastName { get; set; }
public List<int> TestScores { get; set; }

The program uses the following query to select all of the students’ names and test averages ordered
by name:

// Select all students and their test averages ordered by name.
var allStudents =
from Student student in students
orderby student.LastName, student.FirstName
select String.Format ("{0} {1}\t{2:0.00}",
student .FirstName, student.LastName,
student.TestScores.Average ()) ;
alllListBox.DataSource = allStudents.ToArray() ;

o FindStudents: Class Average = 7695 | =18 -
All Students and Average Below Average Students
Ann Ashler 80.00 Frank: Finkle a0
Bob Boggart 55.00 Cindy Camuthers 55
Cindy Camuthers 55.00 Dan Dent []
Dan Dert 65.00
Eve Edwards 37.00
Frank: Finkle 50.00
Gina Gama 9667
Passing Failling
[Aon Asbler —________[l[Cindy Camuthes |
Bob Boggart Frank Finkle
Dan Dert
Eve Edwards
Gina Gama
FIGURE 36-2

This query’s select clause does not select the range variable student. Instead it selects a string
that holds the student’s first and last names and the student’s test score average. (Notice how the
code calls the Testscore list’s Average method to get the average of the test scores.) The result of
the query is a List<strings instead of a List<Students>.

The program next uses the following code to list the students who have averages of at least 60, giv-
ing them passing grades:

// Select passing students ordered by name.
var passingStudents =

www.it-ebooks.info

http://www.it-ebooks.info/

506

| LESSON 36 LINQTO OBJECTS

from Student student in students

orderby student.LastName, student.FirstName

where student.TestScores.Average() >= 60

select student.FirstName + " " + student.LastName;
passinglListBox.DataSource = passingStudents.ToArray () ;

This code again selects a string instead of a Customer object. The code that selects failing students
is similar, so it isn’t shown here.

The program uses the following code to select students with averages below the class average:

// Select all scores and compute a class average.
var allAverages =

from Student student in students

select student.TestScores.Average () ;
double classAverage = allAverages.Average () ;

// Display the average.
this.Text = "FindStudents: Class Average = " +
classAverage.ToString ("0.00") ;

// Select students with average below the class average ordered by average.
var belowAverageStudents =
from Student student in students
orderby student.TestScores.Average ()
where student.TestScores.Average() < classAverage
select new {Name = student.FirstName + " " + student.LastName,
Average = student.TestScores.Average () };

foreach (var info in belowAverageStudents)
belowAverageListBox.Items.Add (info.Name + "\t" + info.Average) ;

This snippet starts by selecting all of the students’ test score averages. This returns a List<doubles>.
The program calls that list’s Average function to get the class average.

Next the code queries the student data again, this time selecting students with averages below the
class average.

This query demonstrates a new kind of select clause that creates a list of objects. The new objects
have two properties, Name and Average, that are given values by the select clause. The data type
of these new objects is created automatically and isn’t given an explicit name so this is known as an
anonymous type.

After creating the query, the code loops through its results, using each object’s Name and Average
property to display the below average students in a ListBox. Notice that the code gives the looping
variable info the implicit data type var so it doesn’t need to figure out what data type it really has.

www.it-ebooks.info

http://www.it-ebooks.info/

Try It | 507

NOTE Objects with anonymous data types actually have a true data type, just
not one that you want to have to figure out. For example, you can add the fol-
lowing statement inside the previous code’s foreach loop to see what data type
the objects actually have:

Console.WriteLine (info.GetType () .ToString()) ;

If you look in the Output window, you’ll see that these objects have the ungainly
data type:

<>f AnonymousType0 2 [System.String, System.Double]

Although you can sort of see what’s going on here (the object contains a string
and a double), you probably wouldn’t want to type this mess into your code
even if you could. In this case, the var type is a lot easier to read.

LINQ provides plenty of other features that won’t fit in this lesson. It lets you:

> Group results to produce lists that contain other lists
Take only a certain number of results or take results while a certain condition is true
Skip a certain number of results or skip results while a certain condition is true

Join results selected from multiple data sources

Y VYV Y Y

Use aggregate functions such as Average (which you’ve already seen), count, Min, Max, and Sum

Microsoft’s “Language-Integrated Query (LINQ)” page at msdn.microsoft.com/library/
bb397926.aspx provides a good starting point for learning more about LINQ.

TRY IT

In Lesson 29’s Try It, you built a program that used the DirectoryInfo class’s GetFiles method to
search for files matching a pattern and containing a target string. For example, the program could
search the directory hierarchy starting at C:\C#Projects to find files with the .cs extension and
containing the string “Directorylnfo.”

www.it-ebooks.info

http://www.it-ebooks.info/

508 | LESSON 36 LINQTO OBJECTS

In this Try It, you modify that program to perform the same search with LINQ. Instead of writing
code to loop through the files returned by GetFiles and examining each, you make LINQ examine
the files for you.

Lesson Requirements
In this lesson, you:

> Copy the program you built for Lesson 29°s Try It (or download Lesson 29’s version from
the book’s website) and modify the code to use LINQ to search for files.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox.com/go/csharp24hourtrainer2e.

Hints

> Use the DirectoryInfo object’s GetFiles method in the query’s from clause.

> In the query’s where clause, use the File class’s ReadAal1Text method to get the file’s con-
tents. Convert it to lowercase and use Contains to see if the file holds the target string.

Step-by-Step

> Copy the program you built for Lesson 29’s Try It (or download Lesson 29’s version from
the book’s website) and modify the code to use LINQ to search for files.

1. Copying the program is reasonably straightforward.

2. To use LINQ to search for files, modify the Search button’s c1ick event handler so it
looks like the following. The lines in bold show the modified code:

// Search for files matching the pattern
// and containing the target string.
private void searchButton Click(object sender, EventArgs e)
{
// Get the file pattern and target string.
string pattern = patternComboBox.Text;
string target = targetTextBox.Text.ToLower () ;

// Search for the files.

DirectoryInfo dirinfo =
new DirectoryInfo(directoryTextBox.Text) ;

var fileQuery =
from FileInfo fileinfo

in dirinfo.GetFiles (pattern,
SearchOption.AllDirectories)
where
File.ReadAllText (fileinfo.FullName) .ToLower () .Contains (target)

select fileinfo.FullName;

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Exercises | 509

// Display the result.
fileListBox.DataSource = fileQuery.ToArray();

}

If you compare this code to the version used by the Try It in Lesson 29, you’ll see that this
version is much shorter.

EXERCISES

1. Build a program that lists the names of the files in a directory together with their sizes,
ordered with the biggest files first.

2. Copy the program you built for Exercise 1 and modify it so it searches for files in the direc-
tory hierarchy starting at the specified directory.

3. Make a program that lists the perfect squares between 0 and 999. (Hint: Use the Enumerable
class’s Range method to initialize the source data.)

For Exercises 4 through 8 download the Customer Orders program. This program defines the fol-
lowing classes:

class Person

{
}

class OrderItem

{

public string Name { get; set; }

public string Description { get; set; }
public int Quantity { get; set; }
public decimal UnitPrice { get; set; }

}

class Order

{

public int OrderId { get; set; }
public Person Customer { get; set; }
public List<OrderItem> OrderItems { get; set; }

}

The program’s Form Load event handler creates an array of order objects. The program’s buttons,
which are shown in Figure 36-3, let the user display the data in various ways although initially they
don’t contain any code. In Exercises 4 through 8, you add that code to give the program its features.

agl Customer Orders = | = -

Al Orders
Order By Cost

| Customer: | | v |

| Greater Than || 9.99|

FIGURE 36-3

www.it-ebooks.info

http://www.it-ebooks.info/

510 |

LESSON 36 LINQ TO OBJECTS

The Customer Orders program creates several order objects, but it doesn’t fill in those
objects’ Totalcost properties. Use LINQ to do that. (Hints: Use a foreach loop to
loop through the objects. For each object, use a LINQ query to go through the order’s
OorderItems list and select each OrderItem’s UnitPrice times its Quantity. After you
define the query, call its sum function to get the total cost for the order.)

Copy the program you built for Exercise 4 and add code behind the All Orders button.
That code should use a LINQ query to select the orders’ ID, customer name, and total costs.
Display the results in the resultListBox by setting that control’s Datasource property to
the query.

Copy the program you built for Exercise 5 and add code behind the Order By Cost button.
That code should use a query similar to the one used by Exercise 5, but it should order the
results by cost so the orders with the largest costs are listed first.

Copy the program you built for Exercise 6 and add code behind the Customer button. That
code should use a LINQ query to list orders placed by the customer selected in the ComboBox.
(If no name is selected, don’t do anything.)

Copy the program you built for Exercise 7 and add code behind the Greater Than button.
That code should use a LINQ query to list orders with total costs greater than the value
entered in the TextBox.

NOTE Please select the videos for Lesson 36 online at www .wrox .com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

37

LINQ to SQL

Lesson 36 provided an introduction to LINQ to Objects. This lesson gives a brief introduction
to another of the LINQ family of technologies: LINQ to SQL.

LINQ to SQL lets you use queries similar to those provided by LINQ to Objects to manipulate
SQL Server databases. It uses a set of classes to represent database objects such as tables and
records. The classes provide intuitive methods for adding, modifying, deleting, and otherwise
manipulating the records.

In this lesson you learn the basics of LINQ to SQL. You learn how to make LINQ objects
representing a SQL Server database and how to add records to the database. You also learn
how to perform queries similar to those described in Lesson 36 to filter and sort data taken
from the database.

Note that the programs and techniques described in this lesson demonstrate only very simple
uses of LINQ to SQL. For more information, search the web. Microsoft’s “LINQ to SQL”
page at msdn.microsoft.com/library/bb386976.aspx provides a good starting point for
learning more about LINQ to SQL.

CONNECTING TO THE DATABASE

The first step in creating a LINQ to SQL program is connecting to the database. Create a
Windows Forms application as usual. Then open the Server Explorer shown in Figure 37-1.
(Use the View menu’s Server Explorer command if you can’t find it.)

www.it-ebooks.info

http://www.it-ebooks.info/

512 | LESSON 37 LINQTO SQL

¢

F

Server Explorer A x
%= il
b =E Azure

4 Eﬁ Data Connections

4 B quarkbeast\sglexpress.CustomerDatabase.dbo

Fl

ervers
@9 SharePoint Connections

Tables

= Customers
= FirstName
™ LastName
B Balance
B DueDate

Views

Stored Procedures

Functions

Synonyms

Types

Assemblies

FIGURE 37-1

NOTE To run most of the programs described in this lesson, you need to have
SOL Server installed on your computer. The Visual Studio installation software
comes with SQL Server (at least the versions I've seen) or you can download the
free SOL Server Express edition at www.microsoft .com/express/Database. It’s
a fairly busy page so the download link can be difficult to see. You can find it by
searching for “Express.”

NOTE Unfortunately there isn’t room in this book to say too much about SQL
Server and how to use it. You’ll have to rely on the web or get a book about SQL
Server to do much with it.

To make using the examples described in this lesson a bit easier, this lesson’s down-
load includes a program named Build Customer Database. This program connects
to your SOL Server instance, deletes the database named CustomerDatabase if it
exists, and creates a new CustomerDatabase containing a few records for the exam-
ples described in this lesson to use.

Obviously don’t run this program if you already have a database named
CustomerDatabase that you want to preserve because that database will be
destroyed!

www.it-ebooks.info

http://www.microsoft.com/express/Database
http://www.it-ebooks.info/

Connecting to the Database | 513

Click the Connect to Database button (third from the left at the top in Figure 37-1) to display the
Add Connection dialog shown in Figure 37-2.

Data source:

Add Connection

Enter information to connect to the selected data source or click
"Change" te choose a different data source and/or provider.

B

|M|cro;oﬂ Access Database File (OLE DB)

|| Change... |

Database file name:

|| Browse... |

Log on to the database

User name: |Admin

Password: |

[]5ave my password

Cancel

FIGURE 37-2

Initially the Add Connection dialog may have some type of database other than SQL Server selected.
The dialog shown in Figure 37-2 is ready to connect to a Microsoft Access database. To switch to
SQL Server, click the Change button to display the dialog shown in Figure 37-3.

Data source:

Change Data Source

Microsoft Access Database File
Microsoft ODBC Data Source
Microsoft 5QL Server Database File
Oracle Database

<others

Data provider:

|.NET Framework Data Provider for SQL £ v|

[] Always use this selection

B

Description

Use this selection to connect to
Microsoft SOL Server 2005 or above, or
to Microsoft SOL Azure using the NET
Framework Data Provider for SGL
Server.

| OK | | Cancel

FIGURE 37-3

Select the Microsoft SQL Server entry and click OK. When you return to the Add Connection
dialog, it should look like Figure 37-4.

www.it-ebooks.info

http://www.it-ebooks.info/

514 | LESSON 37 LINQTO SQL

Add Connection _

Enter information to connect to the selected data source or click "Change” to
choose a different data source and/or provider,

Data source:

|M\croscn‘t SQOL Server (SqlClient) ‘ ‘ Change... |
Senver name;

|QUARKBEAST\SQLEXPRESS v ‘ ‘ Refresh |

Log on to the server

®) Use Windows Authentication
() Use SOL Server Authentication

User narme:

Passwaord:

Save my password

Connect to a database

(®) Select or enter 3 database name:

CustomerDatabase v

O Attach a database file:

Browse...

Logical narme:

o [o]

FIGURE 37-4

Enter your server name in the indicated textbox. If you’re running SQL Server Express Edition,
follow the server’s name with \SQLEXPRESS, as shown in the figure. For example, my computer
is named Quarkbeast and I’'m running SQL Server Express Edition so I entered QUARKBEAST\
SQLEXPRESS in Figure 37-4.

Enter the name of the database on the server (I entered CustomerDatabase in Figure 37-4) and
click OK.

NOTE In the dialog shown in Figure 37-4, if you enter the name of a data-

base that doesn’t exist on the server, Visual Studio tells you that the database
doesn’t exist and asks if you want to create it. If you click Yes, you can use the
Server Explorer to build the database. The Server Explorer doesn’t provide as
many features as a database management tool such as SQL Server Management
Studio, but it’s handy if you don’t have easy access to those tools.

www.it-ebooks.info

http://www.it-ebooks.info/

Making LINQ to SQL Classes | 515

If you go back to Figure 37-1, you can see the Server Explorer with the quarkbeast\sqlexpress
server’s CustomerDatabase expanded to show its single table, Customers, and its columns.

NOTE You can use similar steps to connect to other kinds of databases such as
Oracle, MySQL, or Microsoft Access databases. Only the details needed to con-
nect to the database in the Add Connection dialog are different. For example,
Figure 37-2 shows the details needed for a Microsoft Access database, and Figure
37-4 shows the details needed for a SOL Server database.

Note that LINQ to SQL is intended to work with SOL Server and making it
work with other types of databases takes some extra work. The section “Using
LINQ to SOL with Access™ later in this lesson explains how to use LINQ to
SOL classes with Access databases, but there’s no guarantee that the same tech-
niques will work with every kind of database or that those techniques will keep
working in later versions of Visual Studio.

MAKING LINQ TO SQL CLASSES

After you make a database connection, you’re ready to build LINQ to SQL classes that you can use
to manipulate the database.

Open the Project menu and select Add New Item. In the Add New Item dialog, select the

LINQ to SQL Classes template. If you have trouble finding it, you can narrow your search by
looking in the Data template category on the left. Enter a descriptive name for the new file such as
CustomerClasses and click Add.

At this point Visual Studio creates a .dbml file to manage the new LINQ to SQL classes. It opens

that file in the Object Relational Designer shown in Figure 37-5, although initially the designer is
blank.

In Server Explorer, expand your database until you find its tables and drag the tables that you want
to manage onto the designer surface. In Figure 37-5, I dragged the Customers table onto the surface
so the designer created a class to represent the table. Each instance of the class will represent a row
in the table.

The designer represents the table’s fields as properties. If you look closely at Figure 37-5, you can see
that the table’s primary key fields FirstName and LastName have little key symbols on the left.

If you click a field in the designer, the Properties window shows the field’s properties. Figure 37-6
shows the properties for the table’s FirstName field.

www.it-ebooks.info

http://www.it-ebooks.info/

516

LESSON 37 LINQTO SQL

Dd WindowsFormsApplication1 - Microsoft Visu... Y3 & |QuickLlaunch (Ctri+Q) P o O x
File Edit View Project Build Debug Team Tools Architecture Test Analyze ! Rod Stephens ~

Window Help
fe-oB-2m

- | Debug ~ AnyCPU ~ B Start~ | BU_
| | &

(VIR
I =m Azure -
4 ¥ Data Connections

] Customer

y|dig uo

S

4 B quarkbeast\sglexpres a8 Properties l
4 Ebles % & FirstName] Create methods by @

4 = Customers A LastName dragging items from E—‘

o FirstName & Balance Server Explorer onto this "_i

w0 LastName & DucDate design surface, E

B Balance
B DueDate
Views

se|0

Stored Procedure:

Functions
Synonyms Error List MR
Types

Assemblies 17 '| €3 0Errors ‘ ! 0'Warnings | @ 0 Messages || Search Error List

v v v T v v

1 Code Description « Project File
Server Exp... JIEICESTITAN Task List Immediate Window JaildRiz8 Output

Toolbox

FIGURE 37-5

Properties * 0 X
FirstName Member Property -
AT

Access Public

Auto Generated Val False

Auto-Sync Mever
Delay Loaded False
Inheritance Modifie (Mone)

[lame [

Mullable False

Primary Key True

Read Only False

Server Data Type VarChar{50) NOT NULL
Source FirstName

Time Stamp False

Type string (System.String)

Update Check Always

FIGURE 37-6

A few important properties include:

> Name—The name of the field in the class

> Nullable—Indicates whether the field can hold nul1 values
> gerver Data Type—The data type of the field in the database
>

Source—The name of the field in the database

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Code | 517

If you make changes and save them, Visual Studio automatically generates a
CustomerClassesDataContext class to represent the database. (CustomerClasses is the name I
gave the new LINQ to SQL file.) This object has a customers property that represents the data-
base’s Customers table.

Visual Studio also creates a customer class to represent the records in the table.

You can look at these classes (although don’t modify them) in the file customerclasses.designer
.cs by double-clicking the customerclassesDataContext entry in Solution Explorer.

NOTE Note that this is an extremely simple example. Most real databases con-
tain multiple tables. In that case, you can use the entity-relationship designer to
model the relationships between the tables.

To add a relationship, right-click the designer’s surface, open the Add menu, and
select Association. Select the parent and child classes from the dropdown lists
and then select the fields that match up in the two classes.

For example, an Orders table might hold an order1d field that you can use to
find corresponding orderItems records that make up the order. In that case,
the parent class would be orders, the child class would be orderItens, and the
fields that match up would be the order1d fields in both classes.

After you build the association, the designer displays an arrow to represent the
one-to-many relationship between the two classes (one order may hold many
OrderItems).

WRITING CODE o Make Customer Data I;Ii-
Now that you’ve built the LINQ to SQL classes, you can use Firt Name: [Fod |
them to manipulate the database. For example, the Make Last Name: [Stephens |
Customer Data example program shown in Figure 37-7 (and Balance: [$100.00 |
available as part of this lesson’s code download) uses LINQ to Due Dats: [4/1/2020 |
SQL classes to add new records to a database.

The following code shows how the Make Customer Data exam-
ple program adds a new record to the database:

FIGURE 37-7

// Add a new Customers record.
private void addButton Click (object sender, EventArgs e)
{
// Get the database.
using (CustomerClassesDataContext db =
new CustomerClassesDataContext ())
{

// Make a new Customer object.
Customer cust = new Customer() ;

www.it-ebooks.info

http://www.it-ebooks.info/

518 | LESSON 37 LINQTO SQL

cust.FirstName = firstNameTextBox.Text;
cust.LastName = lastNameTextBox.Text;

cust.Balance = decimal.Parse (balanceTextBox.Text) ;
cust.DueDate = DateTime.Parse (dueDateTextBox.Text) ;

// Add it to the table.
db.Customers.InsertOnSubmit (cust) ;

// Submit the changes.
db.SubmitChanges () ;

}

// Prepare to add the next customer.
firstNameTextBox.Clear () ;
lastNameTextBox.Clear () ;
balanceTextBox.Clear () ;
dueDateTextBox.Clear () ;
firstNameTextBox.Focus () ;

The code starts with what is probably its least obvious step: creating a new instance of the
CustomerClassesDataContext. This object represents the database and provides access to its
tables. It provides a Dispose method so the program creates it in a using block to call pispose
automatically.

Next the code creates a new Customer object to represent a new row in the Customers table. The
code initializes this object’s properties.

The program then calls the Customers table’s Insertonsubmit method, passing it the new
customer object. The following statement calls the database object’s SubmitChanges method to
send any pending changes (in this case, the new customer) to the database.

The code finishes by clearing its TextBoxes so the form is ready for you to enter another
customer’s data.

USING LINQ QUERIES

The Make Customer Data program described in the previous section uses LINQ to SQL classes to
manage the database but it doesn’t actually use LINQ queries.

You can use LINQ queries with these classes much as you can use them with lists, arrays, and
classes that you build yourself in code. For example, you can use a query to select particular records
from a table.

The following code shows how the Find Customers program described in Lesson 36 displayed
customers with negative account balances:

// Display customers with negative balances.
var negativeQuery =

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Nullable Fields | 519

from Customer cust in customers
where cust.Balance < 0
//orderby cust.Balance ascending, cust.FirstName
select cust;
negativelListBox.DataSource = negativeQuery.ToArray () ;

The following code shows how the Find Customers program available in this lesson displays the
same customers from the Customers table:

// Display customers with negative balances.
var negativeQuery =
from Customer cust in db.Customers
where cust.Balance < 0
//orderby cust.Balance ascending, cust.FirstName
select String.Format ("{0} {1}\t{2:Cc}\t{3:d}",
cust.FirstName, cust.LastName,
cust.Balance, cust.DueDate) ;
negativeListBox.DataSource = negativeQuery.ToArray () ;

These two queries differ in two ways. First, the second query ranges over items in the db.Customers
LINQ to SQL object instead of a customers array created by the program’s code.

The second difference is that the new version’s select clause doesn’t select Customer objects.
Instead it concatenates certain fields taken from those objects. I made this change because the
Customer class generated by LINQ to SQL doesn’t override its Tostring method to display a nice
representation of the object as the earlier version of the class did in Lesson 36. The new version
builds strings that the ListBox can display directly.

UNDERSTANDING NULLABLE FIELDS

Although LINQ to Objects and LINQ to SQL queries work mostly in the same way, some important
differences exist behind the scenes.

One difference that you are likely to run into immediately is that values provided by LINQ to SQL
classes are often nullable. A nullable type is a data type that can hold the special value nu11 in addi-
tion to whatever other values it normally holds. The value null represents “no value.”

For example, a nullable int can hold an integer or it can hold the special value nu11, which means it
doesn’t contain any real integer value.

NOTE Ounly value types (such as structures, enumerated types, ints, and
doubles) can be nullable because reference types can already hold the value
null. The only surprising case is string, which looks a lot like a value type but
is really a reference type.

www.it-ebooks.info

http://www.it-ebooks.info/

520 | LESSON 37 LINQTO SQL

NOTE You can declare your own nullable variables by following their data
types with a question mark. For example, the following code declares a nullable
integer variable named numCourses and assigns it the initial value null:

int? numCourses = null;

Databases often have fields that are allowed to have no value and the LINQ to SQL classes represent
them as nullable properties. In the database’s Customers table, the Balance and DuebDate fields are
not required so the customer LINQ to SQL class makes its Balance and DueDate fields nullable.
That means when the program’s C# code looks at those fields, they may not contain any value.

To decide whether a field contains a value, you can compare it to null or use its HasValue property.
Once you know that the value exists, you can use its value property to get the value.

For example, the following code checks whether a customer’s Balance field is null and, if the value
exists, displays it:

if (cust.Balance != null)

// There is a Balance. Display it.
MessageBox.Show ("Balance: " + cust.Balance.Value.ToString());

UNDERSTANDING QUERY EXECUTION

Although LINQ to SQL looks a lot like LINQ to Objects in your C# code, behind the scenes there is
a huge difference in the way the two kinds of queries are executed.

The C# compiler converts a LINQ to Objects query into a series of method calls to do all of the
work. The code does nothing that you couldn’t do yourself in C# code, so it works more or less the
way you would expect C# code to work.

In contrast, the compiler converts a LINQ to SQL query into code that can execute within the data-
base. Instead of executing code within your program, it sends commands to the database to make it
do all of the work. With a bit of effort, you could come up with similar database commands yourself
and make your program execute them on the database, but LINQ to SQL does that for you.

Why should LINQ to SQL handle this differently?

Suppose you want to find a customer with a particular name in a customers array that holds
100,000 objects. LINQ to Objects can zip through the array fairly quickly and find the right cus-
tomer with little problem.

Now suppose you want to find the same customer in a database containing 100,000 records. To
perform that search in C# code, the program would need to fetch 100,000 records from the data-
base. Moving that much data from the database into the program would take quite a bit of time

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Query Execution | 521

and memory. In contrast, the database itself has great tools for finding specific records, particularly
if the table uses the Name field as an index. In that case, the database may need to perform only a
few disk accesses to search through its index structure for the right customer, a much more efficient
operation than moving 100,000 records into the program and then searching them sequentially.

For many reasonably simple queries, the translation from LINQ query syntax into something the
database can understand works and there’s no problem. Sometimes, however, your query code
doesn’t translate easily into database-speak and the database can’t execute it.

For example, the following code shows how the Find Customer program described in Lesson 36 dis-
played customers who owe more than $50 and who are more than 30 days overdue. (In this code the
variable today holds the current date and is used to simplify the code.)

// Display customers who owe at least $50
// and are overdue at least 30 days.
var overdueQuery =
from Customer cust in customers
where (cust.Balance <= -50) &&
(today.Subtract (cust.DueDate) .TotalDays > 30)
select cust;
overdueListBox.DataSource = overdueQuery.ToList<Customers> () ;

Unfortunately, SQL Server doesn’t have a function that subtracts one date from another, so this
query doesn’t translate perfectly into database commands and at run time the program throws the
following exception:

Method 'System.TimeSpan Subtract (System.DateTime)' has no supported
translation to SQL.

One solution is to rewrite the query in terms that the database can understand. The following code
shows a query that LINQ to SQL can translate successfully:

// Display customers who owe at least $50
// and are overdue at least 30 days.
var overdueQuery =
from Customer cust in db.Customers
where (cust.Balance == null || cust.Balance.Value < -50) &&
(cust.DueDate == null || today > cust.DueDate.Value.AddDays (30))
//orderby cust.Balance ascending, cust.FirstName
select String.Format ("{0} {1}\t{2:Cc}\t{3:d4}",
cust.FirstName, cust.LastName,
cust.Balance, cust.DueDate) ;
overdueListBox.DataSource = overdueQuery.ToArray () ;

Although the translation to database code doesn’t know how to subtract dates, it does know how to
add days to a date so this query uses that capability. It selects records where the customer:

> Has no balance or has a balance less than $50, and

> Has no due date or today’s date is greater than the due date plus 30 days

www.it-ebooks.info

http://www.it-ebooks.info/

522 | LESSON 37 LINQTO SQL

USING LINQ TO SQL WITH ACCESS

LINQ to SQL is intended to let you use objects to manage SQL Server databases, but with a little

extra work you can also use it to manage other kinds of databases.

allow you to use fairly intuitive objects to manipulate the data.

without installing anything else.

NOTE Why would you want to use LINQ to SOL to manage other kinds of
databases? One reason is that the LINQ to SQL classes are convenient. They

Another reason for using LINQ to SOL classes with other databases is that it
lets me give you examples in Microsoft Access databases. Though SOL Server
is generally more powerful, you cannot use it without installing SOL Server (at
least the Express Edition). The .NET Framework includes all of the classes you
need to interact with an Access database so you can connect to one and use it

To get started, create a normal Windows Forms project, open the Project
menu, and select Add New Item. Select the LINQ to SQL Classes template
as before, give the file a good name, and click Add.

If you were working with SQL Server, you would then drag tables from the
Server Explorer onto the design surface to define the classes. Visual Studio
won’t let you drag tables from other kinds of databases onto the entity-
relationship designer, but you can build the classes manually.

Click the Toolbox link on the Object Relational Designer to open the

Toolbox shown in Figure 37-8 and use the tools it holds to build the classes.

To get the model to work, you need to set a few properties correctly. For a

table class, set the Source property to the name of the table in the database.

Toolbox A X
Search Toolbox P~
4 Object Relational Designer

*L Association

%3 Class

A Inheritance

4 General

There are no usable controls in
this greup. Drag an item onto
this text to add it to the toolbox.

FIGURE 37-8

For example, if you want to represent the Customers table’s records with customer objects, then

create a Customer class and set its Source property to Customers.

After you create a class, right-click it and select Add = Property to give the class properties. For

each property, set:
> primary Key—True if the field is part of the table’s primary key

> Nullable—True if the database field allows nulls

> gerver Data Type—The field’s data type in the database (for example, VARCHAR (50) NOT

NULL)

> gource—The name of the field in the database (probably the same as the property’s name in

the class)

> Type—The property’s type in the class (for example, string)

www.it-ebooks.info

http://www.it-ebooks.info/

Using LINQ to SQL with Access | 523

After you build the model, Visual Studio generates the classes you need. Now you just need to add
code to use them.

If you are using a Microsoft Access database, start by adding the following using directive at the
top of the file:

using System.Data.OleDb;

The connection object that you need to open the database is defined in this namespace. (For other
kinds of databases, you may need to use different database objects in other namespaces.)

Next build a database connection. The Ling To Access example program that is available in this
lesson’s download uses the following code to build its connection:

// Get the database's location.
string filename = Path.GetFullPath(
Application.StartupPath + @"\..\..\CustomerData.mdb") ;

// Connect to the database.

using (OleDbConnection conn = new OleDbConnection (
"Provider=Microsoft.Jet .OLEDB.4.0;" +
"Data Source=" + filename))

This program assumes the CustomerData.mdb database is located two directory levels above where
the program is executing. This is true if the program is running from its bin\Debug directory and
the database is stored with the code.

The program gets the location of the database file. It creates a new 0leDbConnection object, pass-
ing its constructor a connect string that includes the location of the database file. (Connect strings
for different kinds of databases hold different fields. If you’re using some other kind of database,
you’ll need to build an appropriate connect string.)

Having connected to the database, the program should create an instance of the LINQ to SQL data-
base class, passing its constructor the database connection. The Ling To Access example program
uses the following code:

// Get the database.
using (CustomerClassesDataContext db =
new CustomerClassesDataContext (conn))

From this point on, the code is the same as it is for working with SQL Server. The only complication
is that not all databases are created equal. Different databases may provide different features and
the automatically generated database code may not work properly for all databases.

The Ling To Access example program executes the same queries as the Find Customers example and
has no trouble until the final query, which adds 30 days to the customer’s due date. Access cannot
understand the automatically generated code for that query and throws an exception.

www.it-ebooks.info

http://www.it-ebooks.info/

524 | LESSON 37 LINQTO SQL

In this case, you can fix the query by subtracting 30 days from the current date and seeing if the
result is after the customer’s due date, as shown in the following code:

DateTime todayMinus30 = today.Subtract (new TimeSpan (30, 0, 0, 0));
var overdueQuery =
from Customer cust in db.Customers
where (cust.Balance == null || cust.Balance.Value < -50) &&
(cust.DueDate == null || todayMinus30 > cust.DueDate.Value)
//orderby cust.Balance ascending, cust.FirstName
select String.Format ("{0} {1}\t{2:C}\t{3:d}",
cust.FirstName, cust.LastName,
cust.Balance, cust.DueDate) ;
overdueListBox.DataSource = overdueQuery.ToArray () ;

TRY IT

In this Try It, you extend the Find Customers program to find customers that are missing data. You
add a new ListBox to display customers that are missing first name, last name, balance, or due date
values.

Lesson Requirements
In this lesson, you:

> Copy the Find Customers program available in this lesson’s download. Add a new ListBox
to hold customers with missing data.

> Use a LINQ to SQL query to display customers that have missing values.

NOTE You can download the code and resources for this lesson from the web-
site at www.wrox .com/go/csharp24hourtrainer2e.

Hints

> Remember that a blank string (a string with no characters) is not the same as a null value.
You don’t need to check the FirstName and LastName fields for nul1l values, but you should
check them for blank values.

Step-by-Step

> Copy the Find Customers program available in this lesson’s download. Add a new ListBox
to hold customers with missing data.

1. This is straightforward.

> Use a LINQ to SQL query to display customers that have missing values.

www.it-ebooks.info

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.it-ebooks.info/

Exercises | 525

1. You can use code similar to the following:

// List customers with missing data.
var missingDataQuery =
from Customer cust in db.Customers
where (cust.FirstName == "" ||
cust.LastName == "" ||
cust.Balance == null ||
cust.DueDate == null)
select String.Format ("{0} {1}\t{2:C}\t{3:d}",
cust.FirstName, cust.LastName,
cust.Balance, cust.DueDate) ;
missingDatalListBox.DataSource = missingDataQuery.ToArray () ;

EXERCISES

For these exercises, use the customer database built by the Build Customer Database program. (If
you don’t want to install SQL Server, you can use the Access database CustomerData.mdb included
in the Linq To Access example program in this lesson’s download.)

1. Build the user interface shown in Figure 37-9. Make the First and Last Name TextBoxes
read-only. (Don’t worry about the data yet. Just build the user interface.)

a! Maintain Customer Data I;‘i-

T —

FIGURE 37-9

2. Copy the program you built for Exercise 1 and make it display the list of customers.
To do that:

a. Add LINQ to SQL classes to the program.

b. Override the customer class’s Tostring method so it displays the customer’s name.
Instead of modifying the automatically generated customer class, however, add a new
class named customer. Modify the class definition as follows:

// Add a ToString override to Customer.
public partial class Customer

{

public override string ToString()

{
}

return FirstName + " " + LastName;

www.it-ebooks.info

http://www.it-ebooks.info/

526 |

LESSON 37 LINQTO SQL

The partial keyword indicates that this class is part of a class that may have
pieces elsewhere. In this case, it means the Tostring method should be added to the
Customer class built by LINQ to SQL so you don’t need to modify the automati-
cally generated code.

C. Declare a field named pb with your Datacontext class’s type.

d. Write a LoadData method that queries the database and sets the ListBox’s
DataSource property to the result.

€. In the form’s Load event handler, initialize the Db variable and call LoadData.

Copy the program you built for Exercise 2 and make it display the currently selected
customer’s properties. To do that:

a. Write a ShowSelectedCustomer method. It should get the ListBox’s SelectedItem
property as a Customer object. It should then display the object’s properties in the
TextBoxes.

b. IntheristBox’s SelectedIndexChanged event handler, call ShowSelectedCustomer.

Copy the program you built for Exercise 3 and make it update the customer objects when
the user modifies the balance or due date. To do that, give the TextBoxes TextChanged event
handlers. They should get the current customer object, parse the value in the TextBox, and
save the value in the customer object. Use a try catch statement to protect against invalid
data and, if a value is invalid, store nul1 in the object.

Copy the program you built for Exercise 4 and finish it by making the Save and Cancel
buttons work. To do that:

a. Make the Save button call Db. SubmitChanges. That saves any changes pending in the
DataContext back to the SQL Server database.

b. Make the Cancel button execute the following statement to cancel any changes pending
in the Datacontext:

Db.Refresh(System.Data.Ling.RefreshMode.OverwriteCurrentValues,
customerListBox.Items) ;

Then make the button’s event handler call showselectedcustomer to redisplay the cur-
rently selected customer.

NOTE Please select the videos for Lesson 37 online at www . wrox.com/go/
csharp24hourtrainer2evideos.

www.it-ebooks.info

http://www.wrox.com/go
http://www.it-ebooks.info/

AFTERWORD

What's Next?

This book provides an introduction to C# but it’s far from all-inclusive. This book is intended
for beginners and many topics are too advanced to fit in here because they are hard to under-
stand (so would take too long to explain), require knowledge of matters outside the scope of
this book (such as how the operating system works), or are just too specialized to be interest-
ing to everyone (or in some cases, anyone).

Hopefully you followed along through all of the lessons, worked through the Try Its and exer-
cises, and feel comfortable with the material presented in this book. In that case, you’re ready
to move on to more advanced general C# texts such as:

>

>

>

Professional C# 5.0 and .NET 4.5.1 (Christian Nagel and Jay Glynn, Wrox, 2014)
C# 5.0 Programmer’s Reference (Rod Stephens, Wrox, 2014)

MCSD Certification Toolkit (Exam 70-483): Programming in C# (Tiberiu Covaci
et al., Wrox, 2013)

You’re also ready to branch out into new uses for C#. Most of this book focuses on the C# lan-
guage itself and uses Windows Forms programs but some other important uses of C# include:

>

WPF—Many of the lessons introduced you to XAML and WPF programming, but
there’s a lot more to learn. Many books (including my book WPF Programmer’s
Reference, Stephens, Wrox, 2010) provide much more thorough coverage of WPF.

ASP.NET—ASP.NET is a web programming framework that lets you build pages,
sites, and applications that run on the web. C# (or Visual Basic) code can sit behind
the interface presented in the browser much as code-behind sits behind Windows
Forms and WPF user interfaces. For more information, see an ASP.NET book such
as Beginning ASP.NET 4.5.1 in C# and VB (Imar Spaanjaars, Wrox, 2014) or
Professional ASP.NET 4.5 in C# and VB (Jason N. Gaylord and Christian Wenz,
Wrox, 2013).

Finally, you’re ready to look at more specialized uses for C#:

www.it-ebooks.info

http://www.it-ebooks.info/

528

| AFTERWORD WHAT'S NEXT?

Console applications—These programs do not have window-based user interfaces. Instead
they display textual output in a console window. See msdn.microsoft .com/0wc2kk78

. aspx.

Class libraries—A class library holds compiled classes that you can use in other applications.
If several applications need to use the same kinds of classes (Customer, Employee, Order),
then it makes sense to let them share a common library.

Control libraries—A control library is a class library that holds new controls. You can build
your own controls that are composed of existing controls, that are derived from existing con-
trols, or that you build completely from scratch.

Office applications—You can build C# programs that interact with Microsoft Office applica-
tions such as Word or Excel.

Cryptography—The .NET Framework includes an extensive set of cryptographic tools for
encrypting, decrypting, and signing documents. See msdn.microsoft.com/92f9ye3s.aspx.

Parallel programming—The .NET Framework also includes classes that let you take advan-
tage of the multiple cores that are available on many new computers. See msdn .microsoft
.com/dd460717%28VS.100%29.aspx.

Game programming—Microsoft’s game development tools let you build games that run on
the desktop, in the browser, on mobile devices, and even on the Xbox game console. See

msdn.microsoft.com/games-development -msdn.

Database programming—A large majority of commercial applications have a significant
database component. For information on general database programming, see a book such as
Practical Database Programming with Visual C#.NET (Ying Bai, Wiley, 2010). For informa-
tion on designing databases, see a book such as Beginning Database Design Solutions (Rod
Stephens, Wrox, 2008).

Now that you’ve finished this book, you’re ready to move on to more complicated and interesting
topics. As you learn more about C# development, you’ll discover more and more fields of program-
ming that you never knew existed.

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

& (ampersand), for menu accelerator, 51, 75
& (AND) operator, 173
& & (conditional AND), 173, 174
&= (logical AND and assign) operator, 177
* (asterisk), for setting row and column size,
50
* (multiplication) operator, 172
*= (multiply and assign) operator, 177
+ (addition) operator, 172
+ (concatenation) operator, 174-176
++ (post-increment) operator, 172
++ (pre-increment) operator, 172
+= (add and assign) operator, 177
< > (angled brackets), for generic type
variables, 397-398
<> (not equal to) operator, for filters, 494
{} (braces)
for formatting field, 213
for if statement, 264
for initializing object properties, 347
for nested block, 202
/ (division) operator, 172
/= (divide and assign) operator, 177
// characters, for comments, 29
= (equals) operator
to assign value to variable, 164, 177
for filters, 494
== (equals) comparison operator, 175
> (greater than) operator, 175

for filters, 494
overloading, 374
>= (greater than or equal to) operator, 175
for filters, 494
>>= (right shift and assign) operator, 177
< (less than) operator, 175
for filters, 494
overloading, 374
<<= (left shift and assign) operator, 177
<= (less than or equal to) comparison operator,
175
<= (less than or equal to) operator, for filters,
494
% (modulus) operator, 172
%= (modulus and assign) operator, 177
- (negation) operator, 172
! (NOT) operator, 173, 174
!= (not equals) comparison operator, 175
| (OR) operator, 173
Il (OR) operator, 173, 174
|= (logical OR and assign) operator, 177
- - (post-decrement) operator, 172
- - (pre-decrement) operator, 172
“ (double quotes)
for literal string, 29
for strings, 166
; (semicolon), to end line of code, 28
- (subtraction) operator, 172
[1 (square brackets), for formatting field, 213

529

www.it-ebooks.info

http://www.it-ebooks.info/

-= - as keyword

-= (subtract and assign) operator, 177 Align left command, for RichTextBox control,

A (XOR) operator, 173 109

7= (logical XOR and assign) operator, 177 Align right command, for RichTextBox control,
109

Align submenu, 31
AllowPullOpen property, for colorDialog,

abstract keyword, 367 121
accelerators, for menu commands, 76 ampersand (&), for menu accelerator, 51, 75
AcceptButton property, of form, 147 AM/PM designator, 220
Access (Microsoft), 482 Anchor property, 27, 44-47, 52
LINQ to SQL with, 522-524 of controls, 152
accessibility AND (&) operator, 173
in different countries. See localizing programs angled brackets (< >), for generic type variables,
of field, scope and, 203-204 397-398
accessibility keyword, for methods, 292 anonymous data type, 506-507
accessor methods, 328 AppendAllText method, of File class, 414
Add Connection dialog, 513-514 app images
Addpays method, of DateTime type, 227 for Windows Phone apps, 459-461
AddExtension property, for OpenFileDialog, for Windows Store apps, 440-444
122 app styles
AddHours method, of DateTime type, 227 for Windows Phone apps, 458
addition (+) operator, 172 for Windows Store apps, 440
Add method ArgumentOutOfRangeException, 305
of DateTime type, 227 arithmetic operators, 171-173
for ListBox Items, 151 Arrange method, of arid, 428
of Lists class, 240 arranging, controls, 30-32
of sortedList class, 241 Array class, Sort, 237-238
AddMinutes method, of DateTime type, 227 ArrayMethods class, Randomize method, 402
AddMonths method, of DateTime type, 227 arrays, 233-238
Add New Data Source command, 479 creating, 234-235
Add New Item dialog, 133-134, 515 Fibonacci example, 235-236
address book, enumeration and structure for, multi-dimensional, 236-237
254-257 properties and methods, 237-238
Addseconds method, of DateTime type, 227 arrow keys, for moving controls, 31
Addyears method, of DateTime type, 227 ascending keyword, 504
Align centered command, for RichTextBox ASCII character, escape sequence
control, 109 for hexadecimal, 166
Align justified command, for RichTextBox for octal, 166
control, 109 as keyword, 145
530

www.it-ebooks.info

http://www.it-ebooks.info/

assembly language — Button control

assembly language, 5
assertions, 313, 316
assignment operators, 177
asterisk (*), for setting row and column size,
50
asynchronous method, 453
async keyword, 453
Attributes property
of DirectoryInfo class, 411
of FileInfo class, 413
Auto Hide window, 15
auto-implemented properties, 328
AutoSize property, 27
of controls, 45
of Label control, 36
of LinkLabel control, 52
AvailableFreeSpace property, of DriveInfo
class, 410
await keyword, 453

Babel Fish automatic translation tool, 467
BackColor property, 27, 52, 66

of controls, 29

setting for form, 127
Backcolor property, of TextBox control, 25
background color, of tile for app, 460
BackgroundImage property, 27
Background property, of Canvas control, 449
backing fields, 328-329
backslash, escape sequence, 166
backspace, escape sequence, 166
Ball sprite class, 449-450
BankAccount class, 336-339
bank account register, 247
bar chart, 39-40, 71-72
base keyword, 353
BeginPrint event, 422
bell, escape sequence, 166

binary operators, overloading, 372, 373
BinarySearch method, of Array class, 238
BindingContext, Find method, 493
BindingNavigator, 484-485
BindingSource object, 484
filtering records in, 494
bin subdirectory, 12, 19
bit, 162
bitwise operators, 175-176
Blank template
for Windows Phone apps, 458
for Windows Store apps, 440
block scope, 199, 202-203
Bold property, of font, 25
bookmark folder, 17
bool data type, 163
boolean values, calculations, 173-174
border, of Label control, 36
BorderStyle property, 27
for image, 157
braces ({ })
for formatting field, 213
for if statement, 264
for initializing object properties, 347
for nested block, 202
breakpoints, 188-189
in property accessors, 330
break statement, 281-282
Bring to Front command, 47
buffer, for data, 417
bugs, 187
preventing, 313-321
Build Customer Database program, 512
Bullet command, for RichTextBox control,
109
bullets, turning on and off, 113
Button control, 35
changing text, 154-155
Click event handler, code, 63

531

www.it-ebooks.info

http://www.it-ebooks.info/

buttons — Clear method

Click event handler, empty, 57
Image property of, 99
buttons
code for database, 491-492
enabling or disabling, 154
byte, 162
byte data type, 162, 166

C#
coordinates, 61
graphics programming in, 424
installing, 4-5
standard dialogs, 115-116
calculations, 170-179
operands and operators, 171
precedence, 177-179
calculator, for tips, 463
calling methods, 22
camel casing, 26
Cancel button
for dialogs, 119, 149, 153
for form, 36-37
CancelButton property, of form, 147
canvas container control (WPF), 49, 67
canvas control (Windows), 449
carriage return, escape sequence, 166
cascading if statements, 265-266
casting, 168, 171
cast operator, 375
catch statement, 303
Celsius, converting temperatures, 319
centered image, printing, 427-428
Center in Form submenu, 31
certification, of app by Windows, 445
Change Data Source dialog, 513

ChangeExtension method, of Path class, 415

532

char data type, 163
CheckBox control, for WPF, 69
CheckedChanged event, 64
checked keyword, 168
Checked property, for ToolStripMenuItem
control, 75
CheckFileExists property, for
OpenFileDialog, 122
CheckOnClick property, 87
for ToolStripMenuItem control,
75
CheckPathExists property, for
OpenFileDialog, 122
child class, 339
choices. See decision statements
Choose Data Source dialog,
481
classes, 323
basics, 325-326
benefits, 326
building, 327-330
collection, 238-243
generic, 239-240, 397-406
inheritance, 339-340
and instances, 134-135
for LINQ to SQL, 515-517
overloading methods, 361-362
vs. structure, 251-254
class scope, 199
cleanup, destructors for, 350-352
clearing, control contents, 112
Clear method
of Array class, 238
of Queue class, 242
of RichTextBox control, 106
of sortedList class, 241
of stack class, 243
of TextBox control, 22

www.it-ebooks.info

http://www.it-ebooks.info/

Click event — Contains method

Click event, 64
of Button controls, 28
of menu item, 76
Click event handler
empty, for button, 57
for ListView control button, 206-207
click sound, MediaElement to play, 448, 449
clock, 92
Close method
of RichTextBox control, 106
of streamWriter class, 417
closing
dialogs, 148-149
form, crash after, 143
Windows Phone apps, 458
code
automatically generated, 62
for Cancel button, 37
classes for reusing, 326
duplicate, 94-95
interfaces and generalization, 384
for LINQ to SQL, 517-518
methods for reusing, 289-300
nested blocks, and variable scope, 202-203
for OK button, 37
redundant, 145
repeating steps, 275-287
See also debugging code
Code Editor, 28
code snippets, 5
collection classes, 238-243
color, of font, 128
Color class, 29
FromArgb method, 65
Color data type, 29
ColorDialog, 118
AllowFullOpen property, 120, 127
properties, 121
Color property, for ColorbDialog, 121

color scheme, 6
color selection dialog, 155
columns, field widths to create, 214
combine method, of Path class, 415
ComboBox control, 35, 364

converting to enumeration value, 251

in menus, 74

SelectedIndex property, 246
commands

accessing, 89

Immediate window to execute, 192-193
comments, 29
Community version of Visual Studio, 4
comparison operators, 175

overloading, 372, 374
complex numbers, equations for calculating

with, 344

components, 22
Component Tray, 73
compound assignment operators, 178
compressing

project folder, 19-20

projects, 13
computer, program interaction with, 407
concatenating strings, 174-175
conditional operators, 173, 174
conditional statement, if statements, 264
conference schedule designer, 209-210
Configuration Manager command, 315
console class, Writeline method, 213-214
constants, 179, 196
const keyword, 179
constraints, generic, 399-400
constructors, 348-350, 355-356

invoking other, 352-354

ContainsKey method, of sortedList class, 241

Contains method
of sortedrist class, 241
of string class, 212

www.it-ebooks.info

533

http://www.it-ebooks.info/

ContainsValue method — custom dialogs

ContainsvValue method, of SortedList class,
241

ContextMenu property, of controls, 79
context menus

creating, 77-78, 82-83

in WPF application, 79
ContextMenuStrip control, 77, 81
ContextMenuStrip property, of TextBox

control, 83

Continue command (Debug menu), 190
continue statement, 281-282
controls

adding to form, 33-35

arranging, 30-32

arrow keys for moving, 31

attachment to container edge, 47

autoarrangement, 43-55

basics, 21-23

clearing contents, 112

creating, 23-24

default event, 28

dominant, 32

events, 22-23

events list for, 58

events raised by, 63-64

font sample in, 81

Margin property of, 50

methods of, 22

Modifiers property, 139-140

names of, 26, 35-36

private vs. public, 140

properties, 22, 24-30

selecting in Form Designer, 23

size of, 27

stacking order of, 47-48

for Windows forms, 48—49
conversion operators, overloading, 374-375
conversions of data types, 167-170
convert utility class, 169

534

Coordinated Universal Time (UTC), 219, 226
time zone offset from, 221
Copy As commands, 12
Copy command, for RichTextBox control, 109
copying
project folder, 19
projects, 12-13
copying and pasting
controls, 34
to create controls, 23-24
errors from, 195
menu structure, 83
Copy method
of Array class, 238
of File class, 414
of RichTextBox control, 106
CopyTo method, of FileInfo class, 412
country, locale for setting, 216
crash, closing form and, 143
CreateDirectory method, of Directory class,
412
Create method
of DirectoryInfo class, 411
of File class, 414
CreatePrompt property, for saveFileDialog,
122
CreateSubdirectory method, of
DirectoryInfo class, 411
CreationTime property
of DirectoryInfo class, 411
of FileInfo class, 413
culture values, 470
CurrencyManager, of BindingSource, 493
currency values, 170, 181, 183
format, 215
CurrentCulture property, 470
CurrentUICulture property, 470
custom dialogs, 147-157
making, 147-148

www.it-ebooks.info

http://www.it-ebooks.info/

Customer Orders program — decision statements

setting result, 148-149
using, 149-150
Customer Orders program, 509
Customize command, for toolbars, 14
cut method, of RichTextBox control, 106, 109

data adapter, 484
database connection
for LINQ to SQL, 511-515
string in configuration file, 482-483
database fields, Hasvalue property, 520
databases
adding relationship, 517
picking the right product, 482
programming, 479-498
DataContext property, 491
DataGridview control, 484-485
data sets, 481, 484
Data Source Configuration Wizard, 480
DataSource property, of ListBox control,
503-504
Data Sources window, 483
data types, 161-163
anonymous, 506-507
conversions, 167-170
for LINQ queries results, 500
of literal, 165
promotion of, 171
for properties, 29
for return by method, 292
for variables, 501
date formats
custom, 219-222
and localizing programs, 471
standard, 218-219
Date property, of DateTime type, 227

dates, 225-232
DateTime class, 219
DateTime data type, 225
creating variable, 225-226
properties and methods, 226-228
daylight savings, and time zone offset, 221
day of week, 220
DayofWeek property, of DateTime type,
227
DayOfYear property, of DateTime type,
228
Day property, of DateTime type, 227
Days property, of TimeSpan, 229
.dbm1 file, 515
debug build, switching between release build
and, 315
Debug class, Assert method, 314
debugging code, 187-198
breakpoints for, 188-189
deferred techniques, 187
Immediate window, 192-193
methods and, 290
reading variables, 189-190
stepping through code, 190-191
then and now, 188
watches for, 191-192
Debug menu
Break All command, 189
Stop Debugging command, 190, 457
decimal data type, 163-164, 165
decimal format, 215
decimal separator, 217
and localizing programs, 471
decision statements, 263
cascading if statements, 265-266
if-else statement, 265
if statements, 264
nested if statements, 266-267
switch statement, 267-269

www.it-ebooks.info

535

http://www.it-ebooks.info/

declaration — double quotes

declaration
of constants, 179
of interface properties, 389
of overloaded operator, 372
of public field, 205
of variable, 136, 138-139, 164-165
Decrease font size command, for RichTextBox
control, 109
decrement operator, 172
Decrypt method
of File class, 414
of FileInfo class, 412
DefaultExt property, for OpenFileDialog,
122
default statement, in switch statement,
267-269, 271
deferred execution, 499
delegate data type, 332-333
delegate keyword, 332
Delete command, for RichTextBox control, 109
Delete method
of Directory class, 412
of DirectoryInfo class, 411
of File class, 414
of FileInfo class, 412
Delete next word command, for RichTextBox
control, 109
Delete previous word command, for
RichTextBox control, 109
dependency properties, 448
deployment, for Windows Store apps, 444-446
Dequeue method, of Queue class, 242
descending keyword, 504
DeselectAll method, of RichTextBox control,
106
deselecting controls, 23
destructors, 350-352, 355-356

development environment, 5

536

DialogResult property, 148
of OK button, 308
dialogs
closing, 148-149
file filters in, 123-124
help for, 120
modal vs. modeless, 118
processing results, 119-120
properties for, 120-123
in WPF, 124-126
See also custom dialogs; standard dialogs
Dictionary class, 238-239, 242, 243-245
directories
for file open and file save dialogs, 118
for files, 416
Directory class, 412
DirectoryInfo class, 410-411
GetFiles method, 508
Directory property, of FileInfo class, 413
DisplayStyle property, of SplitButton
control, 90
Dispose method, 351-352
DivideByZeroException, 303
division (/) operator, 172
dockable window, 15
Dock as Tabbed Document window, 15
docked menus, 48
DockPanel container control (WPF), 49
Dock property, 27, 47-48
Document property
for PrintDialog, 122
for PrintPreviewDialog, 123
do loops, 279-280
vs. while loops, 280
dominant control, 32
double data type, 163-164, 165
double quotes (“)
escape sequence, 166

www.it-ebooks.info

http://www.it-ebooks.info/

DrawEllipse method — events

for literal string, 29
for strings, 166
DrawEllipse method, 365
drawing
shapes, 423-424
text, 424-425
Draw method, of Shape class, 365
DrawString method, 424-425
DriveFormat property, of DriveInfo class, 410
DriveInfo class, 410
DriveType property, of DriveInfo class, 410
DropDownBut ton control, 90
DropDownList value, for DropDownStyle
control, 35
DropDownStyle property, 35
DropDown value, for DropDownstyle control, 35
DropShadowEffect, 428
drop targets, for windows, 15

edit-and-continue in debugger, 188
Editing Area, in Visual Studio IDE, 14
ellipses, in menu item, 75
else keyword, 265

in if statement, 151
empty constructor, 349-350
emulator, for running apps, 457
Enabled property, 27

for ToolstripMenuItem control, 75
encapsulation, 140, 326

methods for, 291

property and, 329
Encrypt method

of File class, 414

of FileInfo class, 413
EndOfStream property, of streamreader class,

417

EndPrint event, 422
EndsWith method, of string class, 211, 212
Enqueue method, of Queue class, 242
entity data model, 479
entity-relationship designer, 517
enumerations, 249-250, 251
for address book, 254-257
switch statement for, 268-269
e parameter for event handlers, 334
Button Click, 59
PrintPage, 422
equals (==) comparison operator,
175
equals (=) operator
to assign value to variable, 164
for filters, 494
Equals method, 379
of object class, 374
error, 301
error handling, 301-311
Error window, 62
escape character, 217
escape sequences, in C#, 166
Euclid’s algorithm, 280
EventArgs data type, 59
event handlers, 135
adding and removing in code, 62-63
attaching to click event, 63
building, 57-58
crash, 130
delegates, 333-336
displaying color samples, 65-66
removing, 62, 336
sender parameter, 145
for setting properties in code, 28
variable existence outside, 138-139
events, 22-23, 57-72, 332-336
classes and, 327
parameters, 59-61

www.it-ebooks.info

537

http://www.it-ebooks.info/

example programs — FixedDocuments object

example programs, FollowMouse, 59, 66-67
exception, 302
throwing, 305-306
Exception Object, 303
exclusive OR operator, 173
executables, 12
exercise solutions, on book website, 17
Exists method
of Directory class, 412
of File class, 414, 417
Exists property
of DirectoryInfo class, 411
of FileInfo class, 413
Exit command, 81
Express Editions of C#, 4-5
Express for Web version of Visual Studio, 4
Express for Windows Desktop version of Visual
Studio, 4
Express for Windows version of Visual Studio,
4
eXtensible Application Markup Language. See
XAML code
Extension property, of FileInfo class, 413

Factorial method, 313

with assertions, 314

defining, 292-293

try-catch block in, 306
factorials, 292-293

calculating, 276
Fahrenheit, converting temperatures, 319
fields, 199, 327

backing, 328-329
FIFOs (first-in-first-out order), 242
File class, 413-414

538

File Explorer, displaying hidden files, 12
file filters, 129
in dialogs, 123-124
FileInfo class, 412-413
File menu, creating, 51
FileName property, for OpenFileDialog, 122
files, 409-420
loading saved, 112
reading, 417
saving Textbox contents to, 417
saving text into, 112
search for those matching pattern, 418-419
search using LINQ, 508
writing, 416—-417
filesystem classes, 409-414
Directory class, 412
DirectoryInfo class, 410-411
DriveInfo class, 410
File class, 413-414
FileInfo class, 412-413
Path class, 414-415
filesystem layout, for projects, 9
FillEllipse method, 365
Fill value, of Dock property, 47
FilterIndex property, 123
for openFileDialog, 122
filtering database records, 494-495
code for, 498
Filter property, 123
for openFileDialog, 122
Finally block, in try-catch block, 304
Find Customers example program, 502-504,
S18-519, 521, 524-525
Find Primes program, 501
Find Students example program, 505-506
first-in-first-out order (FIFOs), 242
FixedDocuments object, 430

www.it-ebooks.info

http://www.it-ebooks.info/

FixedPitchOnly property — gestures

FixedPitchOnly property, for FontDialog,
121

fixed-point numeric format, 215
flickering, DoubleBuffered property and, 286
float data type, 161, 163-164, 165
floating-point division, forcing use, 171
floating window, 15
FlowDocuments object, 430
FlowLayoutPanel control, 49
FolderBrowserDialog, 118, 128

properties, 121
folders, for projects, 9
FontDialog, 25, 117, 118

properties, 121
FontFeatures example program, 104
FontMustExist property, for FontDialog, 121
Font property, 27

for FontDialog, 121

sub-properties, 24

of TextBox control, 22
fonts

for printing, 433

sample in control, 81

selecting color, 128

style to set size for TextBlock control, 447
foreach loop, 277
ForeColor property, 27, 96

of controls, 29

of TextBox control, 22
for loops, 275-276

vs. while loops, 279
Forml.cs file, 14
Format menu, 31-32
Format method, of string class, 213
FormBorderStyle property, 34, 148, 205
FormClosing event, 64
FormClosing event handler, 486, 487
Form Designer

ContextMenuStrip control in, 77

menu in, 73

selecting controls in, 23
snap lines display in, 30
for Toolstrip, 90
formfeed, escape sequence, 166
Form layout control, 49
forms
AcceptButton and CancelButton properties,
147
adding dialog to, 117
adding new, 133-134
BackColor property, 127
Cancel button for, 36-37
closing, 81
closing, and crash, 143
control changes from resizing, 46
controlling remote, 138-140
displaying, 135-137
Load event of, 60
Localizable property of, 473
OK button for, 36-37
program creating, 11
Resize event Of, 60
restricting size, 44
Windows controls, 48—49
See also controls
FromArgb method, of color class, 65
FullName property
of DirectoryiInfo class, 411
of FileInfo class, 413

functions, 290. See also methods

garbage collector, 351

generic classes, 239-240, 397-406
defining, 397-399

generic constraints, 399-400

generic methods, 400-401

generic Randomize method, 401-403

gestures, assigning to command, 79-80
539

www.it-ebooks.info

http://www.it-ebooks.info/

GetAttributes method — Hour property

GetAttributes method, of File class, 414
GetCreationTime method
of Directory class, 412
of File class, 414
GetDirectories method
of Directory class, 412
of DirectoryInfo class, 411
GetDirectory method, of Path class, 415
GetDirectoryRoot method, of Directory
class, 412
GetDrives function, 410
GetExtension method, of Path class, 415
GetFileName method, of Path class, 415
GetFileNameWithoutExtension method, of
Path class, 415
GetFiles method
of Directory class, 412
of DirectoryInfo class, 411
GetHashCode method, of object class, 374
GetKeyList method, of sortedList class, 241
get keyword, 328, 329
GetLastAccessTime method
of Directory class, 412
of File class, 414
GetLastWrite method, of File class, 414
GetLowerBound method, for array, 237
GetParent method, of Directory class, 412
GetTempFileName method, of Path class, 415
GetTempPath method, of path class, 415
GetUpperBound method, for array, 237
GetValueList method, of SortedList class,
241
gigabyte, 162
globalization, 468
building program, 469
Graphics object
nesting in other graphical objects, 427
for printPage event handler, 422
SmoothingMode property of, 424

540

graphics programming in C#, 424
greater than (>) operator, 175
for filters, 494
greater than or equal to (>=) operator, 175
for filters, 494
greatest common divisor (GCD) of two
numbers, 279-280
method for, 293-294
grid, displaying data in, 483-486
Grid control (WPF), 49
for printing, 428
transparent background, and mouse events, 71
Gridsplitter control, 54
Grid template, for Windows Store apps, 440
GroupBox control
Anchor property, 52
change from resizing form, 46
IsEnabled property, 69

HasMorePages parameter, for PrintPage event
handler, 422
HasValue property, of database field, 520
head of stack, 243
Height property, of controls, 50
help, for dialogs, 120
hexadecimal
ASCII character in, 166
unicode character in, 166
hexadecimal format, 215
hidden bugs, 313
hidden files, File Explorer to display, 12
hiding windows, 15
higher-level language, 5
Horizontal Spacing submenu, 31
horizontal tab, escape sequence, 166
Hour property, of DateTime type, 228

www.it-ebooks.info

http://www.it-ebooks.info/

Hours property — interfaces

Hours property, of TimeSpan, 229 indexing
Hub template for arrays, 233, 234

for Windows Phone apps, 458 for string, 212

for Windows Store apps, 440 IndexOfAny method, of string class, 212
Hyper-V, 457 Index0f method

of Array class, 238

of string class, 212
infinite loops, interrupting, 189
inheritance, 339-340

IComparer interface, 238 and overriding methods, 362
IDE. See Visual Studio integrated development InitialDirectory property, for
environment (IDE) OpenFileDialog, 122
IDisposable interface, 351 InitializeComponent function, 469
StreamWriter class and, 416 initializer, vs. constructor, 349-350
IEnumerable<> interface, 384-385 initializing
IEquatable interface, 394 arrays, 235
if-else statement, 265 objects, 347-359
if statements, 119, 264 standard dialogs, 117-118
cascading, 265-266 structures, 251
nested, 266-267 IN operator, for filters, 494
Image property, 27 input assertions, 313-315
of button, 99 Insert method, of string class, 212
of PictureBox control, 475 InsertOnSubmit method, 518
images installing C#, 4-5
BorderStyle property for, 157 instances
for menu items, 85 and classes, 134-135, 325
for Windows Store app tile, 441-444 new keyword to create, 136
Immediate window, 192-193 int data type, 163, 164, 166
Implement Interface command, 386 integers, 161
implicit casting, 171 division of, 172
Import and Export Settings Wizard, 7 overflow, 313
Increase font size command, for RichTextBox Intellisense, 5, 107-108, 348
control, 109 for building overridden methods, 363
increment operator, 172 for generic classes, 239-240
indentation commands, 113 interest calculator, for Windows Phone, 461
Indent method, 315 interface keyword, 388
index interfaces, 383-395
for database search, 521 advantages, 383-385
of target database record, 493 defining, 388-389

541

www.it-ebooks.info

http://www.it-ebooks.info/

internal — LINQ

implementing, 385-388

localized, 469
internal, 203
IsDaylightSavingsTime method, of DateTime

type, 227

IsEnabled property, for GroupBox control, 69
is keyword, 380
IsLeapYear method, of DateTime type, 227
IsPrime method, 501
IsReadOnly property, of FileInfo class, 413
IsReady property, of DriveInfo class, 410
Italic property, of font, 25
Items property, 27

of ListView control, 284

Join method, of string class, 213

Kelvin, converting temperatures, 319
KeyDown event, 64

KeyPress event, 64

KeyUp event, 64

key/value pairs, 241

kilobyte, 162

kind parameter, 226

Kind property, of DateTime object, 226, 228

Label control, 47
creating, 34
newline in, 167
ToolStrip control and, 90
language
locale for setting, 216
sub-locales, 469

542

Language-Integrated Query. See LINQ
(Language-Integrated Query)
LastAccessTime property
of DirectoryInfo class, 411
of FileInfo class, 413
LastIndexOfAny method, of String class,
212
LastIndexOf method
of Array class, 238
of string class, 212
last-in-first-out order (LIFOs), 243
LastWriteTime property
of DirectoryInfo class, 411
of FileInfo class, 413
launching Visual Studio, 7, 18
layout containers, 48-50
Layout toolbar, 32
least common multiple (LCM) of two integers,
298
Length property
of arrays, 237
of FileInfo class, 413
of string class, 213
less than (<) operator, 175
for filters, 494
less than or equal to (<=) operator, 175
for filters, 494
LIFOs (last-in-first-out order), 243
lightning bolt icon, in Properties window, 58
LIKE operator, for filters, 494
LinkLabel control, 47
Anchor property, 52
AutoSize property of, 52
change from resizing form, 46
GroupBox size and, 51
LINQ (Language-Integrated Query), 499
basics, 499-501
features, 507
order by clauses, 504

www.it-ebooks.info

http://www.it-ebooks.info/

Ling To Access example program — menus

select clause, 504-507 testing, 469-470
where clause, 501-504 Locals window, 192

Linq To Access example program, 523 local time, 226

LINQ to SQL, 511-526 Location property, 27
connecting to database, 511-515 of controls, 31
LINQ queries, 518-519 locations, for projects, 9, 10
making classes, 515-517 logical operators, 173-174
nullable fields, 519-520 long data type, 163, 165

query execution, 520-521
using with Access, 522-524
writing code, 517-518

ListBox control, 364 machine language, 5

change from resizing form, 46 maintenance, methods and, 291

DataSource property of, 503-504 Make Customer Data example program, 517
List class, 239, 240 Make Same Size submenu, 31

MakeUserForm type of form, 134-135

ListPeople example program, 364-365 Manifest Editor

ListView control, 206 opening, 460
Visual Assets tab, 442-443

MarginBounds parameter, for PrintPage event

List Drives example program, 410

Items property, 284

removing selected item from, 208

SelectedIndices property, 208 handlera 422
literal string, 217 margin parameter, for printing, 428
double quotes (%) for, 29 Margin property, of controls, 50
literal values, 165-167 Math.Max method, 405
Load event, 60, 64 Math.Min method, 405
LoadFile method, of RichTextBox control, MaximizeBox property, of dialog, 148
106, 107 Maximum property, of scrollbar, 60
loading saved files, 112 MaximumSize property, 44
local deployment, of Windows Store apps, of dialog, 148
444-445 MaxSize property, for FontDialog, 121
locales, 216, 468 MediaElement, to play click sound, 448, 449
names of, 474 megabyte, 162
Localizable property, of form, 473 memory, garbage collector and, 351
localized interfaces, 469 menu events, 76
Localized Parsing example program, 471-472 menu items
Localized Weekdays example program, 469, checking and unchecking, 86-87
470 image files for, 85
localizing programs, 467-477 menus, 73-88
basics, 468 context, 77-78, 79, 82-83
processing locale-specific values, 470-472 copying structure, 83

543

www.it-ebooks.info

http://www.it-ebooks.info/

MenuStrip control - MySQL

creating, 73-74
creating structure, 81
docked, 48
properties, 75-76
in Visual Studio IDE, 14
in WPF application, 78-79
MenuStrip control, 48, 73, 81, 91, 93-97
ampersand (&) for underlined letter, 51
creating, 52
MessageBox control
newline in, 167
Show method, 58
methods, 331-332
advantages, 290-291
calling in Immediate window, 193
in classes, 327
for code reuse, 289-300
of controls, 22
delegate data type to hold, 332-333
extracting common code into, 94-95
generic, 400-401
output-only parameters, 295
overloading, 107, 361-362
overriding, 362-363
parameters, 294-295
syntax, 291-293
method scope, 199, 201-202
Microsoft, “Classes and Structs (C#
Programming Guide)” web site, 253
Microsoft account, 455
registering for, 445
Microsoft XPS Document Writer, 429
Millisecond property, of DateTime type,
228
Milliseconds property, of TimeSpan, 229
MinimizeBox property, of dialog, 148
Minimum property, of scrollbar, 60
MinimumSize property, 44
of dialog, 148

Minute property, of DateTime type, 228
544

Minutes property, of TimeSpan, 229
modal dialog, 118, 136
modeless dialog, 118

Show method for, 137
Modifiers property

of controls, 203

for TextBox control, 144
modulus (%) operator, 172
Month property, of DateTime type, 228
mouse

tracking movement, 61

X and Y coordinates for, 59
MouseClick event, 64

e parameter for, 59
MouseDown event, 64

e parameter for, 59
MouseEnter event, 64
MouseHover event, 64
MouseLeave event, 64
MouseMoved event, 61
MouseMove event, 64

e parameter for, 59
mouse picture, moving, 61
MouseUp event, 64

e parameter for, 59
MoveCurrentToNext method, 492
MoveCurrentToPrevious method, 492
Move event, 64
Move method

of Directory class, 412

of File class, 414
MoveTo method

of DirectoryInfo class, 411

of FileInfo class, 413
moving controls, arrow keys for, 31

multi-dimensional arrays, 236-237

Multiline property, of TextBox control, 45
multiple inheritance, interfaces for, 383-384

multiplication (*) operator, 172

MySQL, 482

www.it-ebooks.info

http://www.it-ebooks.info/

Name property — operators

Name property, 27

of DirectoryInfo class, 411

of DriveInfo class, 410

of FileInfo class, 413

for ToolStripMenuItem control, 75
names

of applications, 9

of controls, 26, 35-36

of control types, 22

of locales, 474

of styles, 447

of variables, 200-201
namespace, 327
navigation style

for Windows Phone apps, 458

for Windows Store apps, 439-440
negation (-) operator, 172
nested blocks of code, and variable scope,

202-203

nested if statements, 266-267
NET Framework, 4

filesystem classes, 409-414

standard dialogs, 116
new keyword, 135, 347

for DateTime variable, 225
newline, escape sequence, 166
New Project dialog, 8-10, 455
nibble, 162
non-deterministic finalization, 351
None value, of Dock property, 47
NOT (!) operator, 173, 174
not equals (!=) comparison operator, 175
not equal to (<>) operator, for filters, 494
Now property, of DateTime type, 228
null, 136

event as, 334
nullable fields, 519-520

numbering, in C#, 103
Numbering command, for RichTextBox
control, 109
numeric formatting
custom, 217-218
and localizing programs, 471
numeric formatting characters, 215-216
NumericUpDown control, 235-236, 301

Object Browser, for interface, 388
Object class
Equals method of, 374
GetHashCode method of, 374
object data type, 163, 239
Object Relational Designer, 515-516
Toolbox, 522
objects
creating, 135
initializing, 347-359
for table’s data, 484
transforming, 70
obj subdirectory, 12
octal, ASCII character in, 166
OK button, 308
for dialogs, 119, 148
for form, 36-37
one-to-many relationship, 517
OpenFileDialog, 118, 123, 128-129
properties, 122
in WPF application, 125-126
OpenFileDialog class, 116
opening file for writing, 416
OpenType fonts, 1097
operands, 170
operating system, information about, 183
operator keyword, 372
operators, 171-177
arithmetic, 171-173
545

www.it-ebooks.info

http://www.it-ebooks.info/

OR - placeholder code

assignment, 177

bitwise, 175-176

comparison, 175

logical, 173-174

overloading, 371-381

shift, 176
OR (ll) operator, 174
OR () operator, 173
Oracle, 482
order by clauses, of query, 504
Order submenu, 31
out keyword, 295, 304
output-only parameters, 295
Output window

displaying string in, 213-214

Writeline method to display message in, 315
overloading methods, 107, 361-362
overloading operators, 371-381

binary, 373

comparison, 374

conversion, 374-375

unary, 372
overriding methods, 362-363
OverwritePrompt property, for

SaveFileDialog, 122

Package .appxmanifest file, 460, 462

padLeft method, of string class, 212

pPadright method, of String class, 212

PageBounds parameter, for PrintPage event
handler, 422

page setup dialog, 115

Paint event, 64

paint event handler, for balls, 285-286

palindrome checker, 248

panel layout control, 49

546

adding controls, 52

creating, 52
ParagraphFeatures example program, 104-105
parameter array, 406
parameterized constructors, 348, 349-350
parameterless constructors, 348, 349
parameters

for events, 59-61

for methods, 107, 294-295
parent class, 339
Parent property, of DirectoryInfo class, 411
Parse methods, 471

of DateTime type, 227
parsing, 169-170, 304-305

strings, and localizing programs, 471
partial keyword, 526
Pascal casing, 22, 26
Paste command, for RichTextBox control, 109
Paste method, for RichTextBox control, 106,

109

Path class, 414-415
pPeek method

of Queue class, 242

of stack class, 243
percent format, 215, 217
phone

running app on, 457

setup for testing app, 456

See also Windows Phone apps
Pick A Picture program, 144-145
PictureBox control

change from resizing form, 46

Image property of, 475

SizeMode property of, 52
pinning windows, 15
Pivot template

for Windows Phone apps, 458

for Windows Store apps, 440
placeholder code, for interface, 386-387

www.it-ebooks.info

http://www.it-ebooks.info/

placeholder event handler — protected

placeholder event handler, 58
PngFiles directory, image files in, 85
polymorphism, 326, 340
pop method, of stack class, 243
post-decrement (- -) operator, 172
precedence, 177-179
precision specifier, 216
pre-decrement (- -) operator, 172
pre-increment (++) operator, 172
prime factors, calculating, 278
PrintDialog, 129
Document property, 122
in WPF, 124
PrintDocument component, 422
QueryPageSettings event, 436
PrintDocumentlncthod,OfPrintDialog(ﬂas&
430
printing, 421-436
starting printout, 422-423
visuals, 426-430
in Windows Forms application, 421-425
in WPF application, 425-426
PrintPage event, 422
PrintPage event handler, 425
e.Graphics parameter, 423
print preview, 423, 432
print preview dialog, 115
PrintPreviewDialog object, 423
PrintWindowCentered method, 428
Print Window Enlarged example program, 430
private field, 203
procedures, 290. See also methods
programming databases, 479-498
code for navigation buttons, 491-492
connecting to database, 479-483
data display in grid, 483-486
displaying one record at a time, 486-487
filtering, 494-495
searches, 493-494

programming languages
generations of, §
See also C#
programs
building first, 7-12
interaction with computer, 407
localizing, 467-477
See also code
project folder, copying, 19
projecting the data, 504
Project menu
Add Class, 327
Add New Item, 522
projects
attaching image to, 442
compressing, 13
copying, 12-13
creating, 18
files for, 10
promotion, of data types, 171
properties, 27-28
auto-implemented, 328
of class, 327-330
of controls, 22
dependency, 448
of dialogs, 117-118, 120-123
information about, 364
in interface, declarations, 389
modifying in code, 28-30
of objects, initializing, 347-348
randomizing, 346
of scrollbar, 60
Properties window, 14, 24
Anchor property, 45
lightning bolt icon, 58
menu editor, 78
for removing event handlers, 62
property description, 14
protected, 203

547

www.it-ebooks.info

http://www.it-ebooks.info/

public field - RichTextBox control

public field, 203, 204
declaration, 205
public keyword, 250
PullOpen property, for ColorDialog, 121
push method, of Stack class, 243

quadratic equation, 310-311

query. See LINQ (Language-Integrated Query)
QueryPageSettings event, 422

question mark, escape sequence, 166

queues, 242

quotation marks, escape sequence, 166

RadioButton control, Click event handler, 473
Randomize method, generic, 401-403
randomizing

brush, 450

properties, 346
range variable, of query, 500
ReadAllBytes method, of File class, 414
ReadAllLines method, of File class, 414
ReadAllText method, of File class, 414
reading files, 417
ReadLine method, of StreamReader class, 417
Read method, of StreamReader class, 417
read-only property, 328
ReadToEnd method, of StreamReader class, 417
real numbers, 163
records in database

displaying, 486-487

filtering, 494-495

search for, 493-494
recursive method, 298
Redo method, of RichTextBox control, 106

548

redundant code, 145
refactoring, 95
reference
to form, 136
passing parameter by, 294
types, 251-252
vs. value types, 252-254
reference equality, testing, 379
Reference Manager, 125
ref keyword, 294
relationship, adding in database, 517
relatively prime numbers, 280
release build, switching between debug build
and, 315
RemoteForm example program, 139
remote forms, controlling, 138-140
RemoveFilter method, of BindingSource
object, 495
Remove method
of ListBox Items, 151
of Lists class, 240
of sortedList class, 241
of string class, 212
removing breakpoints, 188
repeating program steps
do loops, 279-280
foreach loop, 277
for loops, 275-276
while loops, 278-279
repetition in code, avoiding, 290
Replace method, of String class, 212
Resize event, 60, 64
Resize method, of Array class, 238
resource dictionary, for XAML object,
446-447
resource files, for locales, 476
return statement, 292
Reverse method, of Array class, 238
RichTextBox control, 103-113

www.it-ebooks.info

http://www.it-ebooks.info/

RootDirectory property — SelectionLength property

methods, 106-107
properties, 103-105
SelectionLength property, 105-106
SelectionStart property, 105-106
RootDirectory property, of DriveInfo class,
410
RootFolder property, for
FolderBrowserDialog, 121
Root property, of DirectoryInfo class, 411
rotating objects, 70-71
rounding errors, and float comparison, 163
routines, 290. See also methods
Rt £ property, of RichTextBox control, 105
Rule of 72, 197-198

Sales Tax Calculator program, 189-190
Save command, placeholder message for, 58
saved file, loading, 112
SaveFileDialog, 118, 123, 129
properties, 122
SaveFileDialog class, 116
SaveFile method, of RichTextBox control,
107, 108
saving
in BindingNavigator, 485
Textbox contents to file, 417
text into file, 112
sbyte data type, 162, 166
scientifc notation, 215, 217
scope, 199-210
accessibility and, 203-204
within class, 199-203
restricting, 204
scrollbar
properties, 60
Value property of, 65

Scroll event, of control, 64, 66

search
for database records, 493-494
for files matching pattern, 418—-419
Second property, of DateTime type,
228
Seconds property, of TimeSpan, 229
section separator, 217-218
Selectall method, of RichTextBox control,
107
SelectedIndexChanged event, 64
SelectedIndex property, of ComboBox control,
246
SelectedIndices property, of ListView
control, 208
SelectedPath property, for
FolderBrowserDialog, 121
SelectedRtf property, of RichTextBox
control, 105
SelectedText property, of RichTextBox
control, 105
selecting
controls, in Form Designer, 23
text, 103
SelectionAlignment property, of
RichTextBox control, 104
SelectionBackColor property, of
RichTextBox control, 104
SelectionBullet property, of RichTextBox
control, 104
SelectionColor property, of RichTextBox
control, 104
SelectionFont property, of RichTextBox
control, 104
SelectionHangingIndent property, of
RichTextBox control, 104
SelectionIndent property, of RichTextBox
control, 104
SelectionLength property, of RichTextBox
control, 103, 105-106

549

www.it-ebooks.info

http://www.it-ebooks.info/

SelectionProtected property — SQL. See also LINQ to SQL

SelectionProtected property, of
RichTextBox control, 104
SelectionRightIndent property, of
RichTextBox control, 104
SelectionStart property, of RichTextBox
control, 103, 105-106
semicolon (), to end line of code, 28
sender parameter
for Button Click event handler, 59
for event handlers, 145, 334
Send to Back command, 47
Separators, in menus, 74
Server Explorer, 511-512
building database with, 514
SetAttributes method, of File class, 414
SetCaption method, 140
SetControlCulture method, 475
SetCreationTime method
of Directory class, 412
of File class, 414
SetFormCulture method, 474
set keyword, 328, 329
SetLastAccessTime method
of Directory class, 412
of File class, 414
SetLastWriteTime method, of Directory
class, 412
Setter object, in style, 447
SetTextProperties example program, 106
shapes, drawing, 423-424
shift operators, 176, 373
short-circuit operators, 174
ShortcutKeys property, for
ToolStripMenuItem control, 75
shortcuts, 76
short data type, 162, 166
ShowColor property
of dialog, 128
for FontDialog, 121

550

ShowbDialog method, 118, 136-137, 148, 423
of printDialog object, 426
ShowEffects property, for FontDialog, 121
ShowInTaskbar property, 140
of dialog, 148
Show method, for modeless dialog display, 137
ShowReadOnly property, for OpenFileDialog,
122
Simple value, for DropbownStyle control, 35
single quotation mark, escape sequence, 166
size
of controls, 27
of form, restricting, 44
SizeMode property, of PictureBox control, 52
Size property, 28
of Label control, 36
smart tags, 91-92
SmoothingMode method, 365
SmoothingMode property, of Graphics object,
424
snap lines, for managing controls, 30-31
Solution Explorer, 14
for attaching images to project, 460
CustomerClassesDataContext entry, 517
new form in, 133-134
solutions, 10. See also Try It solutions
SortedDictionary class, 242
SortedLists class, 240-241
sorting
LINQ query results, 504
text file, 419
sort method, of Array class, 237-238
special characters, 166
SplitButton control, 90
SplitContainer control, 54
Split method, of String class, 212
Split template, for Windows Store apps, 440
sprite, 345
SQL. See also LINQ to SQL

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Server — Tag property

SQL Server, 482, 512
SQL Server Express Edition, 482, 512

514, 514
square brackets ([|)

for array, 234

for formatting field, 213

for List entries, 240
stacking order of controls, 47-48
StackPanel container control (WPF), 49
Stacks class, 242-243
standard dialogs, 115-131

adding to form, 117

basics, 116-120

displaying, and checking return result,

118-119

initializing, 117-118

properties for, 117-118
Start screen, pinning app to, 457
StartsWith method, of string class, 212
static keyword, 346
static method, 213
StaticResource keyword, 447
StatusLabel control, 92
StatusScript control, 51
StatusStrip, creating, 52
StatusStrip control, 73, 90, 91

using, 92-93
Step Into command (Debug menu), 190
Step Out command (Debug menu), 190
Step Over command (Debug menu), 190
stepping through code, 190-191
Stop Debugging command, 457
Stream class, 415
StreamReader class, 416, 417
streams, 415-417
StreamWriter class, 416

Write method, 417
Strikeout property, of font, 25
StringBuilder class, 175

string class, Endswith method, 211
string data type, 163
strings, 161, 211-224

concatenating, 174-175

double quotes (¢) for, 166

literal, 217

methods, 211-212
structure (struct), 249, 250-251, 326

for address book, 254-257

vs. classes, 251-254

location for definition, 254
Structure Versus Class example program, 253
styles

for setting FontSize property, 462

for Windows Phone apps, 458

for Windows Store apps, 440, 446-447
submenus, creating, 78
subprocedures, 290 .See also methods

subroutines, 290. See also methods

Subscript command, for RichTextBox control,

109
Substring method, of String class, 212
subtraction (-) operator, 172
Subtract method, of DateTime type, 227
suffix characters, for data type, 165
Superscript command, for RichTextBox
control, 109

System.Diagnostics namespace, 314
System.Diagnostics.Stopwatch class, 231
System.IO namespace, 409, 416
System.Windows.Media.Effects namespace,

428

table adapter manager, 484
TableLayoutPanel control, 49, 71-72
tab order, in dialogs, 148

Tag property, 28

551

www.it-ebooks.info

http://www.it-ebooks.info/

tail of stack — ToLongTimeString method

tail of stack, 243
Tapped events, 439
TargetType property, 447
taskbar clock, 92
Team Foundation Server Express version of
Visual Studio, 4
temperatures, converting between scales, 319
templates
for projects, 8
for Windows Phone apps, 455-456
for Windows Store apps, 440
terabyte, 162
text
drawing, 424-425
saving into file, 112
selecting, 103
TextAlign property, 28
of Label control, 36
of TextBox control, 34
TextBlock control, style to set font size, 447
TextBox control, 22, 103
Anchor property, 52
change from resizing form, 46
creating, 34
GroupBox size and, 51
in menus, 74
Modifiers property, 144
MultiLine property, 45, 54
Properties window for, 24
saving contents to file, 417
TextChanged event, 23
TextChanged event, 64
text file, sorting, 419
Text property, 28
of RichTextBox control, 105
of TextBox control, 34
of ToolStripMenuItem control, 75
text settings, user management of, 105-106

552

this keyword, 82, 201
and constructor, 352-353
thousands separator, 217
thumbtack icon, 15
Tick event, 64
tile for app
background color, 460
changing size, 442
sizes, 440
time, 225-232
custom formats, 219-222
local and UTC, 226
standard formats, 218-219
TimeOfDay property, of DateTime type, 228
Timer component, 22
Timer control, 230
TimeSpan, 228-229
time zone offset from UTC, 221
tip calculator, 463
Title property, for OpenFileDialog, 122
ToArray method, 504
ToBoolean method, 169
Today property, of DateTime type, 228
Toggle bold command, for RichTextBox
control, 109
Toggle insert command, for RichTextBox
control, 109
Toggle italic command, for RichTextBox
control, 109
Toggle underline command, for RichTextBox
control, 109
ToInt32 method, 169
ToLocalTime method, of DateTime class, 226,
227
ToLongDateString method, of DateTime class,
219,227
ToLongTimeString method, of DateTime class,
219,227

www.it-ebooks.info

http://www.it-ebooks.info/

ToLower method - Try It solutions

ToLower method, of string class, 212
toolbars, in Visual Studio IDE, 14
Toolbox, 14, 522
Dialogs tab, 117
Printing tab, 117
selecting tool in, 23
ToolStripContainer control, 91-92
ToolStrip control, 89, 94
ToolStripMenuItem control, properties, 75
tool strips, 89-90
ToShortDateString method, of DateTime
class, 219, 225,227
ToShortTimeString method, of DateTime
class, 219, 227
ToString method, 65, 181, 215, 219
of DateTime type, 227
of enumeration, 250
overriding, 363-364, 390-391
for TimeSpan, 228
ToString property, of TimeSpan, 229
TotalDays property, of TimeSpan, 229
TotalFreeSpaceprOpmﬁy,OfDriveInfoCkws,
410
TotalHours property, of TimeSpan, 229
TotalMilliseconds property, of TimeSpan,
229
TotalMinutes property, of TimeSpan, 229
TotalSeconds property, of TimeSpan, 229
touch-sensitive screens, 439
tile size changes, 442
ToUniversalTime method, 226
of DateTime type, 227
ToUpper method, of string class, 212
transformations, in WPF application, 427
transforming objects, 70
transforming the data, 504
transparent background, for app tile, 460
trial-and-error debugging, 188
TrimEnd method, of string class, 212

Trim method, of String class, 212
TrimStart method, of String class, 212
try-catch block, 302-304
Try It solutions
assertions, 316-319
BankAccount class, 336-339
on book website, 17
building class and interface, 389-392
calculations, 179-182
classes, 330-331
classes, inheritance, and polymorphism,
341-344
colors in American English and Mexican
Spanish, 472
constructors and destructors, 354-357
database grid display, 488
date and time display, 222-223
debugging code, 193-196
enumeration and structure for address book,
254-257
event handlers for displaying color samples,
65-66
fields, 204-207
filtering, 495-496
Find Customers example program, 524-525
form display, 140-142
generic Randomize method, 401-403
LINQ (Language-Integrated Query), 507-509
ListBox control, 150-153
login form, 282-284
main menu and context menu, 80-83
MenuStrip control, 93-97
method for calculating minumum, maximum
and average for array, 296-298
Order Form program with if statements,
269-270
order lookup program, 243-245
overloaded operators, 375-378
overriding braw method of shape class, 365

553

www.it-ebooks.info

http://www.it-ebooks.info/

TryParse method - VisualBrush

search for files matching pattern, 418-419
SimpleEdit program menu items, 110-111

standard dialogs, 126-129 ValidateNames property, for SaveFileDialog,
stopwatch application, 229-231 122
table printing and preview display, 431-433 validation code, in property accessors, 329-330
validation and error handling code, 307-309 value
Windows Phone interest calculator, 461-462 literal, 165-167
Windows Store apps, 448-452 passing parameter by, 294

TryParse method, 304-305 vs. reference types, 252-254

two-dimensional arrays, 236 types, 252

ValueChanged event, 64

value property, of scrollbar, 65
var data type, 500, 501, 506
variables, 135-136

uint data type, 163 < > (angled brackets) for generic type, 397-398
Uint data type, 165 assigning value, 164
ulong data type, 163 basics, 161
Ulong data type, 165 calculations, 170-179
unary operators, overloading, 372 data types, 161-163
Underline property, of font, 25 declaration, 164-165
Undo method, of RichTextBox control, 107 for form manipulation, 138
unicode character, escape sequence for reading when debugging, 189-190
hexadecimal, 166 with same name, 200-201
Unit property, of font, 25 scope, 199-210
unlocking phone for development, 456 setting value in Immediate window, 192-193
user input errors, 316 watch to display, 191-192
user interface, restricting interaction, 88 verbatim string literal, 167
users, text settings managed by, 105-106 Vertical Spacing submenu, 31
ushort data type, 163, 166 vertical tab, escape sequence, 166
using statement, 352 Viewbox, for printing, 428
for Microsoft Access directive, 523 virtual keyword, 362, 363
UTC (Coordinated Universal Time), 219, 226 visibility, of structure, 254
time zone offset from, 221 Visible property, 28
UtcNow property, of DateTime type, 228 VisualBrush, 428
554

www.it-ebooks.info

http://www.it-ebooks.info/

Visual C# — WPF application

Visual C#, 3-4
visuals, printing, 426-430
Visual Studio integrated development
environment (IDE), 1, 3-20, 455
configuring, 6-7
customization moderation, 16
launching, 7, 18
objects for table’s data, 484
tools for debugging, 188
window arrangement, 14, 16
VolumeLabel property, of DriveInfo class, 410

.vs subdirectory, 12

watches, 191-192
web page colors, 25
websites, 17-18
for app development, 445-446
LINQ (Language-Integrated Query), 507
LINQ to SQL page, 511
WebView template, for Windows Phone apps,
458
where clause, of query, 500, 501-504
where keyword, for generic constraint, 399
while loops, 278-279
vs. do loops, 280
width, of Label, 34
width property, of controls, 50
Window Closing event handler, for WPF, 488
Window Designer, 462
windows
hiding, 15
for Store and Phone apps, 439

Windows, changing app tile size, 442
Windows Dev Center dashboard, 445
Windows Dev Center developer account, 455
registering for, 445
Windows forms, controls, 48-49
Windows Forms application
PrintDocument and PrintPreviewDialog
components, 432
printing, 421-425
startup form, 138
Windows Phone apps, 437, 455-464
app images, 459-461
app styles, 458
building, 455-457
closing, 458
navigation style, 458
testing, 457
Windows Phone Developer Registration app,
456
Windows Software Development Kit (SDK), 455
Windows Store apps, 437, 439-454
app images, 440-444
app styles, 440
blank PNG files for, 453
deployment, 444-446
navigation style, 439-440
WPF techniques, 446-448
Windows.UI.Popups.MessageDialog class,
453
WPF application, 66—67
commands, 108-110
context menus, 79
controls, 32, 49-50
dialogs in, 124-126
event handlers, 62

555

www.it-ebooks.info

http://www.it-ebooks.info/

WrapPanel container control - Year property

localizing, 475-476 Write method, of StreamWriter class, 417
main window, 138 writing files, 416—-417

menus, 78-79

PrintDialog object, 426

printing, 425-426

splitter in, 54

system for handling commands, 79-80 XAML code, 446

for Windows Store apps, 446—448 editing manually for menu hierarchy, 78-79
WrapPanel container control (WPF), 49 XAML Code Editor for WPF applications, 32,
WriteAllBytes method, of File class, 414 50
WriteAllLines method, of File class, 414 XML Paper Specification (XPS) file, 429
WriteAllText method, of File class, 414 XOR (*) operator, 173

WriteLine method
of console class, 213-214

for Output window message display,
315
of streamWriter class, 417 Year property, of DateTime type, 228

556

www.it-ebooks.info

http://www.it-ebooks.info/

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

www.it-ebooks.info

http://www.wiley.com/go/eula
http://www.it-ebooks.info/

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Introduction�������������������
	Section I: The Visual Studio IDE and Controls
	Lesson 1: Getting Started with the Visual Studio IDE���
	Installing C#��������������������
	Configuring the IDE��������������������������
	Building Your First Program����������������������������������
	Copying Projects�����������������������
	Exploring the IDE������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 2: Creating Controls����������������������������������
	Understanding Controls�����������������������������
	Properties�����������������
	Methods��������������
	Events�������������

	Creating Controls������������������������
	Setting Control Properties���������������������������������
	Control Names��������������������
	Popular Properties�������������������������
	Modifying Properties in Code�����������������������������������

	Arranging Controls�������������������������
	Snap Lines�����������������
	Arrow Keys�����������������
	The Format Menu and Layout Toolbar���

	WPF Controls�������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 3: Making Controls Arrange Themselves���
	Restricting Form Size����������������������������
	Using Anchor Properties������������������������������
	Using Dock Properties����������������������������
	Layout Containers������������������������
	Windows Forms Controls�����������������������������
	WPF Controls�������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 4: Handling Events��������������������������������
	Making Event Handlers����������������������������
	Using Event Parameters�����������������������������
	Setting Scrollbar Properties�����������������������������������
	Tracking Mouse Movement������������������������������
	Moving the Mouse Picture�������������������������������

	Removing Event Handlers������������������������������
	Adding and Removing Event Handlers in Code���
	Useful Events��������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 5: Making Menus�����������������������������
	Creating Menus���������������������
	Setting Menu Properties������������������������������
	Handling Menu Events���������������������������
	Creating Context Menus�����������������������������
	WPF Menus����������������
	WPF Context Menus������������������������
	WPF Commanding���������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 6: Making Tool Strips and Status Strips���
	Using Tool Strips������������������������
	Using Tool Strip Containers����������������������������������
	Using Status Strips��������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 7: Using RichTextBoxes������������������������������������
	Using RichTextBox Properties�����������������������������������
	Giving the User Control������������������������������
	Using RichTextBox Methods��������������������������������
	Using WPF Commands�������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 8: Using Standard Dialogs���������������������������������������
	Using Dialogs in General�������������������������������
	Adding the Dialog to the Form������������������������������������
	Initializing the Dialog������������������������������
	Displaying the Dialog and Checking the Return Result���
	Processing the Results�����������������������������
	Putting It All Together������������������������������

	Using Dialog Properties������������������������������
	Using File Filters�������������������������
	Using Dialogs in WPF���������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 9: Creating and Displaying New Forms��
	Adding New Forms�����������������������
	Understanding Classes and Instances��
	Displaying Forms�����������������������
	Controlling Remote Forms�������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 10: Building Custom Dialogs���
	Making Custom Dialogs����������������������������
	Setting the Dialog Result��������������������������������
	Using Custom Dialogs���������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Section II: Variables and Calculations
	Lesson 11: Using Variables and Performing Calculations���
	What Are Variables?��������������������������
	Data Types�����������������
	Float, Double, and Decimal Data Types��

	Declaring Variables��������������������������
	Literal Values���������������������
	Type Conversions�����������������������
	Casting��������������
	Converting�����������������
	Parsing��������������

	Performing Calculations������������������������������
	Operands and Operators�����������������������������
	Promotion����������������
	Operator Summary�����������������������
	Precedence�����������������

	Constants����������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 12: Debugging Code��������������������������������
	Deferred Techniques��������������������������
	Debugging Then and Now�����������������������������
	Setting Breakpoints��������������������������
	Reading Variables������������������������
	Stepping through Code����������������������������
	Using Watches��������������������
	Using the Immediate Window���������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Exercises

	Lesson 13: Understanding Scope�������������������������������������
	Scope within a Class���������������������������
	Same Named Variables���������������������������
	Method Variable Lifetime�������������������������������
	Block Scope������������������

	Accessibility��������������������
	Restricting Scope and Accessibility��
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 14: Working with Strings��������������������������������������
	String Methods���������������������
	Format and ToString��������������������������
	Standard Numeric Formats�������������������������������
	Custom Numeric Formats�����������������������������
	Standard Date and Time Formats�������������������������������������
	Custom Date and Time Formats�����������������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 15: Working with Dates and Times��
	Creating DateTime Variables����������������������������������
	Local and UTC Time�������������������������
	DateTime Properties and Methods��������������������������������������
	TimeSpans����������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 16: Using Arrays and Collections��
	Arrays�������������
	Creating Arrays����������������������
	A Fibonacci Example��������������������������
	Multi-Dimensional Arrays�������������������������������
	Array Properties and Methods�����������������������������������

	Collection Classes�������������������������
	Generic Classes����������������������
	Lists������������
	SortedLists������������������
	Dictionaries�������������������
	Queues�������������
	Stacks�������������

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Exercises

	Lesson 17: Using Enumerations and Structures���
	Enumerations�������������������
	Structures�����������������
	Structures versus Classes��������������������������������
	Reference Types����������������������
	Value Types������������������
	Other Differences������������������������

	Where to Put Structures������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Exercises

	Section III: Program Statements
	Lesson 18: Making Choices��������������������������������
	Decision Statements��������������������������
	if Statements��������������������
	if-else Statements�������������������������
	Cascading if Statements������������������������������
	Nested if Statements���������������������������
	switch Statements������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 19: Repeating Program Steps���
	for Loops����������������
	foreach Loops��������������������
	while Loops������������������
	do Loops���������������
	break and continue�������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 20: Reusing Code with Methods���
	Method Advantages������������������������
	Method Syntax��������������������
	Using ref Parameters���������������������������
	Using out Parameters���������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 21: Handling Errors���������������������������������
	Errors and Exceptions����������������������������
	try-catch Blocks�����������������������
	TryParse���������������
	Throwing Exceptions��������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 22: Preventing Bugs���������������������������������
	Input Assertions�����������������������
	Other Assertions�����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Section IV: Classes
	Lesson 23: Defining Classes����������������������������������
	What Is a Class?�����������������������
	Class Benefits���������������������
	Making a Class���������������������
	Properties�����������������

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Methods��������������
	Events�������������
	Delegates����������������
	Event Handler Delegates������������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Inheritance������������������
	Polymorphism�������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 24: Initializing Objects��������������������������������������
	Initializing Objects���������������������������
	Constructors�������������������
	Parameterless Constructors���������������������������������
	Parameterized Constructors���������������������������������

	Destructors������������������
	Invoking Other Constructors����������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 25: Fine-Tuning Classes�������������������������������������
	Overloading Methods��������������������������
	Overriding Methods�������������������������
	Overriding ToString��������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 26: Overloading Operators���������������������������������������
	Overloadable Operators�����������������������������
	Unary Operators����������������������
	Binary Operators�����������������������
	Comparison Operators���������������������������
	Conversion Operators���������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 27: Using Interfaces����������������������������������
	Interface Advantages���������������������������
	Multiple Inheritance���������������������������
	Code Generalization��������������������������

	Implementing Interfaces������������������������������
	Defining Interfaces��������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 28: Making Generic Classes��
	Defining Generic Classes�������������������������������
	Using Generic Constraints��������������������������������
	Making Generic Methods�����������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Section V: System Interactions
	Lesson 29: Using Files�����������������������������
	Filesystem Classes�������������������������
	DriveInfo����������������
	DirectoryInfo��������������������
	Directory����������������
	FileInfo���������������
	File�����������

	Path�����������
	Streams��������������
	Writing Files��������������������
	Reading Files��������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 30: Printing��������������������������
	Windows Forms Printing�����������������������������
	Getting Started����������������������
	Starting a Printout��������������������������
	Drawing Shapes���������������������
	Drawing Text�������������������

	WPF Printing�������������������
	Printing Visuals�����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Section VI: Windows Apps
	Lesson 31: Windows Store Apps������������������������������������
	Navigation Style�����������������������
	App Styles�����������������
	App Images�����������������
	Deployment�����������������
	Deploying Locally������������������������
	Deploying to the Windows Store�������������������������������������

	WPF Techniques���������������������
	Using Styles�������������������
	Setting Dependency Properties������������������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 32: Windows Phone Apps������������������������������������
	Building Apps��������������������
	Navigation Style�����������������������
	App Styles�����������������
	App Images�����������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Exercises

	Section VII: Specialized Topics
	Lesson 33: Localizing Programs�������������������������������������
	Understanding Localization���������������������������������
	Building Localized Interfaces������������������������������������
	Testing Localizations����������������������������
	Processing Locale-Specific Values��
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 34: Programming Databases, Part 1���
	Connecting to a Database�������������������������������
	Displaying Data in a Grid��������������������������������
	Displaying Data One Record at a Time���
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 35: Programming Databases, Part 2���
	Searching����������������
	Filtering����������������
	Sorting��������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 36: LINQ to Objects���������������������������������
	LINQ Basics������������������
	where Clauses��������������������
	order by Clauses�����������������������
	select Clauses���������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Lesson 37: LINQ to SQL�����������������������������
	Connecting to the Database���������������������������������
	Making LINQ to SQL Classes���������������������������������
	Writing Code�������������������
	Using LINQ Queries�������������������������
	Understanding Nullable Fields������������������������������������
	Understanding Query Execution������������������������������������
	Using LINQ to SQL with Access������������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Exercises

	Afterword: What’s Next?������������������������������
	Index������������
	EULA

