
THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Pro

CSS and HTML
Design Patterns

Michael Bowers

ailable

Increase creativity and productivity by using

patterns in your web designs while leveraging

CSS and (X)HTML best practices

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

http://www.a-pdf.com/?tr-demo

Michael Bowers

Pro CSS and HTML
Design Patterns

http://freepdf-books.com

http://www.allitebooks.org

Pro CSS and HTML Design Patterns

Copyright © 2007 by Michael Bowers

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-804-7

ISBN-10 (pbk): 1-59059-804-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Chris Mills
Technical Reviewer: Paul Haine
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Dominic Shakeshaft,
Jim Sumser, Matt Wade

Project Manager: Kylie Johnston
Copy Edit Manager: Nicole Flores
Copy Editor: Ami Knox
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Dina Quan
Proofreader: Elizabeth Berry
Indexer: Julie Grady
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

I dedicate this book to my loving family.

To my wife, Teresa

To my son, Joshua

To my daughter, Sydney

They all sacrificed much to make this book possible.

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

Contents at a Glance

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 Design Patterns: Making CSS Easy! . 1

■CHAPTER 2 HTML Design Patterns . 31

■CHAPTER 3 CSS Selectors and Inheritance . 59

■CHAPTER 4 Box Models . 77

■CHAPTER 5 Box Model Extents . 95

■CHAPTER 6 Box Model Properties . 107

■CHAPTER 7 Positioning Models . 123

■CHAPTER 8 Positioning: Indented, Offset, and Aligned . 147

■CHAPTER 9 Positioning: Advanced . 173

■CHAPTER 10 Styling Text . 199

■CHAPTER 11 Spacing Content . 215

■CHAPTER 12 Aligning Content . 237

■CHAPTER 13 Blocks . 255

■CHAPTER 14 Images . 283

■CHAPTER 15 Tables. 317

■CHAPTER 16 Column Layout . 343

■CHAPTER 17 Layouts . 371

■CHAPTER 18 Drop Caps . 417

■CHAPTER 19 Callouts and Quotes . 437

■CHAPTER 20 Alerts . 455

■INDEX . 481

v

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

Contents

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 Design Patterns: Making CSS Easy! . 1

Design Patterns—Structured Recipes . 2

Using Design Patterns . 2

Using Stylesheets . 7

CSS Syntax . 8

CSS Syntax Details . 9

Using Whitespace in CSS . 10

Using Property Values . 11

Using Cascade Order . 14

Simplifying the Cascade. 17

CSS and HTML Links . 18

CSS Properties . 19

CSS Properties and Values: Common . 20

CSS Properties and Values: Content . 21

CSS Properties and Values: Layout . 22

CSS Properties and Values: Specialized . 23

Selectors . 23

Flexible Units of Measure . 24

Fixed Units of Measure . 24

Ratios Between Units of Measure at 96 dpi . 25

Typical font-size Values at 96 dpi. 25

Troubleshooting CSS. 26

Normalized Stylesheet . 28

vii

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

■CHAPTER 2 HTML Design Patterns . 31

Chapter Outline . 31

HTML Structure . 32

XHTML . 38

DOCTYPE. 40

Header Elements . 42

Conditional Stylesheet . 44

Structural Block Elements . 46

Terminal Block Elements . 48

Multi-purpose Block Elements . 50

Inline Elements. 52

Class and ID Attributes . 54

HTML Whitespace . 56

■CHAPTER 3 CSS Selectors and Inheritance . 59

Chapter Outline . 59

Type, Class, and ID Selectors . 60

Position and Group Selectors . 62

Attribute Selectors. 64

Pseudo-element Selectors . 66

Pseudo-class Selectors . 68

Subclass Selector . 70

Inheritance . 72

Visual Inheritance . 74

■CHAPTER 4 Box Models . 77

Chapter Outline . 77

Display. 78

Box Model . 80

Inline Box . 82

Inline-block Box . 84

Block Box . 86

Table Box . 88

Absolute Box. 90

Floated Box . 92

■CONTENTSviii

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

■CHAPTER 5 Box Model Extents . 95

Chapter Outline . 95

Width . 96

Height . 98

Sized . 100

Shrinkwrapped. 102

Stretched. 104

■CHAPTER 6 Box Model Properties . 107

Chapter Outline . 107

Margin . 108

Border . 110

Padding . 112

Background . 114

Overflow . 116

Visibility . 118

Page Break . 120

■CHAPTER 7 Positioning Models . 123

Chapter Outline . 123

Positioning Models . 124

Positioned . 126

Closest Positioned Ancestor . 128

Stacking Context . 130

Atomic . 132

Static . 134

Absolute . 136

Fixed . 138

Relative . 140

Float and Clear . 142

Relative Float . 144

■CHAPTER 8 Positioning: Indented, Offset, and Aligned 147

Chapter Outline . 147

Indented . 148

Offset Static . 150

Offset or Indented Static Table . 152

Offset Float . 154

■CONTENTS ix

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

Offset Absolute and Offset Fixed. 156

Offset Relative . 158

Aligned Static Inline . 160

Aligned and Offset Static Block. 162

Aligned and Offset Static Table . 164

Aligned and Offset Absolute . 166

Aligned-center Absolute . 168

Aligned Outside . 170

■CHAPTER 9 Positioning: Advanced . 173

Chapter Outline . 173

Left Aligned . 174

Left Offset . 176

Right Aligned . 178

Right Offset. 180

Center Aligned . 182

Center Offset . 184

Top Aligned. 186

Top Offset . 188

Bottom Aligned. 190

Bottom Offset . 192

Middle Aligned . 194

Middle Offset . 196

■CHAPTER 10 Styling Text . 199

Font . 200

Highlight . 202

Text Decoration . 204

Text Shadow. 206

Text Replacement . 208

Invisible Text . 210

Screenreader-only. 212

■CHAPTER 11 Spacing Content . 215

Spacing . 216

Blocked . 218

Nowrap . 220

Preserved . 222

Code. 224

■CONTENTSx

http://freepdf-books.com

Padded Content . 226

Inline Spacer. 228

Inline Decoration . 230

Linebreak . 232

Inline Horizontal Rule . 234

■CHAPTER 12 Aligning Content . 237

Text Indent . 238

Hanging Indent. 240

Horizontal-aligned Content . 242

Vertical-aligned Content . 244

Vertical-offset Content . 246

Subscript and Superscript . 248

Nested Alignment . 250

Advanced Alignment Example. 252

■CHAPTER 13 Blocks . 255

Chapter Outline . 255

Structural Meaning . 256

Visual Structure . 258

Section . 260

Lists . 262

Background Bulleted. 264

Inlined . 266

Collapsed Margins. 268

Run-in . 270

Horizontal Rule . 272

Block Spacer . 274

Block Space Remover. 276

Left Marginal . 278

Right Marginal . 280

■CHAPTER 14 Images . 283

Chapter Outline . 283

Image. 284

Image Map . 286

Fade-out . 288

Semi-transparent . 290

Replaced Text . 292

■CONTENTS xi

http://freepdf-books.com

Content over Image . 294

Content over Background Image . 296

CSS Sprite. 298

Basic Shadowed Image . 302

Shadowed Image . 304

Rounded Corners . 310

Image Example . 314

■CHAPTER 15 Tables. 317

Chapter Outline . 317

Table . 318

Row and Column Groups . 320

Table Selectors . 322

Separated Borders. 324

Collapsed Borders . 326

Styled Collapsed Borders . 328

Hidden and Removed Cells . 330

Removed and Hidden Rows and Columns . 332

Vertical-aligned Data . 334

Striped Tables . 336

Tabled, Rowed, and Celled . 338

Table Layout . 340

■CHAPTER 16 Column Layout . 343

Table Layout Models . 343

Using Column Layouts . 344

Chapter Outline . 344

Column Width. 346

Shrinkwrapped Columns . 348

Sized Columns . 350

Content-proportioned Columns . 352

Size-proportioned Columns . 354

Percentage-proportioned Columns. 356

Inverse-proportioned Columns . 358

Equal Content-sized Columns . 360

Equal-sized Columns . 362

Undersized Columns . 364

Flex Columns . 366

Mixed Column Layouts . 368

■CONTENTSxii

http://freepdf-books.com

■CHAPTER 17 Layouts . 371

Chapter Outline . 371

Fluid Layout Overview . 372

Outside-in Box . 374

Floating Section . 378

Float Divider . 380

Fluid Layout . 382

Opposing Floats . 384

Event Styling. 386

Rollup. 390

Tab Menu . 394

Tabs . 398

Flyout Menu . 402

Button . 406

Layout Links . 410

Layout Example . 412

■CHAPTER 18 Drop Caps . 417

Chapter Outline . 417

Aligned Drop Cap. 418

First-letter Drop Cap . 420

Hanging Drop Cap . 422

Padded Graphical Drop Cap. 424

Floating Drop Cap . 426

Floating Graphical Drop Cap . 428

Marginal Drop Cap . 430

Marginal Graphical Drop Cap . 432

■CHAPTER 19 Callouts and Quotes . 437

Chapter Outline . 437

Left Floating Callout . 438

Right Floating Callout . 440

Center Callout. 442

Left Marginal Callout. 444

Right Marginal Callout . 446

Block Quote . 448

Inline Block Quote . 450

Inline Quote . 452

■CONTENTS xiii

http://freepdf-books.com

■CHAPTER 20 Alerts . 455

Chapter Outline . 455

JavaScript Alert . 456

Tooltip Alert . 458

Popup Alert . 460

Alert . 464

Inline Alert. 466

Hanging Alert . 468

Graphical Alert . 470

Run-in Alert . 472

Floating Alert . 474

Left Marginal Alert. 476

Right Marginal Alert . 478

■INDEX . 481

■CONTENTSxiv

http://freepdf-books.com

About the Author

■MICHAEL BOWERS has been writing software professionally for 18 years.
He taught himself to program when he was 14 and hasn’t stopped since.

He has been the lead software developer, architect, and modeler for
many projects ranging from web sites to application frameworks to data-
base systems. He has built intranet applications, automated factories
with robotics, developed languages along with interpreters and compil-
ers, programmed handheld devices, integrated enterprise systems, and
managed teams. His favorite languages include CSS, XHTML, XML, C#, C,
Visual Basic, Java, JavaScript, ASP, and SQL.

Michael is also an accomplished pianist with a bachelor’s degree in music composition, a
master’s degree in music theory, and an ABD PhD in music theory. In his spare time he loves to
improvise, arrange, and compose music.

xv

http://freepdf-books.com

http://freepdf-books.com

About the Technical Reviewer

■PAUL HAINE is a web designer currently working in London. He is the author of HTML Mastery:

Semantics, Standards, and Styling (friends of ED, 2006) and runs a personal web site at
www.joeblade.com alongside his design blog, www.unfortunatelypaul.com.

xvii

http://freepdf-books.com

http://freepdf-books.com

Acknowledgments

I want to thank my family, Teresa, Joshua, and Sydney, for the sacrifices they made so I could
write this book. I especially want to thank my wife, Teresa. Without her continued support and
encouragement, I could not have written this book. I also want to thank my mother and father
for teaching me the values of service, hard work, and continuous improvement.

I want to thank the team at Apress for all their great work: Chris Mills as editor, Paul
Haines as technical reviewer, Kylie Johnston as project manager, Ami Knox as copy editor,
Laura Esterman as production editor, and all the others who have worked behind the scenes.

xix

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

http://freepdf-books.com

Introduction

This is a solutions book for styling HTML 4.01 and XHTML 1.1 with CSS 2.1. It contains more
than 350 design patterns you can put to use right away. Each design pattern is modular and
customizable, and you can combine patterns to create an unlimited number of designs.

Each design pattern has been thoroughly tested and proven to work in all major web
browsers including Internet Explorer 7, Internet Explorer 6, Firefox 2, Opera 9, and Safari 2.

All the content in this book is usable and practical. You won’t waste time reading about
things that don’t work! With this book, you will no longer have to use hacks, tricks, endless
testing, and constant tweaking in multiple browsers to get something to work.

Using a design pattern is as easy as copying and pasting it into your code and tweaking a
few values. This book shows you which values you can modify and how they affect the result
so you can create the exact style and layout you want—without worrying whether it will work.

This is more than a cookbook. It systematically covers every usable feature of CSS and
combines these features with HTML to create reusable patterns. Each pattern has an intuitive
name to make it easy to find, remember, and talk about. Accessibility and best practices are
carefully engineered into each design pattern, example, and source code.

You can read straight through the book, use it as a reference, and use it to find solutions.
You’ll love how the book’s consistent layout makes it a joy to use.

The book puts examples on the left page and explanations on the right. Each example
includes a screenshot and all relevant HTML and CSS code so you can easily see how each
design pattern works. The explanation for each design pattern is included on the right-facing
page of the example so you can easily study the example while you read how it works.

The layout also makes the book very usable as an e-book because you can see the example
and explanation all on one screen; otherwise, you would have to flip back and forth between
pages, which is difficult to do in an e-book.

Each design pattern has a name, which is placed at the top of each page. This makes it
easy to find a design pattern, to remember it, and to talk about it with others. Since the name,
screenshot, code, and explanation are placed in the same location in each set of facing pages,
you can quickly thumb through the book to find what you are looking for.

Design patterns are organized by topic, and all usable CSS rules are covered in depth and
in context like no other book. All design patterns are accessible and follow best practices,
making this book a worthwhile read from cover to cover as well as an excellent reference to
keep by your side while you are designing and coding.

This book unleashes your productivity and creativity in web design and development.
Design patterns are like Legos—you can combine them in countless ways to create any
design. They are like tools in a toolbox, and this book arms you with hundreds of tools you
can whip out to solve problems quickly and reliably. Instead of hacking away at a solution,
this book shows you how to create designs predictably—by combining predictable patterns.

xxi

http://freepdf-books.com

Audience
This book is written for those who have some familiarity with CSS and HTML. It is for new-
comers who have previously read an introductory book on CSS and HTML. It is for designers
and developers who tried CSS at one time and gave up because it never seemed to work right.
It is for professionals who want to take their CSS skills to a higher level. It is for all who want
to create designs quickly without hacking around until they find something that works in all
browsers.

This book assumes the reader knows the basics of coding CSS and HTML. If you work
exclusively in WYSIWYG designers like Dreamweaver or FrontPage and never look at HTML
or CSS code, you may find the code in this book overwhelming.

If you like to learn by example, like to see how code works, and have some familiarity with
CSS and HTML, you will love this book.

In Chapters 17 and 20, seven design patterns use JavaScript. To fully understand them,
you need to understand the basics of JavaScript, but you do not need to know JavaScript to
use these patterns. Most importantly, you do not need to know anything about JavaScript to
understand and use the remaining 343+ design patterns because they have nothing to do with
JavaScript!

Innovations
This book contains several innovative concepts, terms, and approaches. These are not new or
radical: the technology is already built into the major browsers, the concepts are implied in
the CSS specification, and the terms are commonly used. What makes them innovative is how
I define and use them to show what can be done with CSS and HTML. In other words, they are
innovative because they simplify learning, understanding, and using CSS and HTML. These
ideas change how you think about CSS and HTML, and that makes all the difference. Further-
more, many of the design patterns in the book are innovative because they document
combinations of properties and elements to solve difficult problems like never before.

Six Box Models

One innovation in the book is the idea that CSS has six box models instead of one. CSS offi-
cially has one box model that defines a common set of properties and behaviors. A single box
model is a very useful concept, but it is oversimplified. Over the years, I learned the hard way
that box model properties work differently depending on the type of box.

This is one reason why so many people struggle with CSS. The box model seems simple,
yet when one uses a box model property, such as width, it only works some of the time or may
work differently than expected. For example, the width property sets the interior width of a
block box, but on table boxes it sets the outer width of the border, and on inline boxes it does
absolutely nothing.

Rather than treating different behaviors as an exception to one very complicated box
model, I define six simple box models that specify the behavior for each type of box. Chapter 4
presents the six box models, which are inline, inline-block, block, table, absolute, and float.
Since you always know which of these six box models you are using, you always know how
each box model property will behave.

■INTRODUCTIONxxii

http://freepdf-books.com

Furthermore, each box model defines its own way that it flows or is positioned. For exam-
ple, inline boxes flow horizontally and wrap across lines. Block boxes flow vertically. Tables
flow their cells in columns and rows. Floats flow horizontally, wrap below other floats, and
push inline boxes and tables out of the way. Absolute and fixed boxes do not flow; instead,
they are removed from the flow and are positioned relative to their closest positioned
ancestor.

Box Model Extents

Another innovation in the book is the concept that there are three ways a box can be dimen-
sioned: it can be sized, shrinkwrapped, or stretched (see Chapter 5). Each type of box requires
different combinations of properties and property values for it to be sized, shrinkwrapped, or
stretched. Various design patterns in Chapters 5 through 9 show how this is done. These three
terms are not official CSS terms, but they are implied in the CSS 2.1 specification in its formu-
las and where it mentions “size,” “shrink-to-fit,” and “stretch.”1

Of course, sizing, shrinkwrapping, and stretching are not new ideas. What is innovative is
that this book clearly defines these three terms and shows how they are a foundational feature
of CSS and a key generator of CSS design patterns.

Box Model Placement

Another innovation is the idea that there are three ways a box can be placed in relation to its
container or its siblings: specifically, it can be indented (or outdented), offset from its siblings,
or aligned and offset from its container (see Chapter 8). The CSS 2.1 specification talks much
about offsetting positioned elements, and it talks a little about aligning elements (see Chapter 9
of the CSS 2.1 specification), but it does not discuss how elements can be indented, although
this behavior is implied in its formulas.

Indenting, offsetting, and aligning are different behaviors. For example, an indented box is
stretched and its margins shrink its width, whereas an aligned box is sized or shrinkwrapped
and its margins do not shrink its width. Aligned and indented boxes are aligned to their con-
tainers, whereas offset boxes can be offset from their container or offset from their siblings.

Different combinations of properties and property values are needed to indent, offset,
and align different types of boxes. The design patterns in Chapters 8 and 9 show how this is
done.

Of course, indenting, offsetting, and aligning are not new ideas. What is innovative is that
this book clearly defines these three terms and shows how they are a foundational feature of
CSS and a key generator of CSS design patterns.

■INTRODUCTION xxiii

1. In the CSS 2.1 specification, the terms “size” and “sized” occur 15 times in Chapters 8, 9, 10, 11, 17, and
18. These occurances refer to the general sense that a box has size.

The terms “shrink” and “shrink-to-fit” occur 9 times in Chapters 9 and 10 of the CSS 2.1 specification.
The idea that different boxes can shrinkwrap to fit their content is implied in Sections 10.3.5 through
10.3.9 and Section 17.5.2.

The terms “stretch” and “stretched” occur 4 times in Chapters 9 and 16. The idea of stretching a box to
its container is mentioned in passing as shown in the following quote (italics added), “many box posi-
tions and sizes are calculated with respect to the edges of a rectangular box called a containing block.”
(See Sections 9.1.2, 9.3.1, and 10.1.)

http://freepdf-books.com

Column Layouts

Another innovation is the discovery, naming, and documenting of 12 automated techniques
built into browsers for laying out columns in tables (see Chapter 16).

All the major browsers include these powerful column layout features. They are compatible
across the major browsers and are very reliable. Even though using tables for page layout is
not recommended,2 tabular data still needs to be laid out, and you can take advantage of
these column layouts to make tabular data look great.

Fluid Layouts

Another innovation is Fluid Layouts (see Chapter 17). The concept of fluid layouts is not new,
but the process of creating them is commonly one of trial and error. In Chapter 17, I present
four simple design patterns you can use to create complex fluid layouts with confidence and
predictability in all major browsers.

These design patterns, Outside-in Box, Floating Section, Float Divider, and Fluid Layout,
use floats and percentage widths to make them fluid, but they do so without the problems you
normally encounter using these techniques, such as collapsed containers, staggered floats,
and percentages that push floats below each other.3

The Fluid Layout design pattern creates columnar layouts with the versatility of tables but
without using tables. Even better than tables, these layouts automatically adjust their width
and reflow from columns into rows as needed to fit into narrow displays.

Event Styling

Another innovation is the Event Styling JavaScript Framework presented in Chapter 17. This is
a simple, powerful, open source framework for dynamically and interactively styling a docu-
ment. It uses the latest best practices to ensure that HTML markup is completely free of
JavaScript code and completely accessible, and all styling is done with CSS. Furthermore, the
framework allows you to select elements in JavaScript using the same selectors you use to
select elements in CSS. This vastly simplifies and unifies the styling and scripting of a dynamic
HTML document!

The book includes this framework to show how to integrate JavaScript, CSS, and HTML
so you can use styles interactively. Of course, if you do not want to use JavaScript, you can skip
over the five JavaScript design patterns in Chapter 17 and the two JavaScript patterns in
Chapter 20—the remaining 343+ design patterns do not use JavaScript.

Combining HTML and CSS to Create Design Patterns

The final and most pervasive innovation in the book is the idea of combining general types of
HTML elements with CSS properties to create design patterns. The book defines four major

■INTRODUCTIONxxiv

2. Using tables for layout creates accessibility issues for nonsighted users. Furthermore, fluid layout
techniques (as shown in Chapter 17) are completely accessible and much more adaptable than tables.

3. Internet Explorer 6 has a number of bugs that may occur when you float elements. Unfortunately,
there is no way to create a solution that always bypasses these bugs, although the Fluid Layout design
pattern does a good job of avoiding them most of the time. Fortunately, Internet Explorer 7 fixes these
bugs.

http://freepdf-books.com

types of HTML elements in Chapter 2 (structural block, terminal block, multi-purpose block,
and inline) and Chapter 4 maps them to the six box models (inline, inline-block, block, table,
absolute, and float).

Each design pattern specifies how it applies to types of HTML elements. In other words,
a design pattern is more than a recipe that works only when you use specific elements; it is a
pattern that applies to all equivalent types of HTML elements.

For example, the Floating Drop Cap design pattern in Chapter 18 specifies a pattern that
uses block and inline elements, but it does not specify which block and inline elements you
have to use (see Listing 1). For example, you could use a paragraph for the BLOCK element and
a span for the INLINE element (see Listing 2), or you could use a division for the BLOCK and a
 for the INLINE, and so forth.

In some exceptional cases, a design pattern may specify an actual element, like a .
This happens when a specific element is the best solution, the only solution, or an extremely
common solution. Even in these cases, you can usually swap out the specified element for
another element of the same type. You can even use a different type of element as long as it
produces valid XHTML and you change its box model to be compatible (see the Display
design pattern and the box models in Chapter 4; also see Blocked in Chapter 11, Inlined in
Chapter 13, and Tabled, Rowed, and Celled in Chapter 15).

Listing 1. Floating Drop Cap Design Pattern

HTML

<BLOCK class="hanging-indent">
<INLINE class="hanging-dropcap"> text </INLINE>

</BLOCK>

CSS

*.hanging-indent { padding-left:+VALUE; text-indent:-VALUE; margin-top:±VALUE; }
*.hanging-dropcap { position:relative; top:±VALUE; left:-VALUE; font-size:+SIZE;
line-height:+SIZE; }

Listing 2. Floating Drop Cap Example

HTML

<p class="hanging-indent">
Hanging Dropcap.

</p>

CSS

*.hanging-indent { padding-left:50px; text-indent:-50px; margin-top:-25px; }
*.hanging-dropcap { position:relative; top:0.55em; left:-3px; font-size:60px;
line-height:60px; }

■INTRODUCTION xxv

http://freepdf-books.com

■INTRODUCTIONxxvi

Conventions
Each design pattern uses the following conventions:

• Uppercase tokens should be replaced with actual values. (Notice how the uppercase
tokens in Listing 1 are replaced with values in Listing 2.)

• Elements are uppercase when you should replace them with elements of your choice.
If an element name is lowercase, it should not be changed unless you ensure the
change produces the same box model. The following are typical element placeholders:

• ELEMENT represents any type of element.

• INLINE represents inline elements.

• INLINE_TEXT represents inline elements that contain text such as , ,
or <code>.

• BLOCK represents block elements.

• TERMINAL_BLOCK represents terminal block elements.

• INLINE_BLOCK represents inline block elements.

• HEADING represents <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>.

• PARENT represents any element that can be a valid parent of its children.

• CHILD represents any element that can be a valid child of its parent.

• LIST represents any list element including , , and <dl>.

• LIST_ITEM represents any list item including , <dd>, and <dt>.

• Selectors that you should replace are uppercase. If a selector contains lowercase text,
that part of the selector should not be changed unless you also modify the HTML
pattern, such as changing a class name. The following are typical placeholders:

• SELECTOR {} represents any selector.

• INLINE_SELECTOR {} represents any selector that selects inline elements.

• INLINE_BLOCK_SELECTOR {} represents any selector that selects inline-block
elements.

• BLOCK_SELECTOR {} represents any selector that selects block elements.

• TERMINAL_BLOCK_SELECTOR {} represents any selector that selects terminal block
elements.

• SIZED_BLOCK_SELECTOR {} represents any selector that selects sized block elements.

• TABLE_SELECTOR {} represents any selector that selects table elements.

• CELL_SELECTOR {} represents any selector that selects table cell elements.

http://freepdf-books.com

• PARENT_SELECTOR {} represents any selector that selects the parent in the design
pattern.

• SIBLING_SELECTOR {} represents any selector that selects the children in the pat-
tern.

• TYPE {} represents a selector that selects elements by a type of your choice such as
h1 or span.

• *.CLASS {} represents a selector that selects elements by a class name of your
choice.

• #ID {} represents a selector that selects elements by an ID of your choice.

• Values that you should replace are represented by uppercase tokens. If a value contains
lowercase text, that part of the value should not be changed. The following are typical
value tokens:

• Some values are literal and not meant to be replaced such as 0, -9999px, 1px, 1em,
none, absolute, relative, and auto. These values are always lowercase.

• +VALUE represents a positive measurement greater than or equal to zero, such as
0, 10px, or 2em.

• -VALUE represents a positive measurement less than or equal to zero, such as
0, -10px, or -2em.

• ±VALUE represents any measurement.

• VALUEem represents an em measurement.

• VALUEpx represents a pixel measurement.

• VALUE% represents a percentage measurement.

• VALUE_OR_PERCENT represents a value that can be a measurement or a percentage.

• WIDTH STYLE COLOR represents multiple property values, such as those required by
border. I use an uppercase token for each value.

• url("FILE.EXT") represents a background image where you replace FILE.EXT with
the URL of the image.

• CONSTANT represents a valid constant value. For example, white-space allows three
constant values: normal, pre, and nowrap. For convenience, I often list the valid
constant values in uppercase with underscores in between each possible value,
such as NORMAL_PRE_NOWRAP.

• ABSOLUTE_FIXED represents a list of constant values from which you can choose one
value. The underscore separates the constant values. The complete list of values for
position includes static, relative, absolute, and fixed. If a design pattern only
works for absolute and fixed, the pattern specifies position:ABSOLUTE_FIXED. If it
works for all four values, it specifies position:STATIC_RELATIVE_ABSOLUTE_FIXED or
position:CONSTANT.

■INTRODUCTION xxvii

http://freepdf-books.com

■INTRODUCTIONxxviii

• -(TAB_BOTTOM + EXTRA_BORDER + EXTRA_PADDING) is an example of a formula that
you would replace with a calculated value. The uppercase tokens in the formula
are tokens that occur elsewhere in the design pattern. For example, if you assigned
TAB_BOTTOM to 10px, EXTRA_BORDER to 10px, and EXTRA_PADDING to 10px, you would
replace the formula with -30px.

Using This Book
You can use the book to master CSS. You can read straight through the book to take your CSS
skills to a higher level and to discover the many golden nuggets tucked away inside design
patterns. Each chapter is organized so that it builds on design patterns presented earlier in the
chapter and presented in previous chapters. On the other hand, since individual chapters and
design patterns are self-contained, you can read them one by one in any sequence to master a
specific topic or technique.

You can use the book as a reference book. This book explains all of the usable CSS prop-
erties and shows how to use them in examples. Even more importantly, many properties
behave differently when combined with other properties. Each design pattern identifies and
documents the unique combination of properties required to create a specific result. This
makes it a reference book not only for how CSS properties work alone, but also for how they
work in combination.

You can use the book to learn by example. Since all examples in the book follow best
practices, you can learn good habits and techniques just by studying them. To make studying
the book by example easier, you can use the “See also” sections to look up all related design
patterns. This allows you to easily see many examples of how a specific CSS property or fea-
ture can be used in a variety of contexts.

You can use the book as a cookbook to help you create designs or to solve problems.
Design patterns are organized by topic so you can quickly find related solutions.

I have added extra features to the book to make it easy to find a solution when you need
it. You can use the table of contents, the index, thumb tabs, chapter outlines, design pattern
names, and the “See also” section of each design pattern to quickly find properties, patterns,
answers, and solutions. Since the screenshots in each example are in the same location on
every page, you can even thumb through the book while looking at screenshots to find a solu-
tion. I find visual scanning a very easy, fast, and effective way to find solutions!

Companion Web Site
The companion web site, cssDesignPatterns.com, is designed to enhance your experience
with the book. Each page contains links to related design patterns and a search box for finding
patterns. Each design pattern contains the example and its source code as well as additional
information, such as additional examples, errata, comments, and links to related resources on
the Internet.

At the end of each design pattern in the book is a link to the design pattern on
cssDesignPatterns.com. (Each design pattern on the web site is a directory named after
the design pattern with spaces in the design pattern name replaced by hyphens.)

In addition, cssDesignPatterns.com contains design patterns that are not in the book.

http://freepdf-books.com

How This Book Is Structured
Chapters 1 through 3 explore the fundamentals of CSS and HTML:

• Chapter 1 shows how design patterns make CSS easy. Here I demonstrate how to com-
bine simple design patterns into more complex and powerful patterns. I also review the
syntax of CSS and the cascade order. In addition, I present several charts that make
using CSS easy: a list of links to useful CSS web sites, a one-page summary of CSS prop-
erties; a four-page listing of all usable CSS properties, values, and selectors organized
by where they can be used; charts on units of measure and font size; two example
stylesheets for normalizing the styles of elements in all browsers; and a 12-step guide
to troubleshooting CSS.

• Chapter 2 introduces the design patterns that underlie HTML. In this chapter, I pres-
ent the best practices of using HTML including coding in XHTML. I also explore the
types of structures you can create with HTML including structural blocks, terminal
blocks, multi-purpose blocks, and inlines. I also show how to use IDs and attributes
for easy selection by CSS selectors.

• Chapter 3 introduces design patterns for CSS selectors and inheritance. Here I
demonstrate how selectors are the bridge between HTML and CSS. I present design
patterns for type, class, ID, position, group, attribute, pseudo-element, pseudo-class,
and subclass selectors. I also explore CSS inheritance.

Chapters 4 through 6 explore the six CSS box models. They show how each HTML element is
rendered as one of these six types of boxes (or not rendered at all). They demonstrate how the
same properties produce different results in each box model, and how each box model flows
differently from the other box models.

• Chapter 4 explores the six box models: inline, inline-block, block, table, absolute, and
float.

• Chapter 5 explores the three ways of dimensioning a box: sized, shrinkwrapped, or
stretched.

• Chapter 6 explores each of the box model properties: margin, border, padding,
background, overflow, visibility, and pagebreak.

Chapters 7 through 9 explore how boxes flow or are positioned.

• Chapter 7 explores the five positioning models (static, absolute, relative, fixed, and
floated) and relates them to the six box models.

• Chapter 8 explores the three ways a box can be positioned: for example, a box can be
indented or outdented, offset from its siblings, or aligned and offset from its container.

• Chapter 9 combines the patterns in Chapters 7 and 8: The combinations result in
more than 50 design patterns for positioning elements—with a particular focus on
absolute and fixed positioning.

■INTRODUCTION xxix

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

Chapters 10 through 12 explore in detail how inline boxes flow and how to style, space, and
align text and objects:

• Chapter 10 explores the properties that style text and also contains three design
patterns for hiding text while remaining accessible to nonsighted users.

• Chapter 11 shows how to space inline content horizontally and vertically.

• Chapter 12 shows how to align inline content horizontally and vertically.

Chapters 13 and 14 explore in detail how blocks and images flow and how they can be styled:

• Chapter 13 explores blocks, starting with a discussion of the structural meaning of
blocks and how you can visually display that meaning. It covers lists, inlining blocks,
collapsed margins, run-in blocks, block spacing, and marginal blocks.

• Chapter 14 explores images, such as image maps, semi-transparent images, replacing
text with images, sprites, shadowed images, and rounded corners.

Chapters 15 and 16 explore in detail how to style and lay out tables and cells.

• Chapter 15 explores tables including table selectors, collapsed borders, hiding cells,
vertically aligning content in cells, and displaying inline and block elements as tables.

• Chapter 16 explores laying out table columns using 12 patterns, which automatically
shrinkwrap columns, size them, proportionally distribute them, and so forth.

Chapter 17 explores how the flow of floats can be used to create fluid layouts:

• Chapter 17 shows how to create fluid layouts that automatically adapt to different
devices, fonts, widths, and zoom factors. It also shows how to create interactive layouts
using JavaScript.

Chapters 18 through 20 show how to combine design patterns to create a variety of solutions
to the same problem. Each solution addresses different needs and has different advantages
and disadvantages. Besides being useful solutions in and of themselves, they demonstrate
how you can combine patterns to solve any design problem.

• Chapter 18 explores drop caps. Here I cover seven types of drop caps using seven
different combinations of design patterns.

• Chapter 19 explores callouts and quotes. The chapter demonstrates five types of
callouts and three types of quotes.

• Chapter 20 explores alerts. Here I present three types of interactive alerts and eight
types of text alerts (i.e., attention getters).

■INTRODUCTIONxxx

http://freepdf-books.com

Downloading the Code
All code is available at www.cssDesignPatterns.com.

You can also download the code at www.apress.com by searching for and going to the
detail page for Pro CSS and HTML Design Patterns. On the book’s detail page is a link to the
sample code compressed into a ZIP file. You can use a utility like WinZip to uncompress
the code.

Using the Code
The code is arranged in folders, with a folder for each chapter. To make chapter folders easy to
navigate, each folder name includes the chapter number and title. Inside each chapter folder
are example folders: one for each design pattern presented in the chapter.

So you can easily find examples, each example folder has the same name as its design
pattern. This makes it easy and fast to find design patterns by searching folder names. Since
the HTML in each example names and describes its design pattern, you can find a design
pattern by searching for words inside HTML files. You could also search inside CSS files for
examples that use a particular CSS property, such as display.

To make it easy to view examples in multiple browsers, I put a file named index.html in
the root folder that links to all design pattern folders. In turn, each folder contains a file
named index.html that links to all the design patterns in that folder. These navigation pages
make it quick to find and view each design pattern in each chapter.

Each example folder contains all the files needed to make the example work. This makes
it a breeze to use the examples in your own work: simply copy a folder and start making
changes. You don’t have to worry about tracking down and including files from other folders.

The most important files in each example folder are example.html and page.css.
example.html contains the XHTML code for the example. page.css is the main stylesheet
for the example.

Each example also uses a CSS file named site.css. It contains a few nonessential font
and heading rules that give all the examples in the book the same basic look and feel.

In a few exceptional cases, I use an additional CSS file to overcome bugs or nonstandard
behavior in Internet Explorer.4 ie6.css contains rules to fix problems in Internet Explorer 6.
ie7.css contains rules to fix problems in Internet Explorer 7. ie67.css contains rules to fix
problems in both versions 6 and 7. Rules in these files override rules in page.css.

The seven JavaScript examples use five JavaScript files. These are explained in the Event
Styling design pattern Chapter 17. page.js is the most important file because it contains
JavaScript code specific to the example. The remaining JavaScript files are open source
libraries.

Lastly, each example folder contains all image files used by that example.

■INTRODUCTION xxxi

4. There are only 25 of these files out of more than 350 design patterns. Most of these files contain only
a single, simple rule, such as div{zoom:1;}. In spite of the numerous bugs, quirks, and nonstandard
features of Internet Explorer 6, I only needed to build workarounds into 25 design patterns. This is
because I carefully designed the patterns in this book to avoid problems in the first place. I allowed an
exception in a pattern only when I could find no alternative. I literally had to throw out hundreds of
design patterns to find patterns that work without exception. Lastly, because Internet Explorer 7 fixes
most of the bugs in Internet Explorer 6, only 4 of these 25 exceptions apply to Internet Explorer 7.

http://freepdf-books.com

Errata
You can view errata at www.cssDesignPatterns.com and on the detail page of the book at
www.apress.com.

If you find an error in the book, I would greatly appreciate knowing about it. Please e-mail
the problem to support@apress.com and support@cssDesignPatterns.com.

Contacting the Author
You can contact me at mike@cssDesignPatterns.com. I look forward to your comments, sugges-
tions, and questions.

■INTRODUCTIONxxxii

http://freepdf-books.com

Design Patterns: Making
CSS Easy!

On the surface, CSS seems easy. It has 45 commonly used properties you can employ to style
a document. Below the surface, different combinations of properties and property values trig-
ger completely different results. I call this CSS polymorphism because the same property has
many meanings. The result of CSS polymorphism is a combinatorial explosion of possibilities.

Learning CSS is more than learning about individual properties. It is about learning the
contexts in which properties can be used and how different types of property values work dif-
ferently in each context. As an example, take the width property, which has many different
meanings depending on how it is combined with other rules and what values are assigned to
it. For instance, width has absolutely no effect on inlines. width:auto shrinkwraps floats to
the width of their content. width:auto shrinkwraps absolutes when left and right are set to
auto. width:auto stretches blocks to the width of their parent element. width:auto stretches
absolutes to the width of their containing block when left and right are set to 0. width:100%
stretches blocks and floats to the width of their parent element as long as they do not have
borders, padding, and margins. width:100% stretches tables to the width of their parent even if
they do have borders and padding. width:100% stretches absolutes to the width of their closest
positioned ancestor instead of their parent. width:100em sizes an element in relation to the
height of its font-size, which allows the element to be sized wide enough to contain a certain
number of characters. width:100px sizes an element to a fixed number of pixels regardless of
the font-size of its text.

To complicate matters further, not all of the rules are implemented by browsers. For
example, over 40 out of 122 properties and over 250 out of 600 CSS rules are not implemented
by one or more of the major browsers.

Trying to learn CSS by memorizing the extraordinary number of exceptions to each rule is
extremely frustrating.

To make learning CSS easy, this book documents all usable combinations of properties
and property values. It puts properties in context and paints a complete picture of how CSS
works.

Imagine the time you will save by not having to read about rules that do not work and by
not having to test every rule to see whether it works in every browser and in combination with
other rules. I have already done this for you. I have run many thousands of tests. I have tested
every CSS property and every combination of properties in every major browser including
Internet Explorer 7, Internet Explorer 6, Firefox 2, Opera 9, and Safari 2.

1

C H A P T E R 1

http://freepdf-books.com

I have boiled down these results into 350+ simple design patterns—all the CSS and HTML
design patterns you need to create stunning, high-performance, and accessible web sites.
After you learn these design patterns, you’ll wonder how you ever developed web sites without
them!

In this chapter, I discuss the purpose of design patterns and how they work. I give some
examples of how to combine design patterns to create new patterns. I also discuss how to use
stylesheets, CSS syntax, and the cascading order to your advantage.

Next, I present a series of charts that list all the usable CSS properties and units of measure.
I then present 12 techniques for troubleshooting CSS quickly. Lastly, I discuss how to stan-
dardize the way various browsers style elements—so you can override these default styles with
confidence.

Design Patterns—Structured Recipes
Design patterns have been used with great success in software programming. They improve
productivity, creativity, and efficiency in web design and development, and they reduce code
bloat and complexity. In the context of CSS and HTML, design patterns are sets of common
functionality that work across various browsers and screen readers, without sacrificing design
values or accessibility or relying on hacks and filters. But until now they have not been applied
systematically to HTML and CSS web design and development.

Design patterns underlie all creative activities. We think in terms of patterns when we talk,
write, and create. Design patterns are similar to document templates that we can fill in with
our own content. In literature, they are like archetypal characters and plots. In music, they are
like themes and variations. In programming, they are similar to reusable algorithms that can
be systematically varied and combined with each other to produce a desired result.

Once a design pattern is revealed, it greatly increases creativity and productivity. It can
be used by itself to create quick results, and it can be easily combined with other patterns to
create more complex results. Design patterns simplify and amplify the creative process. They
make creation as easy as building with blocks or Legos. You simply choose predesigned pat-
terns, vary them, and combine them to create the result you want. Patterns do not limit
creativity—they unleash creativity.

The seminal work Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1995) explains
that a design pattern consists of four elements: a pattern name, a problem, a solution, and
tradeoffs. This book follows this approach.

Since this is a practical book, it focuses directly on the concrete patterns designed into
CSS and HTML that are actually implemented in the major browsers. This book also creates
new design patterns by combining built-in patterns into higher-level patterns.

In a very real sense, this is a book of patterns that you can use to create your designs.

Using Design Patterns
Chapters 1 through 7 present the basic properties and elements for styling layout. Chapters 8
and 9 combine these properties to create all possible block, positioned, and floated layouts.
Chapters 10 through 12 present the basic properties for styling text and also present combina-
tions of properties you can use to create inline layouts. Chapters 13 through 16 combine

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!2

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

design patterns from previous chapters with specialty properties and elements to style blocks,
lists, images, tables, and table columns.

Together, Chapters 1 through 16 present over 300 design patterns created by combining
45 common CSS properties with four types of elements (inline, inline-block, block, and table)
and five types of positioning (static, relative, absolute, fixed, and float).

This is the great power of design patterns: it is easy to take basic patterns and combine
them to form more complex patterns. This makes learning CSS easy, and it makes using CSS
very productive. Chapters 17 through 20 show how to combine these design patterns to create
fluid layouts, drop caps, callouts, quotes, and alerts.

To illustrate the simplicity and power of design patterns, the next five examples show how
to take a series of basic design patterns and combine them into more complex patterns. You
do not need to understand the details of each pattern—just the process of combining pat-
terns.

The first example in this series shows the background property in action. background is a
design pattern built into CSS that displays an image behind an element. Example 1-1 shows
the background property combined with a division element. The division is sized 250 by
76 pixels so it will reveal the entire background image.1

Example 1-1. Background Image

HTML

<h1>Background Image</h1>
<div></div>

CSS

div { background:url("heading2.jpg") no-repeat; width:250px; height:76px; }

Example 1-2 demonstrates the Absolute design pattern. The idea behind the Absolute
design pattern is to remove an element from the flow and position it relative to another

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 3

M
A

K
IN

G
C

S
S

E
A

S
Y

!

1. This example is simple and yet it combines seven design patterns: the Structural Block Elements
design pattern in Chapter 2; the Type Selector pattern in Chapter 3; the Block Box pattern in Chap-
ter 4; the Width, Height, and Sized patterns in Chapter 5; and the Background design pattern in
Chapter 6.

http://freepdf-books.com

element. CSS provides the position:absolute rule for this purpose. When position:absolute
is combined with the top and left properties, you can position an element at an offset from
the top left of its closest positioned ancestor. I used position:relative to position the division
so it would be the closest positioned ancestor to the span. I then absolutely positioned the
span 10 pixels from the top and left sides of the division.2

Example 1-2. Absolute

HTML

<h1>Absolute</h1>

<div class="positioned">
Sized Absolute

</div>

CSS

*.positioned { position:relative; }
*.absolute { position:absolute; top:10px; left:10px; }

/* Nonessential styles are not shown */

Example 1-3 combines the design patterns in the first two examples to create the Text
Replacement design pattern. The idea behind text replacement is to display an image in the
place of some text (so you can have more stylistic control over the text because it is embedded
in an image). In addition, you want the text to be present behind the image so that it becomes
visible if the image fails to download.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!4

M
A

K
IN

G
C

S
S

E
A

S
Y

!

2. This example is simple, and yet it combines seven design patterns: the Inline Elements and Structural
Block Elements design patterns in Chapter 2; the Class Selector pattern in Chapter 3; the Absolute Box
pattern in Chapter 4; and the Absolute, Relative, and the Closest Positioned Ancestor patterns in
Chapter 7.

http://freepdf-books.com

I combined the Background and Absolute design patterns to create the Text Replacement
pattern. I placed an empty span inside a heading. I relatively positioned the heading so child
elements can be absolutely positioned relative to it. I assigned a background image to the
span and absolutely positioned it in front of the text in the heading element. I sized the span
and the heading to the exact size of the background image.

The end result is that the background image of the span covers the text in the heading,
and if the image fails to download, the styled text in the heading is revealed.3

Example 1-3. Text Replacement

HTML

<h1>Text Replacement</h1>
<h2 id="h2" >Heading 2</h2>

CSS

#h2 { position:relative; width:250px; height:76px; overflow:hidden; }

#h2 span { position:absolute; width:250px; height:76px; left:0; top:0;
background:url("heading2.jpg") no-repeat; }

Example 1-4 demonstrates the Left Marginal design pattern. The idea behind this pattern
is to move one or more elements out of a block into its left margin so you can have headings
(or notes, images, etc.) on the left and content on the right.4

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 5

M
A

K
IN

G
C

S
S

E
A

S
Y

!

3. The Text Replacement example uses the 14 design patterns shown in the previous two examples.
It also introduces the ID Selector design pattern in Chapter 3. You can learn more about the Text
Replacement design pattern in Chapter 10.

4. The Left Marginal design pattern combines the Position Selector design pattern in Chapter 3; the
Margin pattern in Chapter 6; the Absolute Box pattern in Chapter 4; and the Absolute, Relative, and
the Closest Positioned Ancestor patterns in Chapter 7.

http://freepdf-books.com

Example 1-4. Left Marginal

HTML

<h1>Left Marginal</h1>

<div class="left-marginal" >
<h2 class="marginal-heading">Heading</h2>

You want to excerpt an element and move it into the left margin.</div>

CSS

*.left-marginal { position:relative; margin-left:200px; }
*.marginal-heading { position:absolute; left:-200px; top:0; margin:0; }

Example 1-5 demonstrates the Marginal Graphic Dropcap design pattern. This pattern
combines all the design patterns shown in the previous four examples. The idea behind this
pattern is to create a graphical drop cap in the left margin of a block with all the advantages of
the Text Replacement and Left Marginal design patterns.5

To meet these requirements, I used the indent class to relatively position the paragraph so
that it will be the closest positioned ancestor of the drop cap and to add a 120-pixel left mar-
gin to the paragraph to make room for the drop cap. I used the graphic-dropcap class to
absolutely position the drop cap, to move it into the paragraph’s left margin, and to set it to the
exact size of the dropcap image. I then absolutely positioned the span inside the graphic drop
cap and moved it over the dropcap text so it covers the text with its background image.

Viewed by itself, the Marginal Graphic Dropcap pattern is a somewhat complex combina-
tion of 16+ design patterns. On the other hand, when viewed as a combination of the Text
Replacement and Left Marginal design patterns, it is quite simple. This is the power of design
patterns.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!6

M
A

K
IN

G
C

S
S

E
A

S
Y

!

5. The Marginal Graphic Dropcap design pattern is discussed in detail in Chapter 18.

http://freepdf-books.com

Example 1-5. Marginal Graphic Dropcap

HTML

<h1>Marginal Graphic Dropcap</h1>

<p class="indent">Marginal
Graphic Dropcap. The letter M has been covered by the dropcap image.
Screen readers read the text and visual users see the image.
If the browser cannot display the dropcap image,
the text becomes visible.</p>

CSS

*.indent { position:relative; margin-left:120px; }

*.graphic-dropcap { position:absolute;
width:120px; height:90px; left:-120px; top:0; }

*.graphic-dropcap span { position:absolute;
width:120px; height:90px; margin:0; left:0; top:0;
background:url("m.jpg") no-repeat; }

Using Stylesheets
You can place styles in three locations: stylesheets, <style>, and style.

A stylesheet is an independent file that you can attach to an HTML document using the
<link> element or CSS’s @import statement. <style> is an HTML element that you can embed
within the HTML document itself. style is an attribute that can be embedded within any
HTML element.

I recommend putting styles in stylesheets. This reduces noncontent in your HTML docu-
ments, and it puts all your styles in files that are easily managed.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 7

M
A

K
IN

G
C

S
S

E
A

S
Y

!

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

I recommend naming stylesheets using single-word, lowercase names. This keeps
stylesheet names simple and easy to remember, and works safely in all operating systems.
I suggest you use a name that describes the scope and purpose of the stylesheet, such as
site.css, page.css, handheld.css, print.css, and so forth. The standard extension for a
stylesheet is .css. The standard Internet media type is text/css.

I recommend using the location of a stylesheet to control its scope. If a stylesheet is for an
entire web site, you could place it in the root directory of the web site. If a stylesheet applies
only to a document, you could place it in the same directory as the document.

To link a stylesheet to an HTML document, you can include a <link> element in the
<head> section of HTML documents, and you can place the URI of the stylesheet within the
href attribute of the <link> element. Listing 1-1 shows the stylesheet links that I use in each
example in this book. See the Header Elements and Conditional Stylesheet design patterns in
Chapter 2 for more information on linking stylesheets.

Listing 1-1. Attaching Stylesheets

<link rel="stylesheet" href="site.css" media="all" type="text/css" />
<link rel="stylesheet" href="page.css" media="all" type="text/css" />
<link rel="stylesheet" href="print.css" media="print" type="text/css" />
<!--[if lte IE 6]>
<link rel="stylesheet" href="ie6.css" media="all" type="text/css" />
<![endif]-->

For increased download performance, you may want to include page-specific styles in the
<style> element instead of in a separate page-specific stylesheet. Since these styles are page
specific, there is little disadvantage to putting these styles in the header of the page. On the
other hand, I do strongly recommend against using the style attribute of HTML elements
because this creates very hard-to-maintain code.

CSS Syntax
CSS syntax is easy. A stylesheet contains styles; a style contains selectors and rules; and a rule
contains a property and a value. The following is the design pattern for a style:

SELECTORS { RULES }

The following is the design pattern for a rule:

PROPERTY:VALUE;

For example, p{margin:0;} is a style. p is the selector, which selects all <p> elements in an
HTML document. The curly bracket ({}) operators assign the rule, margin:0;, to the selector, p.
The colon (:) operator assigns the value 0 to the property, margin. The semicolon (;) operator
terminates the rule.

A style may have one or more selectors and one or more rules. For example,
p.tip{margin:0; line-height:150%;} is a style. The curly bracket operators group the two
rules, margin:0; and line-height:150%;, into a ruleset and assign it to the selector, p.tip,
which selects all <p class="tip"> elements in an HTML document.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!8

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

CSS Syntax Details

The key points of CSS syntax are as follows:

• Unicode UTF-8 should be used to encode CSS files—the same way you should encode
HTML files.

• CSS code should be lowercase. Selectors are case sensitive when referencing element
names, classes, attributes, and IDs in XHTML.6 CSS properties and values are case

insensitive. For simplicity and consistency, I use lowercase characters for all CSS code
including elements, classes, and IDs.

• Element names, classes, and IDs are restricted to letters, numbers, underscores (_),
hyphens (-), and Unicode characters 161 and higher. The first character of an element,
class, or ID must not be a number or a hyphen. A classname and ID must not contain
punctuation other than the underscore and hyphen. For example, my_name2-1 is a valid
name for a class or ID, but the following are invalid: 1, 1my_name, -my_name, my:name,
my.name, and my,name.

• Multiple classes can be assigned to an element by separating each class name with a
space, such as class="class1 class2 class3".

• Constant values should not be placed in quotes. For example, color:black; is correct,
but color:"black"; is not.

• The backslash (\) can be used to embed characters in a context where they normally
cannot occur; for example, \26B embeds & in a string or identifier. Anywhere from two
to eight hex codes can follow a backslash, or a character can follow a backslash.

• A string may contain parentheses, commas, whitespace, single quotes ('), and double
quotes (") as long as they are escaped with a backslash, such as the following:

"embedded left parentheses \("
"embedded right parentheses \) "
"embedded comma \, "
"embedded single quote \' "
"embedded double quote \" "
"embedded single quote ' in a double-quoted string"
'embedded double quote " in a single-quoted string'

• A semicolon should terminate each CSS rule and @import statement.

color:red;
@import "mystylesheet.css";

• Rulesets are created by enclosing multiple rules in curly braces, such as
{ color:red; font-size:small; }.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 9

M
A

K
IN

G
C

S
S

E
A

S
Y

!

6. In HTML, CSS selectors are case insensitive.

http://freepdf-books.com

• The right curly brace (}) immediately terminates a set of properties, unless it is
embedded within a string, such as "}".

• A CSS comment starts with /* and ends with */, such as /* This is a CSS comment */.
Comments cannot be nested. Thus, the first time a browser encounters */ in a
stylesheet, it terminates the comment. If there are subsequent occurrences of /*, they
are not interpreted as part of the comment. For example:

/* This is an incorrect comment
/* because it tries to nest
/* several comments. */
STARTING HERE, THIS TEXT IS OUTSIDE OF ALL COMMENTS! */ */

Using Whitespace in CSS

Whitespace in CSS includes only the following characters: space (\20), tab (\09), new line
(\0A), return (\0D), and formfeed (\0C). A browser will not interpret other Unicode whitespace
characters as whitespace—such as the nonbreaking space (\A0).

You can optionally place whitespace before and after the following: selectors, curly
braces, properties, colons, values, and semicolons. For example, all the following statements
are correct and produce the exact same result:

body{font-size:20px;line-height:150%;}

body { font-size:20px; line-height:150%; }

body { font-size : 20px ; line-height : 150% ; }

body
{
font-size: 20px;
line-height: 150%;

}

In this book, I use a compact coding style in which I put no whitespace inside rules, and I
put one space in between rules and selectors, such as the following:

body { font-size:20px; line-height:150%; }

Whitespace never occurs within a property name or within a constant property value.
Whenever CSS uses multiple words for a property name or constant property value, it uses
a hyphen to separate the words, such as font-family and sans-serif. On rare occasions,
CSS uses CamelCase to combine multiple words into one constant value, such as
ThreeDLightShadow.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!10

M
A

K
IN

G
C

S
S

E
A

S
Y

!

ae1c89095f95abda90126f30663a4984

http://freepdf-books.com

Using Property Values

Property values come in the following forms: constant text, constant numbers, lengths, per-
centages, functions, comma-delimited lists of values, and space-delimited series of values.
Each property accepts one or more of these types of values.

I have included all common types of values in Example 1-6. But first, I have listed them
here along with an explanation:

• color:black; assigns the constant value black to the color property. Most properties
have unique constant values. For example, the color property can be assigned to over
170 constants that represent colors ranging from papayawhip to ThreeDDarkShadow.

• background-color:white; assigns the constant value white to the background-color
property. Notice that the following three rules do the same thing as this rule, but use
different types of property values.

• background-color:rgb(100%,100%,100%); assigns the CSS function rgb() to
background-color. rgb() takes three comma-delimited parameters between its paren-
theses, which specify the amount of red, green, and blue to use for the color. In this
example, percentages are used. 100% of each color makes white.

• background-color:rgb(255,255,255); assigns white to the background-color. In this
case, values from 0 to 255 are used instead of percentages. The value 0 is no color. The
value 255 equals 100% of the color. Using 255 for red, green, and blue makes white.

• background-color:WindowInfoBackground; assigns the operating system color
WindowInfoBackground to background-color. Notice how operating system color
constants are in CamelCase.7

• font-style:italic; assigns the constant value of italic to font-style. The font-style
property also allows two other constant values: normal and oblique.

• font-size:20px; assigns a length of 20 pixels to font-size. You can assign a variety
of measurements to most properties including px (pixel), em (height of the font or
font-size), ex (height of the letter “x”), pt (point, i.e., 1/72 of an inch), in (inch),
cm (centimeter), mm (millimeter), and pc (pica, i.e., 12 points, or 1/6 of an inch).

• font-family:"Century Gothic", verdana, arial, sans-serif; assigns a comma-
delimited list of font names to font-family. If the first font name is unavailable, a
browser uses the second, and so forth. The last font name should be one of the generic
font names: serif, sans-serif, or monospace, which works in every browser. Whenever
a font name contains a space, it must be enclosed in double quotes, such as
"Century Gothic".

• line-height:150%; assigns 150% of the font-size to line-height.

• margin:1em; assigns the size of the font to margin (i.e., font-size multiplied by 1).

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 11

M
A

K
IN

G
C

S
S

E
A

S
Y

!

7. Each time you assign the same property to the same element, the new rule overrides the previous rule.
Since the example contains four background-color rules in a row, the last one is applied.

http://freepdf-books.com

• border:4px double black; creates a black, 4-pixel, double-line border. Notice how
border takes three space-delimited values that represent the border’s width, style, and
color. The sequence of the values does not matter. border is a shortcut property for
three properties: border-width, border-style, and border-color. There are several other
shortcut properties including background, font, list-style, margin, and padding.

• padding:0.25em; assigns one-quarter of the font size to padding (i.e., font-size multi-
plied by 0.25).

• background-image:url("gradient.jpg"); assigns the gradient.jpg image to
background-image using the url function, which takes the URL of a file as its only
parameter. I always put a URL in quotes, but you only have to if the URL contains
whitespace.

• background-repeat:repeat-x; assigns the constant repeat-x to background-repeat.
Other background-repeat values include repeat-y, repeat, and no-repeat.

• margin:0; assigns zero to margin. Zero is the only length that may be specified without a
measurement. All other lengths must be immediately followed by a measurement, such
as 1px, -1.5em, 2ex, 14pt, 0.5in, -3cm, 30mm, or 5pc.

• font-weight:900; assigns the constant 900 to font-weight. This number is actually a
constant. You can use the following constants for font-weight: normal, bold, bolder,
lighter, 100, 200, 300, 400, 500, 600, 700, 800, or 900. (Note that browser support is
poor for numerical font weights, generally treating 100 through 400 as normal and 500
through 900 as bold. Furthermore, bolder and lighter is rarely supported by browsers
and/or operating system fonts. Thus, I rarely use any value for font-weight other than
normal or bold.)

Later in the chapter, I present a four-page chart called that lists all usable CSS properties
and values. color is the only property in the chart that has an incomplete list of usable values.
It shows 79 of the 170 color constants. I organized the 79 color constants into three groups
that you may find useful: the 16 standard colors organized by hue, 35 common colors organ-
ized by hue from light to dark, and the 28 operating system colors. Throughout this book, I
often use the color gold. I also use related hues such as wheat, orange, tomato, firebrick, and
yellow.

■Tip You can disable a rule by placing the number 1 (or any other character for that matter) immediately in

front of a property name; for example, 1background-color:white. This invalidates the rule, but only the

one rule. All other valid rules before and after the invalid one are still processed. I often use this technique to

invalidate one rule temporarily to disable its effect while testing other rules.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!12

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

Example 1-6. CSS Syntax Is Easy

HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head><title>CSS Syntax</title>
<meta http-equiv="Content-type" content="text/html; charset=utf-8" />
<link rel="stylesheet" href="page.css" media="all" type="text/css" />

<style><!--
body { color:black; background-color:white;

background-color:rgb(100%,100%,100%);

background-color:rgb(255,255,255);

background-color:WindowInfoBackground; }

--></style

</head>

<body>
<p>CSS syntax is EASY!</p>

</body>

</html>

CSS

body { font-family:"Century Gothic",verdana,arial,sans-serif;
font-size:20px; line-height:150%;
margin:1em; border:4px double black; padding:0.25em;
background-image:url("gradient.gif"); background-repeat:repeat-x; }

p { margin:0; }
span { font-weight:900; }

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 13

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

Using Cascade Order
CSS allows you to assign the same rule to the same element multiple times. I call these com-

peting rules. Browsers use the cascading order to determine which rule in a set of competing
rules gets applied. For example, a browser assigns default rules to each element. When you
assign a rule to an element, your rule competes with the default rule, but since it has a higher
cascading priority, it overrides the default rule.

The cascading order divides rules into six groups based on the type of selector used in the
rule. A rule in a higher-priority group overrides a competing rule in a lower-priority group.
Groups are organized by the specificity of their selectors. Selectors in lower-priority groups
have less specificity than selectors in higher-priority groups.

The guiding principle behind the cascade order is that general selectors set overall styles
for a document and more specific selectors override the general selectors to apply specific
styles.

For example, you may want to style all elements in a document with no bottom margin
using *{margin-bottom:0;}. You may also want to style all paragraphs in a document with a
bottom margin of 10 pixels using p{margin-bottom:10px;}. You may also want to style the
few paragraphs belonging to the double-space class with a bottom margin of 2 ems using
*.double-space{margin-bottom:2em;}. You may also want to style one paragraph with an
extra-large bottom margin of 40 pixels using #paragraph3{margin-bottom:40px;}. In each of
these cases, the cascade order ensures a more specific selector overrides a more general one.

Following are the six selector groups listed from highest to lowest priority:

1. The highest-priority group contains rules with !important added to them. They
override all non-!important rules. For example, #i100{border:6px solid
black!important;} takes priority over #i100{border:6px solid black;}.

2. The second-highest-priority group contains rules embedded in the style attribute.
Since using the style attribute creates hard-to-maintain code, I do not recommend
using it.

3. The third-highest-priority group contains rules that have one or more ID selectors. For
example, #i100{border:6px solid black;} takes priority over *.c10{border:4px solid
black;}.

4. The fourth-highest-priority group contains rules that have one or more class, attribute,
or pseudo selectors. For example, *.c10{border:4px solid black;} takes priority over
div{border:2px solid black;}.

5. The fifth-highest-priority group contains rules that have one or more element selec-
tors. For example, div{border:2px solid black;} takes priority over *{border:0px
solid black;}.

6. The lowest-priority group contains rules that have only a universal selector—for
example, *{border:0px solid black;}.

When competing rules belong to the same selector group (such as both rules contain ID
selectors), the type and number of selectors prioritize them further. A selector has higher
priority when it has more selectors of a higher priority than a competing selector. For example,

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!14

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

#i100 *.c20 *.c10{} has a higher priority than #i100 *.c10 div p span em{}. Since both
selectors contain an ID selector, they are both in the third-highest-priority group. Since the
first has two class selectors and the second has only one class selector, the first has higher
priority—even though the second has more selectors.

When competing rules are in the same selector group and have the same number and
level of selectors, they are further prioritized by location. Any rule in a higher-priority location
overrides a competing rule in a lower-priority location. (Again, this only applies when com-
peting rules are in the same selector group and have the same number and level of selectors.
Selector groups always take precedence over location groups.) The six locations are listed here
from highest to lowest priority:

1. The highest-priority location is the <style> element in the head of the HTML docu-
ment. For example, a rule in <style> overrides a competing rule in a stylesheet
imported by an @import statement embedded within <style>.

2. The second-highest-priority location is a stylesheet imported by an @import statement
embedded within the <style> element. For example, a rule in a stylesheet imported
by an @import statement embedded within <style> overrides a competing rule in a
stylesheet attached by a <link> element.

3. The third-highest-priority location is a stylesheet attached by a <link> element. For
example, a rule in a stylesheet attached by a <link> element overrides a competing
rule imported by an @import statement embedded within the stylesheet.

4. The fourth-highest-priority location is a stylesheet imported by an @import statement
embedded within a stylesheet attached by a <link> element. For example, a rule
imported by an @import statement embedded within a linked stylesheet overrides a
competing rule in stylesheet attached by an end user.

5. The fifth-highest-priority location is a stylesheet attached by an end user.

• An exception is made for !important rules in an end-user stylesheet. These rules
are given the highest priority. This allows an end user to create rules to override
competing rules in an author’s stylesheet.

6. The lowest-priority location is the default stylesheet supplied by a browser.

When multiple stylesheets are attached or imported at the same location level, the order
in which they are attached determines the priority. Stylesheets attached later override
stylesheets attached previously.

When competing rules are in the same selector group, have the same number and level of
selectors, and have the same location level, rules listed later in the code override rules listed
earlier.

In Example 1-7, each rule in the stylesheet is applied to the division element. Each rule
applies a different border-width to <div>. Cascading order determines which rule actually gets
applied. I sorted the styles in the stylesheet into cascading order from least to most important.
As you can see from the screenshot, the browser applies the last rule to the <div>, which sets a
14-pixel border around the <div>. The browser applies this rule because it has the highest pri-
ority in the cascading order—it is an ID selector with !important attached to it.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 15

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

Notice how ID selectors override class selectors, which in turn override element selectors,
which in turn override the universal selector. Notice how !important gives selectors a whole
new magnitude of importance. For example, the !important universal selector is more impor-
tant than the un-!important ID selector!

Notice how border-style:none!important; is placed in the body and html selectors to
prevent the universal selector * from putting a border around <body> and <html>. This also
illustrates how element selectors override universal selectors.

Example 1-7. Cascade Order

HTML

<body>
<div id="i100" class="c10">!important has highest priority.</div>

</body>

CSS

html, body { border-style:none!important; }

* { border:0px solid black; } /* Universal Selector */
div { border:2px solid black; } /* Element Selector */
.c10 { border:4px solid black; } / Secondary Selector */
#i100 { border:6px solid black; } /* ID Selector */

* { border:8px solid black!important; } /* !Universal Selector */
div { border:10px solid black!important; } /* !Element Selector */
.c10 { border:12px solid black!important; } / !Secondary Selector */
#i100 { border:14px solid black!important; } /* !ID Selector */

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!16

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

Simplifying the Cascade
To keep the cascade order as simple as possible, I minimize the number of stylesheets that I
attach and I do not use @import statements. I also avoid the !important operator. Most impor-
tantly, I sort my selectors so they are listed in cascade order in each stylesheet.

I organize the stylesheet into six groups. I put all universal selectors first, followed by ele-
ment, class, attribute, pseudo, and ID selectors. If I have any !important selectors, I place
them after the ID selectors in another set of groups.

Keeping stylesheets sorted in cascade order helps me remember that the ID selectors
override all class, attribute, pseudo, element, and universal selectors—no matter where they
occur in the current stylesheet and in all other stylesheets. Likewise, it reminds me that class,
attribute, and pseudo selectors in each stylesheet override all element and universal selec-
tors—no matter where they occur.

Keeping rules sorted in cascading order makes it easy to see the order in which competing
rules are applied. This makes it easy to track down which rules are overriding other rules. I
keep rules sorted in the cascading order as follows:

/* Universal Selectors */
/* Element Selectors */
/* Class, Attribute, and Pseudo Selectors */
/* ID Selectors */

/* !important Universal Selectors */
/* !important Element Selectors */
/* !important Class, Attribute, and Pseudo Selectors */
/* !important ID Selectors */

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 17

M
A

K
IN

G
C

S
S

E
A

S
Y

!

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

CSS and HTML Links

Description URL

W3C Homepage for CSS www.w3.org/Style/CSS

W3C CSS 2.1 Specification www.w3.org/TR/CSS21

W3C CSS Validator Service jigsaw.w3.org/css-validator

W3C HTML Validator Service validator.w3.org

W3C Mobile Web Validator validator.w3.org/mobile

W3C HTML Home Page www.w3.org/MarkUp

W3C HTML 4.01 Specification www.w3.org/TR/html401

W3C XHTML 1.0 Specification www.w3.org/TR/xhtml1

W3C Mobile Web Best Practices 1.0 www.w3.org/TR/mobile-bp

W3C Accessibility Initiative www.w3.org/WAI

“HTML 5” Working Group www.whatwg.org

Mozilla Developer Center developer.mozilla.org/en/docs

Microsoft Web Workshop msdn.microsoft.com/workshop/author/css/
css_node_entry.asp

Opera Web Specifications www.opera.com/docs/specs

Apple Safari Developer Connection developer.apple.com/internet/safari

Web Design Information www.welie.com/patterns

microformats.org

www.alistapart.com

www.simplebits.com/notebook

www.positioniseverything.net

css.maxdesign.com.au

csszengarden.com

meyerweb.com/eric/css

Web Design Tutorials www.w3schools.com

www.westciv.com/style_master/house

Tools developer.yahoo.com

dean.edwards.name/my/cssQuery

addons.mozilla.org/firefox/60

addons.mozilla.org/firefox/179

CSS Mailing Lists css-discuss.org

babblelist.com

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!18

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

CSS Properties

display margin text-indent
visibility margin-left text-align

margin-right
float margin-top color
clear margin-bottom

font
position border font-family
z-index border-left font-size
overflow border-left-color font-style
cursor border-left-width font-variant

border-left-style font-weight

left border-right text-decoration
right border-right-color text-transform
width border-right-width
min-width border-right-style vertical-align
max-width

border-top line-height
top border-top-color white-space
bottom border-top-width word-spacing
height border-top-style letter-spacing
min-height
max-height border-bottom direction

border-bottom-color unicode-bidi
border-bottom-width

/* LESS USABLE-------*/ border-bottom-style
/* caption-side */
/* clip */ padding list-style
/* content */ padding-left list-style-type
/* empty-cells */ padding-right list-style-position
/* outline */ padding-top list-style-image
/* outline-color */ padding-bottom
/* outline-style */ border-collapse
/* outline-width */ background table-layout
/* quotes */ background-color
/* orphans */ background-image page-break-after
/* page-break-inside */ background-repeat page-break-before
/* widows */ background-attachment
/*-------------------*/ background-position

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 19

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

CSS Properties and Values: Common
This list includes only those CSS properties and values that work in all the major browsers.
The letter “i” before a property means it is inherited. The value in italics is the default. Some
values are symbols representing multiple possibilities for a value. For example, LENGTH repre-
sents 0, auto, none, and all measurements (%, px, em, ex, pt, in, cm, mm, and pc).

Common applies to all elements and box models.

display: inline, none, block, inline-block, list-item,
table-cell, table, table-row

i visibility: visible, hidden

background-color: transparent, COLOR
background-image: none, url("file.jpg")
background-repeat: repeat, repeat-x, repeat-y, no-repeat
background-attachment: scroll, fixed
background-position: 0% 0%, H% V%, H V,

left top, left center, left bottom,
right top, right center, right bottom,
center top, center center, center bottom

border: WIDTH STYLE COLOR
border-width: medium, LENGTH, thin, thick
border-style: none, hidden, dotted, dashed, solid, double,

groove, ridge, inset, outset
border-color: black, COLOR

border-left: WIDTH STYLE COLOR
border-left-width: same as border-width
border-left-style: same as border-style
border-left-color: same as border-color
border-right: WIDTH STYLE COLOR
border-right-width: same as border-width
border-right-style: same as border-style
border-right-color: same as border-color
border-top: WIDTH STYLE COLOR
border-top-width: same as border-width
border-top-style: same as border-style
border-top-color: same as border-color
border-bottom: WIDTH STYLE COLOR
border-bottom-width: same as border-width
border-bottom-style: same as border-style
border-bottom-color: same as border-color

i cursor: auto, default, pointer,
help, wait, progress, move, crosshair, text,
n-resize, s-resize, e-resize, w-resize

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!20

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

CSS Properties and Values: Content

Content applies to all except for rows.
padding: 0, LENGTH
padding-left: 0, LENGTH
padding-right: 0, LENGTH
padding-top: 0, LENGTH
padding-bottom: 0, LENGTH

i font: caption, icon, menu, message-box, small-caption, status-bar
i font-family: serif, FONTLIST, sans-serif, monospace, fantasy, cursive
i font-size: medium, LENGTH, %ParentElementFontSize, xx-small, x-small,

smaller, small, large, larger, x-large, xx-large
i font-style: normal, italic, oblique
i font-variant: normal, small-caps
i font-weight: normal, lighter, bold, bolder,

100, 200, 300, 400, 500, 600, 700, 800, 900

i text-decoration: none, underline, line-through, overline
i text-transform: none, lowercase, uppercase, capitalize
i direction: ltr, rtl

unicode-bidi: normal, bidi-override, embed

i line-height: normal, LENGTH, %FontSize, MULTIPLIER
i letter-spacing: normal, LENGTH
i word-spacing: normal, LENGTH
i white-space: normal, pre, nowrap

i color: #rrggbb, #rgb, rgb(RED,GREEN,BLUE), rgb(RED%,GREEN%,BLUE%)
black, gray, silver, white,
red, maroon, purple, fuchsia,
lime, green, olive, yellow,
blue, navy, teal, aqua,

violet, fuschia, red, maroon, black
wheat, gold, orange, tomato, firebrick
lightyellow, yellow, yellowgreen, olive, darkolivegreen
palegreen, lime, seagreen, green, darkgreen
lightcyan, cyan, turquoise, teal, midnightblue
lightskyblue,deepskyblue,royalblue, blue, darkblue
whitesmoke, lightgrey, silver, gray, dimgray, darkslategray

ActiveBorder, ActiveCaption, AppWorkspace, Background,
ButtonFace, ButtonHighlight, ButtonShadow, ButtonText,
CaptionText, GrayText, Highlight, HighlightText,
InactiveBorder, InactiveCaption, InactiveCaptionText,
InfoBackground, InfoText, Menu, MenuText, Scrollbar,
ThreeDDarkShadow, ThreeDFace, ThreeDHighlight,
ThreeDLightShadow, ThreeDShadow, Window, WindowFrame,
WindowText

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 21

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

CSS Properties and Values: Layout

Float applies to all except cells and rows.

float: none, left, right

Clear applies to all except inlines, inline-blocks, cells, & rows.

clear: none, left, right, both

Positioned applies to all except cells and rows.

position: static, relative; absolute, fixed
left: auto, LENGTH, %WidthOfContainingBlock
right: auto, LENGTH, %WidthOfContainingBlock
top: auto, LENGTH, %HeightOfContainingBlock
bottom: auto, LENGTH, %HeightOfContainingBlock
z-index: auto, INTEGER

Horizontal Margin applies to all except cells and rows.

margin: 0, LENGTH, %WidthOfContainingBlock, auto
margin-left: 0, LENGTH, %WidthOfContainingBlock, auto
margin-right: 0, LENGTH, %WidthOfContainingBlock, auto

Vertical Margin applies to all except inlines, cells, and rows.

margin: 0, LENGTH, %WidthOfContainingBlock, auto
margin-top: 0, LENGTH, %WidthOfContainingBlock, auto
margin-bottom: 0, LENGTH, %WidthOfContainingBlock, auto

Width applies to all except inlines and rows.

width: auto, LENGTH, %WidthOfContainingBlock
min-width: 0, LENGTH, %WidthOfContainingBlock
max-width: none, LENGTH, %WidthOfContainingBlock

Height applies to all except inlines and tables.

height: auto, LENGTH, %HeightOfContainingBlock
min-height: 0, LENGTH, %HeightOfContainingBlock
max-height: none, LENGTH, %HeightOfContainingBlock

Content Layout applies to all except inlines, tables, and rows.

i text-indent: 0, LENGTH, %WidthOfContainingBlock
i text-align: left, center, right, justify

overflow: visible, hidden, auto, scroll

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!22

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

CSS Properties and Values: Specialized

List applies only to lists.

i list-style: TYPE POSITION IMAGE
i list-style-type: disc, circle, square, none, decimal,

lower-alpha, upper-alpha, lower-roman, upper-roman
i list-style-position: outside,inside
i list-style-image: none, url("file.jpg")

Table applies only to tables.

i border-collapse: separate, collapse
table-layout: auto, fixed

Cell applies only to cells.

vertical-align: baseline, bottom, middle, top

Inline applies only to inlines and inline-blocks.

vertical-align: baseline, LENGTH, %LineHeight,
text-bottom, text-top, middle, top, bottom

Page applies only to blocks and tables.

page-break-after: auto, always, avoid
page-break-before: auto, always, avoid

Selectors

* {} selects all elements
p {} selects all <p> elements
*.c {} selects all elements where class="c"
p.c {} selects all <p> elements where class="c"
#main {} selects one element where id ="main"
a:link {} selects all unvisited links
a:visited{} selects all visited links
a:hover {} selects all links being hovered over
a:active {} selects the current link being activated
a:focus {} selects all links that have the focus
p:first-letter {} selects first letter of all <p> elements
p:first-line {} selects first line of all <p> elements
p:first-child {} selects first child of all <p> elements
#n *.c :first-line {} descendant selector example
#n > *.c > :first-line {} child selector example
#n + *.c + :first-line {} sibling selector example
#n , *.c , :first-line {} applies independent selectors to same block of properties
*[title] {} selects all elements with a title attribute.
*[title~="WORD"] {} selects all where title attribute contains "WORD".
*[title="EXACT_MATCH_OF_ENTIRE_VALUE"] {} selects all with exact attribute match.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 23

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

Flexible Units of Measure
Unit Description

em em is the font-size assigned to an element. In the case of the font-size property, it is the
font-size assigned to the element’s parent. For example, 5em is five times the font-size.
Ems are a useful measure when you want to size an element relative to the size of its text.
This allows the layout of your documents to flex with the size of the text.

You can use ems to roughly size the width of an element to fit a certain number of
characters. You can do this by multiplying the number of characters by 0.625 to create the
em measurement. For example, if you want an element to be 10 characters wide, you can
set it to 6.25em.

In Internet Explorer 7 and earlier versions, a user can use the View -> Text Size menu to
enlarge or shrink the overall size of the text. When you assign font-size:medium to <body>
and use ems for all font-size properties, Internet Explorer sizes text relative to the text size
chosen by the user. This makes your document more usable to users who want to see text
larger or smaller than normal. If you assign a fixed measurement to font-size, Internet
Explorer uses the fixed size and ignores the text size chosen by the user.

ex ex is the height of the letter “x” of an element’s current font. This measurement is related
to the em, but is rarely used.

Fixed Units of Measure
Unit Description

in in stands for logical inches.

in is a “logical” inch because the actual physical size depends on the monitor and settings
chosen by the operating system and/or user. The dot pitch of a monitor determines the
physical size of its pixels, and thus the physical size of the logical inch. Various operating
systems have different settings for dpi. Common values are 72 dpi (Macintosh), 75 dpi
(Unix), 96 dpi (Windows Normal), 100dpi (Unix Large), and 120 dpi (Windows Large).
Since the dots on a monitor do not change size, the logical inch is physically larger at
120 dpi than at 72 dpi because the logical inch contains more dots. Thus, setting the width
of an element to 96px is the same as setting it to 1in on Windows and 1.33in on a Mac
running at 72 dpi.

The problem with logical inches and all other fixed units of measure is that they do not
scale well on systems with different dot-per-inch settings. What may seem just right on
Windows at 96 dpi may be too large or too small on other systems. Thus, percentages or
ems work best when cross-platform compatibility is desired.

px px stands for pixels. Pixels are useful when you want to precisely align elements to images
because images are measured in pixels.

pt pt stands for point. A point is 1/72 of a logical inch.

pc pc stands for picas. A pica is 12 points or 1/6 of a logical inch.

cm cm stands for logical centimeters. There are 2.54 centimeters per logical inch.

mm mm stands for millimeters. There are 25.4 millimeters per logical inch.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!24

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

Ratios Between Units of Measure at 96 dpi

Value Pixel Point Pica Inch Millimeter

1 pixel = 1px = 0.75pt (3/4) = 0.063pc (1/16) = 0.0104in (1/96) = 0.265mm

1 point = 1.333px (4/3) = 1pt = 0.083pc (1/12) = 0.0138in (1/72) = 0.353mm

1 pica = 16px = 12pt = 1pc = 0.1667in (1/6) = 4.233mm

1 inch = 96px = 72pt = 6pc = 1in = 25.4mm

1 mm = 3.779px = 2.835pt = 4.233pc = 0.039in = 1mm

Typical font-size Values at 96 dpi

CSS Ems Points Pixels Percent Heading HTML Physical Size

xx-small 0.50em 6pt 8px 50% 10 pixels

0.57em 7pt 9px 57% 12 pixels

x-small 0.63em 7.5pt 10px 63% h6 1 12 pixels

0.69em 8pt 11px 69% 13 pixels

0.75em 9pt 12px 75% 2 14 pixels

small 0.82em 9.75pt 13px 82% h5 16 pixels

0.88em 10.5pt 14px 88% 17 pixels

0.94em 11.25pt 15px 94% 18 pixels

medium 1em 12pt 16px 100% h4 3 18 pixels

1.08em 13pt 17px 108% 20 pixels

large 1.13em 13.5pt 18px 113% h3 4 22 pixels

1.17em 14pt 19px 117% 23 pixels

1.25em 15pt 20px 125% 25 pixels

1.38em 16.5pt 22px 138% 26 pixels

x-large 1.50em 18pt 24px 150% h2 5 29 pixels

1.75em 21pt 28px 175% 34 pixels

xx-large 2em 24pt 32px 200% h1 6 38 pixels

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 25

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

Troubleshooting CSS
You can use the following steps to troubleshoot a stylesheet that is not working. I listed the
steps in the order that will most likely help you find the problem quickly.

1. Validate the HTML document. This ensures you have no syntax problems that may
cause a browser to interpret the structure of the document differently than you expect.

2. Validate each CSS stylesheet. This ensures you have no syntax problems, which would
cause one or more rules to be ignored.

• Make sure a proper unit of measure (UOM) follows nonzero measurements and
that no space occurs between the number and its UOM, such as 1em or 100%.
(line-height is an exception; it allows a nonzero measurement without a UOM.)

• Make sure only a colon (:) and optional whitespace occurs between a property
name and its value, such as width:100% or width : 100%.

• Make sure a semicolon (;) closes each rule, such as width:100%;.

3. Review the list of CSS parsing errors using the Error Console in Mozilla browsers.
Browsers ignore each rule that has a parsing error, but unlike many other program-
ming languages, they continue parsing and applying the remaining rules.

4. Verify a selector is selecting all the elements you think it should be selecting, and only
those elements. You can easily see the results of a selector by putting outline:2px
solid invert; in the selector. (Note that outline does not work in Internet Explorer 7,
but border does.)

5. Look carefully at the cascade priority of each rule that fails to be applied. Cascade pri-
ority takes precedence over document order. For example, #myid{color:red;} takes
priority over *.myclass{color:blue;}, and #myid *.myclass{color:green;} takes pri-
ority over both—no matter where they occur in a stylesheet and no matter if they
occur in a stylesheet that was loaded before or after the current stylesheet. I find this to
be a common cause of trouble because a rule with higher cascade priority can be any-

where in any stylesheet. Assuming you have already validated your stylesheet, you can
often tell when cascade priority is the problem when some properties in a selector
work, but others do not—no matter what values you use. This typically happens when
properties are being overridden by another rule with a higher cascade priority. You can
usually verify this is the case by adding !important after a property. !important gives a
property a higher priority than all non-!important properties. If !important makes a
property work, you probably have a cascading priority problem.

6. Verify the case of elements, classes, and IDs in the stylesheet exactly matches their
case in the HTML document. This is important because XHTML is case sensitive. You
may want to use lowercase values at all times to avoid accidental mismatches.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!26

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

7. Check shorthand properties carefully to see whether you left out any property values
when you created the rule. The problem with shorthand properties is that they assign
values to all properties for which they are shorthand—even if you set only one value!
For example, background:blue; sets background-color to blue, and it also sets
background-image to none, background-repeat to repeat, background-attachment to
scroll, and background-position to 0% 0%. If a rule containing background:blue; has a
higher cascading priority than an overlapping rule that assigns background-image to
url("image.jpg"), you will not see the background image because the shorthand
property background:blue; overrides it and sets background-image to none.

• Shorthand properties include margin, border, padding, background, font, and
list-style.

• font is a particularly troublesome shorthand property because it combines so
many properties into one, and all these values are inherited! These properties
include font-family, font-size, font-weight, font-variant, font-style, and
line-height. Remember that assigning even one value to font, such as font:1em;,
causes the browser to set the default values for all these properties!

8. Verify a browser loads all your stylesheets. You can make sure each one is referenced
through a <link> statement within the <head> section of your HTML document, or
through @import statements in stylesheets. If you are not sure a stylesheet is being
loaded, you can place a unique rule in the stylesheet to see whether it gets applied.
Such a rule would be something obvious, like *{border:1px solid black;}.

9. Avoid using @import statements. If you use @import statements, verify they occur as
the first items in the stylesheet to ensure they have a lower priority than the rules in
the stylesheet.

10. Verify stylesheets are loaded in the order you want by listing <link> statements and
@import statements in order of ascending priority. Rules at the same level in the cascad-
ing order are overridden by rules in stylesheets linked or imported later. But remember
that rules with a higher cascading priority always override rules with a lower priority
no matter what order the rules occur in a stylesheet or whether they occur in
stylesheets linked or imported later.

11. Verify the server sends text/css as the Content-Type header for CSS stylesheets.
Mozilla browsers refuse to use a stylesheet unless it has a content type of text/css. You
can view the HTTP headers in Mozilla browsers by using the Web Developer Toolbar
and selecting the menu option View Response Headers.

12. Remove HTML elements that may have been put in a CSS stylesheet, such as <style>.
Also make sure no child elements have been accidentally placed inside the <style>
element, which is inside the head of the HTML document.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 27

M
A

K
IN

G
C

S
S

E
A

S
Y

!

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

Normalized Stylesheet
Because each browser has slightly different default settings, you may want to build rules into
your stylesheets to define baseline settings for each element. For example, different browsers
assign the <h1> element to different sizes and margins. By assigning your own size and mar-
gins to <h1>, you can standardize its appearance in all browsers.

The simplest approach (and the easiest approach to maintain) is to create a baseline set
of rules for all elements and to load those rules in the first stylesheet you attach to a docu-
ment. You can load a small set of rules that reset all elements to the simplest of styles as shown
in Listing 1-2. Or you can load a more extensive set of rules that create a standard style for
your site, such as those shown in Listing 1-3. You can find standard sets of baseline rules
on the Internet, such as Yahoo’s YUI Reset CSS rules (see http://developer.yahoo.com/
yui/reset/).

Loading a separate baseline stylesheet affects the speed at which your page is rendered
(see the sidebar “How Fast Will Your Page Load?”). Thus, for performance reasons, you may
want to combine stylesheets or move styles into the <style> section of the HTML document.

Listing 1-2. Simple Baseline Stylesheet (Similar to Yahoo’s YUI Reset CSS)

body,div,dl,dt,dd,ul,ol,li,h1,h2,h3,h4,h5,h6,pre,form,fieldset,input,p,
blockquote,th,td { margin:0; padding:0; }
table { border-collapse:collapse; border-spacing:0; }
fieldset,img { border:0; }
address,caption,cite,code,dfn,em,strong,th,var
{ font-style:normal; font-weight:normal; }
ol,ul { margin:1em 0; margin-left:40px; padding-left:0; }
ul { list-style-type:disc; }
ol { list-style-type:decimal; }
caption,th { text-align:left; }
h1,h2,h3,h4,h5,h6 { font-size:100%; }

HOW FAST WILL YOUR PAGE LOAD?

How fast your document renders is important. A web page that renders within 0.5 seconds is considered

instantaneous; 1 second is fast; 2 seconds is normal; more than 2 seconds becomes noticeable; and about

6 seconds is all most broadband users will tolerate. As a rule of thumb, the latency involved in looking up

each file typically takes 0.1 to 0.5 seconds—this is on broadband connections and does not include the time

it takes to actually download a file. Because of latency, a fast page can typically load three extra files, such as

one stylesheet, one JavaScript file, and one image, and a normal page can load about seven extra files.

To help with performance, a browser caches files. This may help on subsequent downloads, but it does

not help the first time a page downloads. Furthermore, cached files only speed performance when the server

sets their expiration date to expire in the future. When the refresh date on a cached file expires, a browser

asks the server whether the file has changed. This takes about 0.1 to 0.5 seconds per file—even if the file

has not changed and does not need to be downloaded again. Thus, it is important to set the expiration date

as far in the future as you dare. How far in the future depends on how often you expect the file to change on

the server. The problem is that if you change the file on the server before the expiration date, users will not

get the updated file because browsers will not bother asking for it.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY!28

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

Listing 1-3. Complete Baseline Stylesheet

/* BLOCK ELEMENTS */
html, div, map, dt, form { display:block; }
body { display:block; margin:8px; font-family:serif; font-size:medium; }
p, dl { display:block; margin-top:1em; margin-bottom:1em; }
dd { display:block; margin-left:40px; }
address { display:block; font-style:italic; }
blockquote { display:block; margin:1em 40px; }
h1 { display:block; font-size:2em; font-weight:bold; margin:0.67em 0; }
h2 { display:block; font-size:1.5em; font-weight:bold; margin:0.83em 0; }
h3 { display:block; font-size:1.125em; font-weight:bold; margin:1em 0; }
h4 { display:block; font-size:1em; font-weight:bold; margin:1.33em 0; }
h5 { display:block; font-size:0.75em; font-weight:bold; margin:1.67em 0; }
h6 { display:block; font-size:0.5625em; font-weight:bold; margin:2.33em 0; }
pre{ display:block; font-family:monospace; white-space:pre; margin:1em 0; }
hr { display:block; height:2px; border:1px; margin:0.5em auto 0.5em auto; }

/* TABLE ELEMENTS */
table { border-spacing:2px; border-collapse:separate;

margin-top:0; margin-bottom:0; text-indent:0; }
caption { text-align:center; }
td { padding:1px; }
th { font-weight:bold; padding:1px; }
tbody, thead, tfoot { vertical-align:middle; }

/* INLINE ELEMENTS */
strong { font-weight:bold; }
cite, em, var, dfn { font-style:italic; }
code, kbd, samp { font-family:monospace; }
ins { text-decoration:underline; }
del { text-decoration:line-through; }
sub { vertical-align:-0.25em; font-size:smaller; line-height:normal; }
sup { vertical-align: 0.5em; font-size:smaller; line-height:normal; }
abbr[title], acronym[title] { border-bottom:dotted 1px; }

/* LIST ELEMENTS */
ul { list-style-type:disc; margin:1em 0; margin-left:40px; padding-left:0;}
ol { list-style-type:decimal; margin:1em 0; margin-left:40px; padding-left:0;}
/* remove top & bottom margins for nested lists */
ul ul, ul ol, ul dl, ol ul, ol ol, ol dl, dl ul, dl ol, dl dl
{ margin-top:0; margin-bottom:0; }
/* use circle when ul nested 2 deep */
ol ul, ul ul { list-style-type:circle; }
/* use square when ul nested 3 deep */
ol ol ul, ol ul ul, ul ol ul, ul ul ul { list-style-type:square; }

■Tip You can view Mozilla Firefox’s internal default stylesheet using resource://gre/res/html.css.

CHAPTER 1 ■ DESIGN PATTERNS: MAKING CSS EASY! 29

M
A

K
IN

G
C

S
S

E
A

S
Y

!

http://freepdf-books.com

http://freepdf-books.com

HTML Design Patterns

This chapter explores HTML only as it relates to CSS. It contains design patterns that are
essential for styling a document with CSS. It explores HTML at a high level with an eye toward
explaining how elements can be put to use structurally and semantically. Each design pattern
in this book is created using structural and semantic elements combined with CSS. There
are four major types of elements used in design patterns: structural block, terminal block,
multi-purpose block, and inline elements. Understanding these types of elements is key to
understanding the design patterns in this book and essential to creating your own.

Chapter Outline

• HTML Structure shows how HTML elements work together to create a document.

• XHTML shows how to mark up a document with valid XHTML. It also points out why
using valid XHTML makes styling with CSS more reliable.

• DOCTYPE shows how to use document types to validate the way documents are coded,
and it explores what document types work best for CSS and HTML.

• Header Elements shows how to create metadata about a document and how to link a
document to supporting documents and related documents.

• Conditional Stylesheet shows how to load a stylesheet to fix problems unique to
Internet Explorer.

• Structural Block Elements shows how to create structural meaning in a document.

• Terminal Block Elements shows how certain blocks have semantic meaning because
they contain content instead of other blocks.

• Multi-purpose Block Elements shows how certain elements can be used for block
structure and semantic meaning.

• Inline Elements shows how styles can bring out the meaning of semantic markup.

• Class and ID Attributes shows how CSS relies on class and id attributes to select
elements. It also shows how the class attribute can add meaning to an element.

• HTML Whitespace shows how to make whitespace work for you instead of against you.

31

C H A P T E R 2

http://freepdf-books.com

HTML Structure

Container Contents

<html> <head> <body>

<head> <title> & (<meta> | <link> | <object> | <script> | <style>)

<body> <noscript> <div>

<noscript> inline | block

<div> inline | block

<h1> inline

<p> inline

 or

 inline | block

<dl> <dt> <dd>

<dt> inline

<dd> inline | block

<table> <caption> <colgroup> <thead> <tfoot> <tbody>

<caption> inline

<colgroup> <col>

<col> null

<thead> <tr>

<tfoot> <tr>

<tbody> <tr>

<tr> <th> <td>

<th> inline | block

<td> inline | block

<form> inline | block (excluding <form>)

<label> inline (excluding <label>)

<input> null

<textarea> text

<select> <optgroup> | <option>

<optgroup> <option>

<option> text

<button> inline | block (excluding <a>, <form>, controls)

<address> inline

CHAPTER 2 ■ HTML DESIGN PATTERNS32

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

HTML Structure

Container Contents

<a> inline (excluding <a>)

 null

<map> <area>

<area> null

<object> <param> | inline | block

<param> null

 null

null No content. Single tag with closing slash (e.g.,
).

text Unicode text including HTML entities that are parsed and replaced.

block Includes the following three types of block elements:

structural block <dl> <table> <tr> <thead> <tfoot> <tbody>
<colgroup> <col>

multi-purpose block <div> <dd> <td> <th> <form> <noscript>

terminal block <h1> <p> <dt> <caption> <address> <blockquote>

inline Includes the following three major types and six minor types of
inline elements:

inline-semantic Includes text intermingled with zero or more of the following
elements:

importance

phrase <a> <cite> <code> <kbd> <samp> <var>

word <acronym> <abbr> <dfn>

char <sub> <sup>

inline-flow
 <bdo>

inline-block Includes replaced elements and form controls:

replaced <object> <embed> <iframe>

controls <input> <textarea> <select> <button> <label>

Additional elements are included in the strict HTML 4.01 specification, but I did not list
them in the preceding table because they have little semantic or structural meaning, are rarely
used, or have quirky implementations. The following elements style text: <tt>, <i>, , <big>,
<small>. The <pre> element preserves whitespace, but it cannot contain images, objects, sub-
scripts, or superscripts. The <q> element automatically inserts quotes differently depending
on the browser. The <ins> and elements mark elements as inserted or deleted. Frames
can cause problems for search engines and users: <iframe>, <frameset>, <frame>, and
<noframe>. Internet Explorer 7 will not remove built-in styles from <hr>, <fieldset>, and
<legend>. Finally, <base> changes the root of all links in your document—use it only if you
fully understand it, or it may break all your links.

(Continued)

CHAPTER 2 ■ HTML DESIGN PATTERNS 33

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

HTML Structure (Continued)

HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" >

<head><title>HTML Structure</title>
<meta http-equiv="Content-type" content="text/html; charset=utf-8" />
<link rel="stylesheet" href="site.css" media="all" type="text/css" />
<link rel="stylesheet" href="page.css" media="all" type="text/css" />
<link rel="stylesheet" href="print.css" media="print" type="text/css" />
<!--[if lte IE 6]>
<link rel="stylesheet" href="ie6.css" media="all" type="text/css" />
<![endif]-->
</head>

CHAPTER 2 ■ HTML DESIGN PATTERNS34

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

HTML Structure (Continued)

<body>
<noscript>Show this when script cannot run.</noscript>
<div>
<h1>HTML Structure</h1>
<p>Paragraph</p>

 Ordered List Item Ordered List Item
 Unordered List Item Unordered List Item
<dl> <dt>Definition Term</dt> <dt>Definition Term</dt>

<dd>Definition Data</dd> <dd>Definition Data</dd> </dl>

<table><caption>Table Caption</caption>
<colgroup> <col /> <col /> </colgroup>
<thead><tr><td>row1-col1</td> <td>row1-col2</td></tr></thead>
<tfoot><tr><td>row3-col1</td> <td>row3-col2</td></tr></tfoot>
<tbody><tr><td>row2-col1</td> <td>row2-col2</td></tr></tbody></table>

<form id="form1" method="post" action="http://www.tipjar.com/cgi-bin/test" >
<input type="hidden" title="input hidden" name="hidden" value="Secret" />

<input id="radio1" name="radios" type="radio" value="radio1" checked="checked" />
<label for="radio1">Radio1</label>

<input id="radio2" name="radios" type="radio" value="radio2-pushed" />
<label for="radio2">Radio2</label>

<input id="xbox1" name="xbox1" type="checkbox" value="xbox1" checked="checked" />
<label for="xbox1">Checkbox1</label>

<label for="inputtext">Input-text</label>
<input id="inputtext" name="inputtext" type="text" value="Type here" size="14" />

<label for="select1">Select</label>
<select id="select1" name="select" size="2" >
<option selected="selected" value="item1" >Item1</option>
<option value="item2" >Item2</option> </select>

<label for="textarea" >Textarea</label>
<textarea id="textarea" name="textarea" rows="2" cols="10" >Textarea</textarea>

<input type="submit" id="submit1" name="submit1" value="Submit" />
<input type="reset" id="reset1" name="reset1" value="Reset" />
<button type="submit" id="button1" name="button1" value="Button1" >Button</button>
</form>

(Continued)

CHAPTER 2 ■ HTML DESIGN PATTERNS 35

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

HTML Structure (Continued)

HTML (Continued)

<div>Division within a Division Link

<map id="map1" name="map1">
<area href="left.html" alt="left" shape="rect" coords="0,0,10,20" />
<area href="right.html" alt="right" shape="rect" coords="10,0,20,20" /></map>

span
em
strong
<cite>cite</cite>
<code>code</code>
<kbd>kbd</kbd>
<samp>samp</samp>
<var>var</var>
<acronym>acronym</acronym>
<abbr>abbr</abbr>
<dfn>dfn</dfn>
_{sub}
^{sup}
<bdo dir="rtl">backwards</bdo>

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/➥

swflash.cab#version=7,0,0,0"
width="400" height="50" id="cssdesignpatterns" align="middle">
<param name="movie" value="cssdesignpatterns.swf" />

<object type="application/x-shockwave-flash" data="cssdesignpatterns.swf"
width="400" height="50"> <param name="movie" value="movie.swf" />

</object>
</object>
</div>
<address>address</address>
</div>

</body>
</html>

CSS

/* There are no CSS styles attached to this document. */

CHAPTER 2 ■ HTML DESIGN PATTERNS36

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

HTML Structure (Continued)

Problem You want to know how HTML elements work together to create an HTML
document.

Solution HTML is a strict hierarchical nesting of elements. Elements may be nested within
each other, but they cannot overlap each other. HTML organizes elements into
three major categories: structural, block, and inline elements.

The core structural elements are <html>, <head>, and <body>. Information about
a document goes in <head> and document content goes in <body>. Header
elements are covered in the Header Elements design pattern discussion.

There are three types of block elements: structural, multi-purpose, and terminal.
These are covered in the following design pattern discussions: Structural Block
Elements, Terminal Block Elements, and Multi-purpose Block Elements.

There are three major types of inline elements: semantic, flow, and inline-block.
These are covered in the Inline Elements design pattern discussion.

Pattern HTML Core Structure
<!DOCTYPE DOCUMENT_TYPE_DEFINITION_USED_FOR_VALIDATION >
<html>
<head> METADATA </head>
<body> CONTENT </body>

</html>

Example The example contains the simplest expression of each common HTML element.

The concept behind the <object> element is that its content (except for its
<param> elements) is rendered when the object itself cannot be rendered. The
object element in the example is an embedded Flash object. Inside it, I
embedded another Flash object to be rendered in case the parent object fails.
The parent object fails in Firefox 2 and other Netscape browsers because these
browsers do not support the classid attribute that Internet Explorer requires.
Since the parent object fails, Firefox renders the child object instead. Inside the
child object, I inserted an image that will be shown when its parent child object
does not work. Lastly, if the image is not available, a browser displays its alt text.
Fallback content is a design principle used by replaced elements, such as
<object> and , so that something can be displayed when a browser
cannot replace the element.

The syntax of <object> element attributes and <param> elements varies with each
type of object. Each vendor defines the syntax for its objects.

The article “Bye Bye Embed” by Elizabeth Castro on A List Apart
(www.alistapart.com/articles/byebyeembed) shows how to embed videos in
a document using only <object> elements. If you have trouble with her
techniques, the traditional approach is to use the <embed> object as a fallback
to <object>. <embed> works well in Firefox and other Gecko-based browsers
but is not valid HTML.

Related to Header Elements, Structural Block Elements, Terminal Block Elements, Multi-
purpose Block Elements, Inline Elements; Structural Meaning, Visual Structure
(Chapter 13)

See also www.cssdesignpatterns.com/html-structure

CHAPTER 2 ■ HTML DESIGN PATTERNS 37

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

www.itbooksh
ub.com

|||||||||||||||||||||||||
|||||||||||||||||

www.cncmanu
al.com

http://freepdf-books.com

XHTML

Valid XHTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head><title>XHTML</title>
<meta http-equiv="Content-type" content="text/html; charset=utf-8" />
<link rel="stylesheet" href="page.css" media="all" type="text/css" />
</head>

<body>
<h1>XHTML</h1> <p>Paragraph</p>
Break
 Ordered List Item Ordered List Item
<dl> <dt>Definition Term</dt> <dd>Definition Data</dd> </dl>
</body>

</html>

Valid HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd" >

<html lang=en >
<head><title>HTML</title>
<meta http-equiv=Content-type content="text/html; charset=utf-8" >
<link rel=stylesheet href=page.css media=all type="text/css" >
<body>
<h1>HTML</h1> <p>Paragraph
Break
 Ordered List Item Ordered List Item
<dl> <dt>Definition Term <dd>Definition Data </dl>

CHAPTER 2 ■ HTML DESIGN PATTERNS38

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

XHTML

Problem You want to create a document using XHTML.

Solution XHTML is similar to HTML but has a few differences. The first change is the
DOCTYPE. As shown in the example, XHTML and HTML have different document
types. DOCTYPEs are discussed in the next design pattern.

XHTML is case sensitive, and HTML is case insensitive. XHTML requires all tags
and attributes to be lowercase (e.g., <html> instead of <HTML>). CSS selectors are
case sensitive in XHTML! In XHTML, the case of class or id values must match
before they will be selected by CSS! For example, the selectors #test and *.test
select <h1 id="Test" class="TEST"> in HTML, but not in XHTML. For this
reason, I recommend always using lowercase attribute values and tag names
in XHTML and CSS.

XHTML requires the <html> tag to include the xmlns attribute with the value of
"http://www.w3.org/1999/xhtml". XHTML requires the xml:lang attribute to
be present each time the HTML lang attribute is used, such as xml:lang="en"
lang="en".

XHTML requires all elements to have start and end tags and all attributes to be
enclosed in quotes and to have a value. HTML does not.

HTML lets you omit the start tags for <html>, <head>, <body>, and <tbody>. HTML
lets you omit end tags for <html>, <head>, <body>, <p>, , <dt>, <dd>, <tr>, <th>,
and <td>. A browser implies their presence in HTML. In XHTML, a document will
not validate if these tags are omitted.

HTML prohibits end tags for elements that must always be empty: <meta>,
<link>, <base>,
, <hr>, <area>, , <param>, <input>, <option>, and <col>.
XHTML requires end tags for all elements. Thus, a valid XHTML document
containing one of these elements can never be a valid HTML document and vice
versa. There is a compromise that works in HTML browsers because they do not
require documents to be valid HTML. You can use the XML shorthand notation
for an empty element as long as it includes a space before the closing slash and
less-than sign. This works as follows: <meta />, <link />, <base />,
,
<hr />, <area />, , <param />, <input />, <option />, and <col />.
You should use a separate closing tag for all other empty elements, such as
.

Advantages The strict coding requirements of XHTML identify the structure of a document
more clearly than HTML. In HTML, a browser assumes the location of a missing
end tag to be the start tag of the next block element. In the example,

is rendered after the paragraph in the XHTML document and as part of the
paragraph in the HTML document. This is why there is an extra line of
whitespace in the XHTML part of the example.

A valid and unambiguous structure is essential when you use CSS to style a
document because CSS selectors select elements based on their structure.
For this reason, I use valid XHTML in all my projects, including this book.

Related to DOCTYPE

See also www.cssdesignpatterns.com/xhtml

CHAPTER 2 ■ HTML DESIGN PATTERNS 39

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

DOCTYPE

HTML

<!-- The following DOCTYPEs place the browser in almost-standards mode.
The first one is for XHTML, and the second one is for HTML.
This book uses the first one in all its examples. -->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

CONTENT TYPE VS. DOCTYPE

Web servers identify each document they serve with a MIME content type. MIME stands for Multipart

Internet Mail Extensions. The content type is identified in the HTTP header for the document. A browser deter-

mines how to process a document based on its MIME content type. When it gets a document with a content

type of "text/html", it renders the document as HTML.

According to the W3C’s Note titled “XHTML Media Types” (www.w3.org/TR/xhtml-media-types/),

a web server may serve XHTML with one of the following three content types:

• An XHTML document may be served as "text/html" as long as you do not want the browser to treat

the document as XML and you do not include content from other XML namespaces, such as MathML.

A browser receiving an XHTML document with this content type treats the document as HTML.

• XHTML should be served as "application/xhtml+xml". Unfortunately, Internet Explorer 7 and

earlier versions refuse to display pages served this way.

• XTHML may be served as "application/xml" or "text/xml". Unfortunately, Internet Explorer 7

and earlier versions recognize such a document as generic XML, which means they ignore all XHTML

semantics. This means links and forms do not work, and it takes much longer to render the document.

A Gecko browser (such as Firefox 2) renders a document served with an XML content type only after it

has completely downloaded and has absolutely no coding errors. It also renders the document in strict mode

regardless of its DOCTYPE (see www.mozilla.org/docs/web-developer/faq.html#accept).

At the current time, the most reliable content type for serving XHTML web pages is "text/html". This

tells a browser to render a document as HTML. This approach is supported by the W3C, and it works well in

all major browsers. It works because browsers do not validate HTML. They parse web pages in a way that

allows them to display any version of HTML and XHTML—including documents containing errors. Contrast

this with how a browser processes an XHTML document where the rules of XML prohibit it from rendering

an entire XHTML document when it has an error—even the tiniest error created by an accidental typo!

Such precision is essential for computer-to-computer transactions, but it is not good for human-generated

web pages.

CHAPTER 2 ■ HTML DESIGN PATTERNS40

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

DOCTYPE

Alias Metadata Declaration

Problem You want to declare the type of your document so you can validate it against a
Document Type Definition (DTD). You want to ensure your document is valid.
You want to ensure web browsers follow the same rules in rendering your
document.

Solution The <!DOCTYPE> prolog identifies the type and version of HTML or XHTML in
which the document is coded. In technical terms, <!DOCTYPE> specifies the type
of document and the DTD that validates the document. The W3C provides a free
online service at http://validator.w3.org/ that you can use to validate your
documents.

All HTML and XHTML code should be validated. This verifies the code contains
no coding errors. If there are errors, CSS selectors may fail to select elements as
expected or may even select elements unexpectedly.

There are benefits to using XHTML. Validated XHTML documents are well
formed and have unambiguous structure. You can also use XSLT and XQUERY
processors to extract content and rearrange documents.

There are two additional varieties of DOCTYPEs: strict and transitional. Strict
removes all presentational elements and attributes, and transitional allows
them. I do not recommend presentation elements and attributes, but the strict
DOCTYPE may be too strict for some needs. For example, it prohibits the start
attribute in and the value attribute in , which are the only available
means to control the numbering of an ordered list. The strict DOCTYPE also
prohibits <iframe>.

Most important to CSS, browsers use <!DOCTYPE> to determine how closely they
will follow the CSS standard when they render the document. There are two basic
modes: quirks and standards. In quirks mode, browsers do not follow the CSS
standard, which makes this mode undesirable for styling with CSS. In standards
mode, they follow the CSS specification.

To complicate matters, Internet Explorer in strict mode violates a part of the CSS
spec by not aligning images in table cells to the baseline. It does this to remove
the baseline space below images so that sliced images in tables work as expected.
The other major browsers have a third mode called almost-standards mode that
emulates this nonstandard behavior.

The standards mode of Internet Explorer and the almost-standards mode of
the other major browsers are the most compatible modes. There are two main
<!DOCTYPE> declarations that trigger this level of compatibility: one for XHTML
and one for HTML. They are listed in the example on the left. You can find a
complete list of DOCTYPEs at http://hsivonen.iki.fi/doctype/.

Location <!DOCTYPE> must be the first item in an HTML document. There must be only
one <!DOCTYPE> per document. You must not precede this DOCTYPE with an
XML declaration, such as <?xml version="1.0" ?>, or Internet Explorer 6 will
trigger quirks mode.

Related to XHTML

See also www.cssdesignpatterns.com/doctype

CHAPTER 2 ■ HTML DESIGN PATTERNS 41

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Header Elements

HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" >

<head>
<title>Header Elements</title>

<meta http-equiv="Content-type" content="text/html; charset=utf-8" />

<!-- Include links to stylesheets -->
<link rel="stylesheet" href="site.css" media="all" type="text/css" />
<link rel="stylesheet" href="page.css" media="all" type="text/css" />
<link rel="stylesheet" href="print.css" media="print" type="text/css" />
<!--[if lte IE 6]>
<link rel="stylesheet" href="ie6.css" media="all" type="text/css" />
<![endif]-->

<!-- Optionally include alternate stylesheets that the user can apply. -->
<link rel="alternate stylesheet" type="text/css" title="cool" href="cool.css" />
<link rel="alternate stylesheet" type="text/css" title="hot" href="hot.css" />

<!-- Optionally include style rules that apply only to this page. -->
<style type="text/css" media="all">
body { margin:0px; padding:20px; padding-top:0px; width:702px;

font-family:verdana,arial,sans-serif; font-size:medium; }
h1 { margin:10px 0 10px 0; font-size:1.9em; }
</style>

<!-- Optionally link to a JavaScript file. -->
<script type="text/javascript" src="script.js" ></script>

<!-- Optionally include JavaScript that applies only to this page. -->
<script type="text/javascript" ><!--
alert("Hello World!");
--></script>

</head>

<body> <h1>Header Elements</h1> </body>
</html>

CHAPTER 2 ■ HTML DESIGN PATTERNS42

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Header Elements

Problem You want to add metadata to a document. You also want to link the document
to stylesheets and JavaScript files. You also want to improve performance by
embedding CSS rules and JavaScript inside the page.

Solution You can use <link rel="stylesheet" type="text/css" /> to link stylesheets to a
document. You can use href="URI" to specify the URI of the stylesheet. You can
use media="all" to apply a stylesheet to all devices. You can use media="print" to
apply a stylesheet only when printing. This allows you to hide navigational bars,
remove backgrounds, reset inverse color schemes (like white text on a black
background) to normal black text on a white background, and so forth. You can
use media="handheld" to apply a stylesheet to handheld devices only. You may
find this impractical because styles that work on one handheld device may be
ignored or not work at all on another. Few browsers have implemented the
following media types: "tty", "tv", "projection", "braille", and "aural".

You can use <link rel="alternate stylesheet" /> to provide a user with
alternate stylesheets. Browsers like Firefox 2 and Opera 9 put alternate style-
sheets in a drop-down list and allow users to select and apply one alternate
stylesheet at a time to a document. Since most web sites do not provide alternate
stylesheets and since there is no visual indication that they are available, few
users look for them or use them. Thus, sites that supply alternate stylesheets
often put buttons or menus in the document and link them to JavaScript that
switches between alternate stylesheets.

You can embed styles in the <style> element. These should be styles specific
only to the current document. Styles that are used for more than one document
should be contained in external stylesheets. You may find that putting styles
directly in a document greatly speeds the rendering of the document because a
browser has fewer files to download. You may also find that this increases the
amount of work it takes to maintain a web site.

Other elements are common in <head>, such as <title>, <meta>, and <script>.
I have included these elements in the example, but their usage is beyond the
scope of this book.

Pattern HTML
<head>
<link rel="stylesheet" href="FILE.CSS"

media="ALL_PRINT_HANDHELD" type="text/css" />
<link rel="alternate stylesheet" type="text/css"

title="NAME_TO_SHOW_USER" href="FILE.css" />
<style type="text/css" media="all"> STYLES </style>
</head>

Location <link>, <style>, <title>, <meta>, and <script> belong in <head>.

Related to HTML Structure, Conditional Stylesheet

See also www.cssdesignpatterns.com/

CHAPTER 2 ■ HTML DESIGN PATTERNS 43

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Conditional Stylesheet

Rendered in Firefox 2 without the conditional stylesheet

Rendered in Internet Explorer 6 with the conditional stylesheet

HTML

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" >

<head><title>Conditional Stylesheet</title>
<meta http-equiv="Content-type" content="text/html; charset=utf-8" />
<link rel="stylesheet" href="page.css" media="all" type="text/css" />

<!--[if lte IE 6]>

<link rel="stylesheet" href="ie6.css" media="all" type="text/css" />

<![endif]-->

</head>

<body>
<h1>Conditional Stylesheet</h1>
<p class="test">In Internet Explorer 6, this box has a border and background.</p>
</body>
</html>

CSS page.css

*.test { font-size:18px; }

CSS ie6.css

*.test { border:2px solid black; background-color:gold; }

CHAPTER 2 ■ HTML DESIGN PATTERNS44

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Conditional Stylesheet

Problem You want one set of styles to be applied to Internet Explorer and another set to be
applied to other browsers.

Solution You can use Microsoft Internet Explorer’s conditional comments to load a
stylesheet created exclusively for Internet Explorer. You can place a conditional
comment in <head> after all links to other stylesheets. Inside the conditional
comment, you can place a link to a stylesheet. I call this the conditional
stylesheet. Since the conditional stylesheet comes last, it overrides previously
loaded styles.

You can create a separate conditional stylesheet for Internet Explorer 6, and if
necessary you can create one for Internet Explorer 7. You can include styles in
this stylesheet to compensate for different behaviors and bugs.

The following pattern loads two conditional stylesheets. The first is for Internet
Explorer versions 6 and earlier. The second is for Internet Explorer 7 only.
Internet Explorer 7 fixes most of the bugs in Internet Explorer 6, but there are
still a number of CSS features that it does not implement, such as the content
property.

Pattern HTML
<!--[if lte IE 6]>
<link rel="stylesheet" href="ie6.css" media="all"

type="text/css" />
<![endif]-->
<!--[if IE 7]>
<link rel="stylesheet" href="ie7.css" media="all"

type="text/css" />
<![endif]-->

Limitations Conditional stylesheets only apply to Internet Explorer. This is unfortunate
because they are a good way to work around browser-specific problems.
Fortunately, there are few problems in other browsers. I do not recommend CSS
hacks because they rely on parsing bugs in a browser’s CSS engine. When these
bugs get fixed, the hack no longer works. For this reason, I do not use or discuss
CSS hacks in this book. In other words, all the design patterns in this book work
without hacks.

Variations To target different versions of Internet Explorer, you can change the operator
and version in the conditional comment. For example, you can use
<!--[if lt IE 5]> or <!--[if IE 7]>.

The following operators are available: lte (less than or equals), lt (less than),
gt (greater than), or gte (greater than or equals). You can omit the operator for
an equals comparison, such as <!--[if IE 7]>.

If another browser ever implements conditional comments, you can replace IE
with the constant that identifies that browser.

Related to Header Elements

See also www.cssdesignpatterns.com/conditional-stylesheet

CHAPTER 2 ■ HTML DESIGN PATTERNS 45

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Structural Block Elements

HTML Pattern

<!-- Ordered List -->

 One or more list items...

<!-- Unordered List -->

 One or more list items...

<!-- Definition List -->
<dl>
<dt> </dt>
<dt> One or more definition terms... </dt>
<dd> </dd>
<dd> One or more definitions... </dd>

</dl>

<!-- Table -->
<table>
<caption> One optional caption per table. </caption>
<colgroup> <col /> <col /> </colgroup>
<thead>
<tr>
<th> One or more header cells in a row... </th>
<td> One or more data cells in a row... </td>

</tr>
</thead>
<tfoot>
<tr>
<th> One or more rows in a row group... </th>
<td> </td>

</tr>
</tfoot>
<tbody>
<tr>
<th> Zero or more row groups in a table... </th>
<td> </td>

</tr>
</tbody>

</table>

<!-- Divisions -->
<div> <div> <div> ... </div> </div> </div>

CHAPTER 2 ■ HTML DESIGN PATTERNS46

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Structural Block Elements

Problem You want to structure your document so web browsers can render an enhanced
view of the document; search engines can determine important keywords;
document processors can use technologies like XSLT to extract content and
transform the structure; and JavaScript can navigate the structure to modify
content and make a document interactive.

Solution You can mark up a document with block elements to identify its structure.
There is meaning in structure, and HTML markup is most meaningful when its
structure reflects the hierarchy and relationships of a document’s topics.

Because a parent element contains child elements, they are related structurally.
This implies their content is related. For example, a child’s content is typically
a subtopic of its parent’s topic, and siblings typically have related subtopics.
Implicit in the hierarchical nature of HTML is the assumption that document
organization is hierarchical.

Structural blocks may contain block elements only. They have structural
meaning, but they have little semantic meaning. In other words, they do not
tell you what something is; they tell you how it is organized.

There are four major structural block elements (, , <dl>, and <table>)
with nine supporting structural elements (, <dt>, <dd>, <caption>, <thead>,
<tfoot>, <tbody>, <colgroup>, and <col>).

Details creates an ordered list of one or more list items (). Items belong to the
same set and are in order. Order implies sequence or ranking.

 creates an unordered list of one or more list items (). Items belong to
the same set without sequence or ranking.

<dl> creates a definition list of one or more terms (<dt>) and definitions (<dd>).
Structurally, a definition list implies all its terms are synonyms and all its
definitions are alternate definitions of its terms. The HTML specification also
shows that a definition list can have a broader application, such as listing
speakers and their dialog. In generic terms, a definition list is an associative
entity that associates keys with values.

<table> creates a tabular data structure in rows (<tr>) and cells (<th> and <td>).
It may optionally contain groups of rows: one table header (<thead>), one table
footer (<tfoot>), and one or more table body groups (<tbody>). It may optionally
contain one or more column groups (<colgroup>) containing one or more
columns (<col>). Column groups and columns are the only structural blocks
that are relational instead of hierarchical. In other words, each <col> element
forms a relationship with cells in a column without actually being their parent.
A table may optionally contain a <caption>.

<div> is a multi-purpose block element. It can be structural or terminal. I
mention it here because it normally creates a document division. Document
divisions are essential for organizing a document into sections, and sections are
the essential building blocks of documents. That is why I list <div> as the parent
of all structural elements in the HTML Structure design pattern.

Related to HTML Structure, Terminal Block Elements, Multi-purpose Block Elements

See also www.cssdesignpatterns.com/structural-block-elements

CHAPTER 2 ■ HTML DESIGN PATTERNS 47

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Terminal Block Elements

HTML

<h1>Terminal Block Elements</h1>

<p>

Headings, paragraphs, blockquotes, definition terms, addresses,
and table captions are terminal block elements. They may contain only content.
An HTML validator will declare a document invalid if you attempt
to put block elements inside terminal blocks.

</p>

<blockquote> A blockquote is a terminal block. </blockquote>

<dl>
<dt>NOTE:</dt>

<dd>The content of terminal blocks is always inline.</dd>
</dl>

<address> An address is a terminal block. </address>

<table>
<caption>Table caption is a terminal block.</caption>

<tr><td></td></tr>
</table>

CHAPTER 2 ■ HTML DESIGN PATTERNS48

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Terminal Block Elements

Problem You want to transition from document structure to content.

Solution You can use one of the following terminal blocks to terminate document
structure so you can insert content: <h1>, <p>, <blockquote>, <dt>, <address>, and
<caption>. These elements are the primary containers of content. The multi-
purpose block elements discussed in the next design pattern may also contain
content. Paragraphs contain most of a document’s content followed by headings,
blockquotes, list items, and table cells.

Terminal blocks are terminal nodes in the block structure of a document. They
cannot contain blocks. They contain text and inline elements. Structurally, they
are siblings to other terminal and structural blocks, which implies they all have
subtopics related to their parent block’s topic.

Terminal blocks mainly have semantic meaning. HTML supplies six elements
you can use to identify the purpose of content: heading, paragraph, blockquote,
definition term, address, and caption.

Details <h1>, <h2>, <h3>, <h4>, <h5>, and <h6> create headings from most important
to least. Headings are relational. They imply the following sibling elements
(typically paragraphs) have a subtopic that supports the topic of the heading.
They also imply a relationship to each other. For example, <h2> implies that it is
a subtopic of the previous <h1> element. Headings placed at lower levels of
document structure typically have higher heading numbers. You can reinforce
the structure of a document by making a heading the first element of each
document division.

<p> creates a paragraph. Semantically, a paragraph contains one or more
sentences. The first sentence defines the topic of the paragraph, and subsequent
sentences support that topic. The topic of a paragraph is typically a subtopic of
the previous heading and relates to sibling elements.

<blockquote> creates a block quote. Semantically, a blockquote contains a quote
from an external source that relates to the topic of its siblings.

<dt> creates a definition term. Semantically, a definition term is a term that
is being defined directly in the document by one or more definitions. The
Structural Block Elements design pattern includes <dt> because it is a part of
the <dl> structure. When you use <dl> as an associative entity, <dt> changes its
semantic meaning to being a key that is associated with one or more values.
Like a term, a key can be looked up to find its associated items.

<address> creates a contact record for the document itself. It is not for
identifying other types of addresses, such as your favorite restaurants. The HTML
specification allows an address to contain any type of content such as a street
address, e-mail address, phone number, etc.

<caption> creates a table caption. Semantically, it labels a table. <caption> is
referred to in the Structural Block Elements design pattern because it is a part
of the <table> structure.

Related to HTML Structure, Structural Block Elements, Multi-purpose Block Elements

See also www.cssdesignpatterns.com/terminal-block-elements

CHAPTER 2 ■ HTML DESIGN PATTERNS 49

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Multi-purpose Block Elements

HTML

<noscript>Show this text when script cannot run.</noscript>

<div>
<div>
<h1>Multi-purpose Block Elements</h1>
</div>
</div>

<!-- The following code is invalid HTML and broken structure. -->

This content is inside a list but is not inside a list item like it should be.
 This content is properly nested in a list item.
This content outside a list item invalidates and destroys the structure of a list.

<!-- The following code is _valid_ HTML due to a loophole in HTML's DTD,
but is still broken structure. -->

<div>
Compare the mixed content in this division with that of the preceding list.
<div> This content is inside a nested structural division. </div>
This mixed content is not invalid, but it destroys the block structure
and requires a browser to create anonymous blocks in which to render it.

</div>

<!-- The following form contains blocks, which in turn contain controls. -->
<form id="form1" method="post" action="http://www.tipjar.com/cgi-bin/test" >

 <input type="checkbox" id="xbox1" name="xbox1" value="xbox1" />

<label for="xbox1">Checkbox1</label>
 <input type="submit" id="submit1" name="submit1" value="Submit" />

</form>

CHAPTER 2 ■ HTML DESIGN PATTERNS50

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Multi-purpose Block Elements

Problem You want the flexibility of extending the document structure by nesting
structures within structures or terminating the current structure.

Solution HTML provides seven elements—<div>, , <dd>, <td>, <th>, <form>, and
<noscript>—that can extend the structure or terminate it. For this reason, I call
them multi-purpose block elements, as they are the most versatile elements. You
can use them to identify document divisions, list items, dictionary definitions,
table data cells, table header cells, forms, and alternate content to display when
scripting is unavailable.

When a multi-purpose block is used structurally, it has structural meaning.
When it is used terminally, it has semantic meaning. For example, when a list
item is terminal, it identifies its content as an item in a list. When a list item
contains a structural block, such as a table or another list, it functions
structurally as a node in a larger nested structure.

Multi-purpose blocks may contain blocks or content, but not both. Content is
defined as text intermingled with inline elements (images, objects, controls, and
semantic markup). Block elements should not be siblings with inline elements
and text. This is called mixed content. Content should always be contained
within a block—not placed in between blocks. Because of limitations in HTML’s
Document Type Definition language, HTML validators do not always invalidate
a document containing mixed content, but this does not mean you should
allow it. When a browser encounters mixed content, it wraps the content in an
anonymous block. This is because a browser cannot render blocks and content
at the same time, as blocks flow down the page and content flows across. CSS
selectors cannot select anonymous blocks, which prevents you from being able
to style anonymous blocks.

Details <div> is a division. It is normally structural, but it can contain content. As shown
in the example, the block structure created by divisions is invisible unless you
style each division’s margins, border, and/or padding.

 is a list item. Typically, it is a terminal block containing content, but it may
contain structural blocks such as tables and lists, or terminal blocks such as
headings and paragraphs.

<dd> is a definition in a definition list. Typically, it is a terminal block containing
content, but it may contain structural or terminal blocks.

<td> and <th> are table cells. <td> is a data cell and <th> is a header cell.
Typically, cells are terminal blocks containing content, but they may contain
structural or terminal blocks.

<form> is a data-entry form. It may contain structural blocks that organize
form controls (as shown in this example), or it may directly contain inline form
controls (as shown in the HTML Structure example). It may also contain terminal
blocks such as headings and paragraphs.

<noscript> is displayed when a browser does not support scripting. It may
contain simple inline content, or it may contain a fully structured document.

Related to HTML Structure, Structural Block Elements, Terminal Block Elements

See also www.cssdesignpatterns.com/multi-purpose-block-elements

CHAPTER 2 ■ HTML DESIGN PATTERNS 51

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Inline Elements

HTML

<h1>Inline Elements</h1>
<h2>Italicized</h2>
<code> </code> emphasized

<code><cite> </code> <cite>citation</cite>

<code><var> </code> <var>computer variable</var>

<code><dfn> </code> <dfn>definition</dfn>

<h2>Bold</h2>
<code> </code> strongly emphasized

<h2>Monospace</h2>
<code><code> </code> <code>computer code</code>

<code><kbd> </code> <kbd>key press</kbd>

<code><samp> </code> <samp>sample computer output</samp>

<h2>Underlined</h2>
<code><a> </code> a

<code><acronym> </code> <acronym title="a" >acronym</acronym>

<code><abbr> </code> <abbr title="a" >abbreviation</abbr>

<h2>Vertical-aligned</h2>
<code><sup> </code> superscript¹

<code><sub> </code> subscript₁

CHAPTER 2 ■ HTML DESIGN PATTERNS52

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Inline Elements

Problem You want to add explicit meaning to text, and you want to style text to reflect
this meaning.

Solution HTML provides inline elements to identify the meaning of text, to control the
flow of text, and to insert external content into the document, such as images
and controls. Inline elements are content.

Intermingling inline elements and text is desirable. Some call this mixed
content, but I prefer to define mixed content narrowly as blocks, text, and
inlines being mixed together, which is undesirable. I define content as text
mixed with inline elements, which is desirable. This clearly separates
structure from content and emphasizes that inline elements and text
should always be contained within blocks—not in between blocks.

I organize inline elements into four types: semantic, flow, replaced, and
controls. Semantic elements identify the meaning of their content. Flow
elements control the flow, such as inserting a line break. Replaced elements
are replaced with an object, such as an image. Controls are objects used for
data entry, such as a text box.

HTML assigns each semantic inline element to a default style to emphasize
that its text has a particular meaning. For example, <code> is rendered in a
monospace font. You can use CSS to override these default styles.

Details Three semantic inline elements specify the relative importance of their
content; they are listed in order of increasing importance as follows: ,
, and . is generic and has neutral importance. Search
engines use and to rank content.

I have organized the remaining semantic inline elements by how much
content they typically contain, such as a phrase, a word, or a character.
Phrase inlines include <a>, <cite>, <code>, <kbd>, <samp>, and <var>. Word
inlines include <acronym>, <abbr>, and <dfn>. Character inlines include
<sub> and <sup>.

Flow-control elements control the flow of content, such as
, which
inserts a linebreak, and <bdo>, which changes the direction of the flow.

Replaced elements are replaced by external content, such as , which is
replaced by an image or <object>, which can be replaced by a video, a Flash
movie, a sound file, etc.

Controls are inline elements used for data entry in forms, such as <input>,
<textarea>, <select>, and <button>.

Default Styles HTML assigns default styles to each semantic inline element. has no
default style and meaning, so you can use it for any purpose. is bold
by default. The following are italicized by default: , <dfn>, <cite>, and
<var>. The following are monospace by default: <code>¸<kbd>, and <samp>.
The following are underlined by default: <a>, <acronym>, and <abbr>. Internet
Explorer 6 does not support <abbr>.

Related to HTML Structure; all design patterns in Chapters 10 through 12 and 14.

See also www.cssdesignpatterns.com/inline-elements

CHAPTER 2 ■ HTML DESIGN PATTERNS 53

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Class and ID Attributes

HTML

<h1>Class and ID Attributes</h1>

<div id="hcalendar1" class="vevent">
<h3 class="summary">Calendar Event Summary</h3>

<p class="description">Calendar Event Description</p>

<p>From
<span class="dtstart" title="2007-05-01T08:30:00-05:00"
>01 May 2007 from 8:30am EST to
<span class="dtend" title="2007-05-01T09:30:00-05:00"
>9:30am EST</p>

<p>Location: Meeting Location</p>
<p>Booked by: globally-unique-id.host.com

on <span class="dtstamp" title="20070101T231000Z"
>Jan 1, 2007 at 6:00pm</p>

</div>

<p>See microformats.org
for more information about microformats.</p>

CSS

*.vevent p { margin:0 0 5px 0; font-size:0.9em; }
*.vevent h3 { margin:0 0 5px 0; }
*.vevent *.location { font-style:italic; }
*.vevent *.uid { font-family:monospace; }
*.vevent *.dtstart,
*.vevent *.dtend,
*.vevent *.dtstamp { color:green; }

#hcalendar1 { margin:5px; border:1px solid black; padding:10px; }

CHAPTER 2 ■ HTML DESIGN PATTERNS54

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

Class and ID Attributes

Problem You want to identify some elements as being in the same class as other elements.
You want to apply additional semantic and relational meaning to a class of
elements. You want to style a class of elements in the same way. You want to
identify some elements uniquely in a document so you can style them uniquely
and directly access them through JavaScript.

Solution HTML supplies the class and id attributes for these purposes. You can assign a
class and an id to any element.

An ID and class name cannot include a space. It must start with a letter and
may contain letters, numbers, the underscore (_), and the dash (-). Since CSS
selectors are case sensitive when using XHTML, it is a common practice to use
lowercase class and ID names.

Class class assigns a user-defined semantic meaning to an element. class is the
primary mechanism for extending the semantic meaning of HTML elements.
Elements with the same class are related and can be manipulated as a group.
You can use CSS selectors to apply a style to a class of elements. You can use a
document processor, such as XSLT, to manipulate a class of elements.

You can assign multiple classes to an element by putting multiple class names in
an element’s class attribute. A space separates each class name.

Classes should have semantic names, such as copyright, date, price, back-to-top,
example, figure, listing, illustration, note, result, tip, warning, etc.

ID An ID should be unique within a document. If it is not, a CSS ID selector will
match all elements with the same ID—just like the class attribute.

You can use a unique ID as a CSS selector to style one element. You can use it
as an anchor that can be targeted by other links. You can use it to access and
manipulate a specific element from JavaScript or a document processor.

IDs should have semantic names, such as skip-to-main-content, page,
preheader, header, title, search, postheader, body, nav, site-map, links,
main, section1, section2, news, about-us, services, products, etc.

Patterns HTML
<ELEMENT id="id" class="class1 class2 etc" ></ELEMENT>

CSS
#id { STYLES }
*.class { SYTLES }

Tip Since <div> and elements have no semantic meaning, you can assign
classes to them without conflicting with any predefined meaning. You can assign
classes to <div> to create custom document structures with custom semantic
meaning. You can assign classes to to customize the meaning of text.
There are currently no standard class names with precise predefined meanings,
although the MicroFormats movement is making progress toward that goal by
mapping HTML structure and class names to common standards, such as hCard
and hCalendar.

Related to Type, Class, and ID Selectors, Subclass Selector (Chapter 3)

See also www.cssdesignpatterns.com/class-id-attributes

CHAPTER 2 ■ HTML DESIGN PATTERNS 55

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

HTML Whitespace

HTML

<h1>HTML Whitespace</h1>
<p> start middle 	

  end </p>

<h2>Controlling Where Whitespace Collapses</h2>
<p>start middle end—inside element</p>
<p>start middle end—outside element</p>

<h2>Embedding Whitespace Inside Tags</h2>
<p>start<span

class
=
"spaced"
>middleend</p>

<h2>Embedding Space Entities</h2>
<code>&zwnj; </code>‌
<code>&thinsp; </code> 
<code>&nbsp; </code>
<code>&ensp; </code> 
<code>&emsp; </code> 

CSS

em { padding-left:50px; }
p { font-family:monospace; font-size:18px; }

*.border { font-weight:bold;
border-left:2px solid black; border-right:2px solid black; }

CHAPTER 2 ■ HTML DESIGN PATTERNS56

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

HTML Whitespace

Problem You want to use whitespace in markup to make the code more readable
without the whitespace affecting the rendering of the document.

Solution A browser collapses repeated whitespace into a single space. This allows you
to insert extra spaces, tabs, newlines, and returns into the markup to make it
more readable without it showing up in the rendered document.

A browser interprets only the following characters as whitespace: space
(), tab (), newline (
), and return ().

Empty elements and elements containing only whitespace do not interrupt
a contiguous sequence of whitespace. Notice in the first paragraph of the
example how a browser renders only one space between the words “start,”
“middle,” and “end”—even though there are many characters between these
words including spaces, tabs, newlines, returns, whitespace entities, an
empty span, and a span containing whitespace.

The first whitespace character in a series of contiguous whitespace characters
determines the position and style of the collapsed space. In other words, a
browser renders collapsed space using the font-family, font-size,
font-weight, line-height, and letter-spacing assigned to the first
whitespace character of the series. Larger fonts, wider letter-spacing, and
taller line-height create wider and taller whitespace. Thus, the location of
whitespace in an HTML document determines how wide and tall it is.

The second and third paragraphs of the example show how the location of
whitespace determines whether it collapses inside an element or outside. If it
collapses inside, it is styled by the element’s rules. Since whitespace collapses
to the left, you can collapse whitespace in front of an element by simply
putting whitespace before it. If you want whitespace to collapse inside an
element, you need to remove all whitespace before the element and put at
least one whitespace inside it. If you want whitespace to be inside an element
and to be placed after its content, simply follow the content with whitespace.
If you want whitespace to collapse outside the closing tag of an element, you
need to remove all whitespace following the element’s content and insert
whitespace after the element.

You can put extra whitespace inside an element’s start and end tags without
putting undesired whitespace in the content. You can insert extra whitespace
between the start tag’s name and its attributes; surrounding an attribute’s
name, equal sign, and value; and before the start tag’s greater-than sign. You
can insert extra whitespace between the end tag’s name and its greater-than
sign. The fourth paragraph of the example is an extreme example that has
much whitespace inside the tags but none inside the content.

Space Entities HTML provides five space entities that have different widths. These are not
whitespace! The nonbreaking space, , is the width of a normal space
and works in all major browsers; the widths of the other spaces (‌,
 ,  , and  ) vary in different browsers.

Preserved The <pre> element preserves all the whitespace that is inside it.

Related to Spacing, Nowrap, Preserved, Padded Content, Inline Spacer, Linebreak
(Chapter 11)

See also www.cssdesignpatterns.com/html-whitespace

CHAPTER 2 ■ HTML DESIGN PATTERNS 57

H
T
M

L
D

E
S

IG
N

P
A
T
T
E

R
N

S

http://freepdf-books.com

http://freepdf-books.com

CSS Selectors and Inheritance

This chapter presents design patterns that select elements for styling.
Because selector design patterns are simple, I discuss selector design patterns in groups

rather than one at a time. This makes it easy to compare and contrast related forms of selec-
tors. Thus, even though this chapter has only six examples, it contains thirteen different
design patterns.

Inheritance is included in this chapter because it is simply a built-in way to select descen-
dant elements. Inheritance is very closely related to the descendant selector. The Visual
Inheritance pattern is included in this chapter because it is a form of inheritance that is visual
by nature.

Chapter Outline

• Type, Class, and ID Selectors show how to select elements by tag, class, and ID.

• Position and Group Selectors show how to select elements by how they are nested in
the document. It also shows how to apply multiple selectors to the same set of rules.

• Attribute Selectors show how to select elements based on their attributes.

• Pseudo-element Selectors show how to select the first letter or first line of terminal
block elements.

• Pseudo-class Selectors show how to style a hyperlink when it is unvisited, visited, being
hovered over by the mouse, or has the focus because the user tabbed to it or clicked it
with the mouse.

• Subclass Selector shows how to apply multiple styles to the same element using classes
and subclasses.

• Inheritance shows how to style elements through rules assigned to their ancestors.

• Visual Inheritance shows how elements visually inherit their parent’s background.

59

C H A P T E R 3

http://freepdf-books.com

Type, Class, and ID Selectors

HTML

<h1>Type, Class, and ID Selectors</h1>

<p>The type selector, <code>p</code>, adds a border to all paragraphs.</p>

<p class="my-class1">

The class selector, <code>*.my-class1</code>, adds padding.</p>

<p class="my-class1 my-class2">

The class selector, <code>*.my-class2</code>, adds letter-spacing.</p>

<p class="my-class1 my-class2" id="my-id">

The ID selector, <code>#my-id</code>, adds a background color. </p>

CSS

p { border:2px solid black; }

*.my-class1 { padding:10px; }
*.my-class2 { letter-spacing:0.11em; }

#my-id { background-color:gold; }

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE60

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
IT

A
N

C
E

http://freepdf-books.com

Type, Class, and ID Selectors

Problem You want to select elements by type, class, and/or ID so you can style them.

Solution Apply styles to your chosen class or ID as follows:

- Use the type selector to select all elements of a particular type. The type selector
is the element’s name without the less-than and greater-than signs.

- Use the class selector to select all elements that you have assigned to a class. The
class selector is the period followed by the name of a class. The class selector is
added to the end of a type selector. You can add it onto the end of the universal
selector, *, to select all elements in the document that have a matching class, such
as *.my-class1. You can also use the class selector all by itself, such as .my-class1,
which is a shortcut for *.my-class1.

- Use the ID selector to select all elements in the document assigned to that ID.
Each element has one ID, which should be unique in a document.

Patterns HTML
<ELEMENT>
<ELEMENT class="class class class etc">
<ELEMENT id="id">
<ELEMENT id="id" class="class">

CSS
type { STYLES }
*.class { STYLES }
#id { STYLES }

Location These design patterns apply to all elements.

Tips You can assign multiple classes to an element, by separating them with a space.
The class operator selects all elements with matching classes. For example, I
assigned my-class1 and my-class2 to the second and third paragraphs of the
example.

Names of classes and IDs are case sensitive. They must start with a letter and may
contain letters, numbers, and the hyphen. I recommend always using lowercase
names for classes and IDs because a browser cannot select a class or an element
if the case of each letter in the selector does not perfectly match a class name.
For example, the browser will not select <div class="SelectMe"> using
div.selectme.

If multiple selectors select the same element, each style from each selector is
applied to the element. Selectors with higher cascade order override the values
applied by selectors with a lower cascade order. IDs override classes, and classes
override types. If you apply multiple stylesheets to a document, ID selectors
override all classes and types in all stylesheets.

Related to Position and Group Selectors, Pseudo-element Selectors, Pseudo-class Selectors

See also www.cssdesignpatterns.com/type-selectors
www.cssdesignpatterns.com/class-selectors
www.cssdesignpatterns.com/id-selectors

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE 61

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
ITA

N
C

E

http://freepdf-books.com

Position and Group Selectors

HTML

<h1>Position and Group Selectors</h1>

<p class="my-class">p.my-class</p>
<div id="my-id">

div ol li
div ol li

<p class="my-class">div ol li p.my-class </p>

</div>

CSS

/* Group Selectors */
p,ol,li { border:1px solid black; padding-left:10px; font-family:monospace;
margin:10px; margin-left:0px; }

ol { margin-left:0px; padding-left:40px; margin-top:20px; }

/* Position Selectors */
div *.my-class { font-size:1.2em; font-weight:bold; } /* Descendant Selector */
#my-id p { background-color:gold; } /* Descendant Selector */
#my-id > * { border:3px solid black; } /* Child Selector */

li:first-child { font-weight:bold; color:red; } /* First-child Selector */
li + li { font-style:italic; color:blue; } /* Sibling Selector */

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE62

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
IT

A
N

C
E

http://freepdf-books.com

Position and Group Selectors

Problem You want to combine selectors to narrow a selection based on element position.
In other words, you want to select elements based on whether they are
descendants, children, or siblings of other elements. You also want to apply
different selectors to the same set of rules.

Solution Combine selectors as follows:

- To apply different selectors to the same group of rules, chain together multiple
selectors using a comma. This is the group selector. Each selector in the chain is
independently assigned to the same set of styles.

- To select descendant elements, chain together multiple selectors using
whitespace. Whitespace is the descendant selector. Each descendant selector
narrows the selection to descendants of the previous selector. A descendant can
be a child, a grandchild, a great-grandchild, and so forth.

- To select child elements, chain together multiple selectors using the greater-
than sign. This is the child selector. Each child selector narrows the selection to
elements that are children of the previous selector.

- To select the first child element, append :first-child to any selector. This is
the first-child selector. This limits the selector only to elements that are the first
child of their parents.

- To select sibling elements, chain together multiple selectors using the plus sign.
This is the sibling selector. Each sibling selector narrows the selection to
elements that are siblings to the elements chosen by the previous selector.

Patterns CSS
selector, selector, etc { STYLES }

or selector selector etc { STYLES }
or selector > selector > etc { STYLES }
or selector + selector + etc { STYLES }
or selector:first-child { STYLES }

Location These design patterns apply to all elements.

Limitations Only the group and descendant selectors work in Internet Explorer 6. All these
selectors work in Internet Explorer 7 and the other major browsers.

Example The group selector p,ol,li applies the same set of styles to all paragraphs,
ordered lists, and list items. The selector div *.my-class selects all elements
assigned to my-class that descend from a division. Only the paragraph in the
third list item matches this selector. The selector #my-id p selects all paragraphs
descending from <div id="my-id">. Only the paragraph in the third list item
matches this selector. The selector #my-id > p selects all child elements
descending from <div id="my-id">. Only the ordered list matches this selector.
The selector li:first-child selects the first list item in each list. The selector
li + li selects all list items that are siblings to list items. This selects all but the
first list item.

Related to Inheritance

See also www.cssdesignpatterns.com/position-selectors
www.cssdesignpatterns.com/group-selectors

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE 63

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
ITA

N
C

E

http://freepdf-books.com

Attribute Selectors

HTML

<h1>Attribute Selectors</h1>

<p>This is a paragraph without the <code>title</code> attribute.</p>

<p title="Second">

<code>p[title]</code> selects all paragraphs containing a title attribute.</p>

<p title="Third paragraph">

<code>p[title~="paragraph"]</code> selects all paragraphs with a
title attribute containing the word, <code>paragraph</code>.</p>

<p title="#4 paragraph">

<code>p[title="#4 paragraph"]</code> selects all paragraphs with a
title attribute containing the exact text, <code>#4 paragraph</code>. Matches
are case sensitive and must match letter-for-letter including whitespace.</p>

CSS

code { white-space:pre; }

p[title] { padding:5px 10px; border:1px solid gray; }
p[title~="paragraph"] { background-color:gold; }
p[title="#4 paragraph"] { font-weight:bold; }

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE64

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
IT

A
N

C
E

http://freepdf-books.com

Attribute Selectors

Problem You want to select elements depending on whether they contain a specific
attribute, contain a specific word within a specific attribute, or contain a specific
value within a specific attribute.

Solution CSS provides three attribute selectors for this purpose. CSS does not name them
individually. I call them the Attribute Existence Selector, the Attribute Word
Selector, and the Attribute Value Selector. You can append these attribute
selectors to the end of any selector.

You can use the Attribute Existence Selector to select elements that contain a
specific attribute. The Attribute Existence Selector is the name of the attribute
enclosed in straight brackets. For example, p[title] selects all paragraphs
containing the title attribute. If an element contains the attribute and the
attribute is assigned to a value, the Attribute Existence Selector matches it.
The attribute may contain any value, but some browsers will not match an
empty attribute, such as <p title="">.

You can use the Attribute Word Selector to select elements that contain a
specific word within a specific attribute. The Attribute Word Selector is the
opening straight bracket, the name of the attribute, a tilde, an equal sign,
the word in double quotes, and the closing straight bracket. For example,
p[title~="paragraph"] selects all paragraphs containing the word paragraph
inside their title attribute, such as <p title="Third paragraph">. The attribute
may contain other words in addition to the matching word. A word is separated
from other words using spaces. The match is case sensitive.

You can use the Attribute Value Selector to select elements that contain a
specific value within a specific attribute. The Attribute Value Selector is
the opening straight bracket, the name of the attribute, an equal sign, the
value in double quotes, and the closing straight bracket. For example,
p[title="#4 paragraph"] selects all paragraphs containing the exact value
#4 paragraph inside their title attribute, such as p[title="#4 paragraph"].
The match is case sensitive and must match the entire attribute value including
whitespace.

Patterns CSS
SELECTOR[title] { STYLES }
or
SELECTOR[title~="WORD"] { STYLES }
or
SELECTOR[title="EXACT_MATCH_OF_ENTIRE_VALUE"] { STYLES }

Location These design patterns apply to all elements.

Limitations Attribute selectors do not work in Internet Explorer 6. They work in Internet
Explorer 7 and other major browsers. CSS defines another selector that I call
the Attribute Language Selector (e.g., [lang=en]), but it is not well supported.

Related to Inheritance

See also www.cssdesignpatterns.com/attribute-selectors

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE 65

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
ITA

N
C

E

http://freepdf-books.com

Pseudo-element Selectors

HTML

<h1>Pseudo-element Selectors</h1>

<p><code>first-letter</code> selects the first letter, and
<code>first-line</code> selects the first line of a terminal block element,
like this paragraph.</p>

<div>Pseudo-element selectors do not work on inline elements.</div>

<dl>

<dt>Pseudo-element selectors do not work on structural block elements.</dt>
</dl>

CSS

p:first-line { font-weight:bold; word-spacing:2px; letter-spacing:1px; }
p:first-letter { font-size:48px; }

span:first-line { font-weight:bold; word-spacing:2px; letter-spacing:1px; }
span:first-letter { font-size:48px; }

dl:first-line { font-weight:bold; word-spacing:2px; letter-spacing:1px; }
dl:first-letter { font-size:48px; }

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE66

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
IT

A
N

C
E

http://freepdf-books.com

Pseudo-element Selectors

Problem You want to select the first letter or first line of an element.

Solution HTML
No markup is required.

CSS
Combine the first-letter and first-line pseudo selector with classes, IDs,
and types of your choosing.

Patterns CSS
ELEMENT:first-letter { STYLES }

or *.CLASS:first-letter { STYLES }
or #ID:first-letter { STYLES }
or ELEMENT:first-line { STYLES }
or *.CLASS:first-line { STYLES }
or #ID:first-line { STYLES }

Location first-letter and first-line work only on terminal block elements. They do not
work on inline elements or structural block elements.

Notes first-letter and first-line are called pseudo-element selectors because
they select a subset of content in an element rather than all the content in an
element. In other words, they create a pseudo element.

Limitations Internet Explorer 6 ignores a pseudo-element selector unless it is the last selector
in a chain of selectors. Version 7 fixes this problem.

The first-letter selector works best with font and text properties. Browsers
cannot position pseudo-elements and have trouble aligning them. In other
words, position, left, right, top, and bottom have no effect on pseudo elements.
Also, vertical-align works inconsistently on pseudo elements.

Browsers have exceptional cases where they may not select the first letter or may
select more than the first letter. For example, no major browser selects the first
letter when an image or object precedes it. For example, Opera 9 does not select
the first letter of table cells, and Internet Explorer 6 selects the list marker along
with the first letter of a list item. Finally, pseudo-element selectors bring out bugs
in browsers, so be sure to test your use of them in all major browsers.

Example In the example, I set three different pseudo-element selectors to the same set of
styles. I did not use a grouping selector because Internet Explorer 6 does not
recognize pseudo selectors when they are part of a grouping selector.

Related to Class Selector, Pseudo-class Selectors

See also www.cssdesignpatterns.com/pseudo-element-selectors

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE 67

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
ITA

N
C

E

http://freepdf-books.com

Pseudo-class Selectors

HTML

<h1>Pseudo-class Selectors</h1>

<p>
a:link -- unvisited link
a:visited -- visited link
a:hover -- mouse hovering
a:active -- visiting a link
</p>

CSS

a { padding:3px 10px; margin:20px 10px; text-decoration:none;
display:block; width:260px;
border-left:1px solid dimgray; border-right:2px solid black;
border-top:1px solid dimgray; border-bottom:2px solid black; }

a:link { color:black; background-color:white; }
a:visited { color:gray; background-color:white; }
a:hover { color:white; background-color:green; }
a:active, a:focus { color:green; background-color:gold; }

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE68

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
IT

A
N

C
E

http://freepdf-books.com

Pseudo-class Selectors

Problem You want to style a hyperlink depending on whether it is unvisited, visited, being
hovered over by the mouse, or in the process of being visited.

Solution HTML
Insert hyperlinks using <a>.

CSS
Select hyperlinks based on their state:

- Use a:link to select a hyperlink when it has not been visited.

- Use a:visited to select a hyperlink when it has been visited.

- Use a:hover to select a hyperlink when the mouse hovers over it.

- Use a:focus to select a hyperlink when it receives focus in other browsers.

- Use a:active to select a hyperlink when it receives focus in IE.

Patterns HTML
<a>

CSS
a:link { STYLES }
a:visited { STYLES }
a:hover { STYLES }
a:active, a:focus { STYLES }

Location Pseudo-class selectors work on hyperlinks (<a>).

Limitations Internet Explorer 6 supports the hover pseudo class only on hyperlinks. IE7 and
all other major browsers support hover on all elements.

CSS 2.1 defines two additional pseudo classes: first-child and lang().
first-child selects an element when it is the first child of another element.
lang() selects an element when it has been assigned to the specified human
language. These pseudo classes are not supported in Internet Explorer 6. Internet
Explorer 7 supports first-child, but not lang. I do not recommend using them
until the majority of users use a browser that supports them.

Tips The underline is the standard visual indicator of a hyperlink. If you remove an
underline from a hyperlink, you should style it to look like it should be clicked.
In the example, I styled the hyperlinks to look like simple buttons.

Pseudo-class selectors should be placed in your stylesheet in the order listed
previously (link, visited, hover, active, and focus). You can remember the order
using the mnemonic Las Vegas Hells Angels Fight.

A browser displays the active state when a user tabs to a hyperlink. It is also
displayed for less than a second when a user clicks a hyperlink. You can apply a
contrasting style to the active pseudo class to make the hyperlink “flash” when
the user clicks it. This gives the user immediate feedback that the browser
recognized the click.

Variations You can use any combination of CSS styles to style hyperlinks.

Related to Class Selector, Pseudo-element Selectors

See also www.cssdesignpatterns.com/pseudo-class-selectors

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE 69

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
ITA

N
C

E

http://freepdf-books.com

Subclass Selector

HTML

<h1>Subclass Selector</h1>

<div>
<p class="button square">Square</p>
<p class="button rounded">Rounded</p>
<p class="button go">Go</p>
</div>

CSS

*.button { width:175px; padding:3px 10px; margin:20px 0; text-align:center;
font-weight:bold; margin-left:50px; line-height:normal; }

*.button.square { color:darkblue; background-color:gold;
border-left:1px solid dimgray; border-right:2px solid black;
border-top:1px solid dimgray; border-bottom:2px solid black; }

*.button.rounded { color:darkblue; background-color:white;
line-height:45px; margin-top:30px;
background:url("oval.gif") no-repeat center center; }

*.button.go { background-color:white; line-height:26px;
text-indent:-9999px; font-size:10px;
background: url("go.jpg") no-repeat center center; }

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE70

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
IT

A
N

C
E

http://freepdf-books.com

Subclass Selector

Problem You want a class of elements to be styled with common rules. You also want these
elements to be divided into subclasses and styled with specialized rules that may
override the base rules.

Solution HTML
You can assign classes to elements in your HTML code using the class attribute.
A class attribute can contain an unlimited number of space-delimited classes.
The order of the classes in the attribute is not important. For readability, I
recommend listing the base class first followed by its subclasses. The classes
assigned to an element do not have to be related, but the code is more logical if
you organize them into classes and subclasses.

CSS
To select all elements assigned to the base class, use the universal selector
followed by the dot operator, followed by the name of the class.
To select all elements assigned to a base class, use the universal selector followed
by the dot operator, followed by the name of the base class, followed by the dot
operator, followed by the name of the subclass. I call this chaining together
classes. There is no limit to the number of chained classes. The order of the
classes in the selector is not important. For readability, I recommend listing the
base class first followed by its subclasses. The classes you chain together do not
have to be related, but the code is more logical if they are organized into base
classes and subclasses.

Pattern HTML
<ELEMENT class="class subclass etc">

CSS
*.class { SHARED_BASE_STYLES }
*.class.subclass.etc { SUBCLASS_STYLES }

Location You can apply this design pattern to any element.

Advantages You can use this design pattern to build a hierarchy of rules based on classes and
subclasses. As in object-oriented programming, subclassed elements “inherit”
the rules from their base class and their subclass. CSS cascading order ensures
rules from the subclass override the rules in the base class.

Example In the example, all paragraphs are assigned to the button class. Each one is also
assigned to the square, rounded, and go subclasses. All paragraphs assigned to
the button class share the same base rules assigned by *.button, such as
width:175px. Each subclassed paragraph is assigned to specialized rules through
*.button.square, *.button.rounded, or *.button.go. For example, each subclass
assigns a different background to its type of button. Some specialized rules, like
margin and line-height, override base rules.

Related to Class Selector

See also www.cssdesignpatterns.com/subclass-selector

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE 71

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
ITA

N
C

E

http://freepdf-books.com

Inheritance

HTML

<body>

<h1>Inheritance</h1>

<div>

<p>

- This span inherits font from its ancestor, <code><body></code>.

- It inherits line-height from its ancestor, <code><div></code>.

- It inherits letter-spacing from its ancestor, <code><p></code>.

- It inherits italics from its ancestor, <code></code>,
but it is also directly assigned to <code>font-style:normal </code> which
overrides its inherited italics.

</p>
</div>
</body>

CSS

body { font-family:verdana,arial,sans-serif; font-size:18px; }
div { line-height:2em; }
p { letter-spacing:0.8px; }
em { font-style:italic; }
span { font-style:normal; }

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE72

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
IT

A
N

C
E

http://freepdf-books.com

Inheritance

Problem You want to style an element and have all its descendants be styled the
same.

Solution CSS is designed so that many properties are inherited by default. This
means you can assign one of these inherited properties to any element,
and any descendants will inherit the property. Most inline properties
are inherited by default. A list of all properties and how they are
inherited follows.

Pattern Inheritance is a type of selector that is built into the CSS language.
You do not have to do anything to use inheritance. When a browser
encounters an inherited property, it automatically selects descendant
inline elements and applies its rule to them. When you assign a
property directly to an element, it overrides any inherited value.

Inherited properties The following properties are inherited by all elements:
visibility and cursor.

The following properties are inherited by inline elements:
letter-spacing, word-spacing, white-space, line-height, color, font,
font-family, font-size, font-style, font-variant, font-weight,
text-decoration, text-transform, direction.

The following properties are inherited by terminal block elements:
text-indent and text-align.

The following properties are inherited by list elements:
list-style, list-style-type, list-style-position, and
list-style-image.

The following property is inherited by table elements:
border-collapse.

Noninherited The following properties are not inherited:
display, margin, border, padding, background, height, min-height,
max-height, width, min-width, max-width, overflow, position, left,
right, top, bottom, z-index, float, clear, table-layout, vertical-align,
page-break-after, page-break-before, and unicode-bidi.

Limitations CSS provides a constant value named inherited that you can assign to
any property. When you assign inherited to a property, that property
inherits its value from its parent element. This allows you to force
properties to inherit. Internet Explorer versions 7 and earlier do not
implement inherit. The following tip shows how you can simulate
inheritance for any property.

Tip You can simulate inheritance for properties that cannot inherit. You
first select a starting element using any selector. You then follow the
selector by the descendant operator and the universal selector. The
pattern is SELECTOR *. For example, you can put a border around all
elements descended from <html> by using html * { border:1px solid
black; }. I often use this code to see the nesting of all elements in a
document.

Related to Position and Group Selectors

See also www.cssdesignpatterns.com/inheritance

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE 73

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
ITA

N
C

E

http://freepdf-books.com

Visual Inheritance

HTML

<h1>Visual Inheritance</h1>
<div>

<p>
<label>

- This span is nested inside a label, a paragraph, and a division.

- The division is assigned a background color, padding and a border.

- Since the span, label, and paragraph default to a transparent background
color and have no border, they "visually inherit" the
background, padding, and border of the division.

- Once you assign a background to an element, it no longer visually inherits
the background of its parent—like this <code><code></code> element.
<code><code></code> element.

</label>
</p>
</div>

CSS

div { background-color:gold; color:black; padding:10px 20px;

border-left:1px solid gray; border-right:2px solid black;

border-top:1px solid gray; border-bottom:2px solid black; }

p { background-color:transparent; background-image:none; }
label { background-color:transparent; background-image:none; }
span { background-color:transparent; background-image:none; }

code { background-color:firebrick; color:white; }

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE74

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
IT

A
N

C
E

http://freepdf-books.com

Visual Inheritance

Problem You want the background of a child element to be the same as its parent.

Solution CSS automatically layers elements transparently. Child elements are layered on
top of parent elements. If margins or positioning cause sibling elements to
overlap, following siblings overlap previous siblings. For floated and positioned
elements, you can set the layering explicitly using the z-index property. This is a
design pattern built into CSS. You do not need to do anything to take advantage
of it.

The background-color property defaults to transparent, and the background-image
property defaults to none. This allows the background of an element’s ancestors to
show through. In other words, a browser renders child elements in transparent
layers above parent elements unless you set a child’s background-color to a color,
or you set its background-image to an image.

Since child elements are nested within parent elements, each child element
visually inherits the borders and padding of its parent. In other words, a parent’s
borders and padding surround its children. If a child has a transparent
background and no borders, it appears as if the parent’s borders and padding are
the child’s borders and padding. Without borders around a child, you cannot tell
where the parent’s padding area ends and the child’s padding area begins. Once
you add borders to a child element, it no longer visually inherits the borders and
padding of its parent because you can see precisely where the parent ends and the
child begins.

Pattern You do not need to do anything to use visual inheritance because
background-color defaults to transparent and background-image defaults to none.
When you want a child element not to visually inherit the background of its
parent, you can set the element to its own background color or image as follows:
SELECTOR { background-color:COLOR;
background-image:url("FILE.EXT"); }

Location This design pattern applies to all elements.

Example In the example, the division has a gold background, and all its descendant
elements visually inherit the background—except for the code element,
which is assigned to the firebrick background color. Notice that I assigned
background-color:transparent and background-image:none to the paragraph,
label, and span. I did this to show these rules in action. You do not typically need
to assign these rules in your code because background-color:transparent and
background-image:none are the default for all elements. On the other hand, you
can use these rules whenever you want to reset an element to a transparent
background after another rule assigned it to a background color or image.

Related to Inheritance

See also www.cssdesignpatterns.com/visual-inheritance

CHAPTER 3 ■ CSS SELECTORS AND INHERITANCE 75

C
S

S
S

E
LE

C
TO

R
S

A
N

D
IN

H
E

R
ITA

N
C

E

http://freepdf-books.com

http://freepdf-books.com

Box Models

The fundamental design pattern in CSS is the Box Model. The Box Model defines how ele-
ments are rendered as boxes. There are six main types of boxes: inline, inline-block, block,
table, absolute, and floated. A browser renders each element as one of these boxes. Some ele-
ments are rendered in a variation of one of these boxes, such as a list item or table cell. For
example, list-item is a block box with an inline marker automatically created by the browser,
and table-cell is a block box that does not support margins.

You can use the display property to render an element as a different type of box. You can
use position:absolute or position:fixed to render any element as an absolute box. You can
use the float:left or float:right rules to render any element as a floated box.

This is the first of three chapters on the Box Model. This chapter explains the six main
types of boxes. Chapter 5 introduces extents, which are controlled by width and height.
Extents control whether a box is shrinkwrapped to its content, sized, or stretched to the sides
of its container. Chapter 6 introduces the Box Model properties: margin, border, padding,
background, overflow, visibility, page-break-before, and page-break-after. Background,
visibility, and page breaks work the same in all boxes. Borders, padding, and overflow work
the same in all boxes except for inline. Width, height, and margins work differently in each
type of box.

Chapter Outline

• Display shows how to render an element as an inline box, a block box, an inline-block
box, a list-item box, a table box, or not at all.

• Box Model introduces the general box model underlying all types of boxes.

• Inline Box shows how inline boxes work.

• Inline-block Box shows how inline-block and replaced inline boxes work.

• Block Box shows how block boxes work.

• Table Box shows how table boxes work.

• Absolute Box shows how absolute and fixed boxes work.

• Floated Box shows how floated boxes work.

77

C H A P T E R 4

http://freepdf-books.com

Display

HTML

<h1>Display</h1>

<code>display:inline</code>
<p>p</p> <p>p</p> <p>p</p>
lilili
<table><tr><td>td</td><td>td</td></tr><tr><td>td</td><td>td</td></tr></table>

strong
<code>display:inline-block</code>

em <code>display:block</code> em

<div class="ul"><dfn>dfn <code>display:list-item</code></dfn><dfn>dfn</dfn></div>

 <code>display:none</code>

CSS

p,ol,li,table { display:inline; }
strong { display:inline-block; width:250px; }
em { display:block; }
dfn { display:list-item; list-style-type:square; }
img { display:none; }

*.ul { padding-left:15px; }

CHAPTER 4 ■ BOX MODELS78

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Display

Problem You want to fundamentally change how the browser renders an element. For
example, you want a block element rendered inline, as a list item, or as a table;
or you do not want it to be rendered at all—as if it never existed.

Solution You can use the display property to change how an element is rendered. You
can use display:none to prevent an element from being rendered. You can use
display:inline to render an element inline. You can use display:block or
display:list-item to render an element as a block or list item. You can use
display:inline-block to render an inline element as a block nested in a line.

Pattern SELECTOR { display:inline; }
SELECTOR { display:inline-block; }
SELECTOR { display:block; }
SELECTOR { display:list-item; }
SELECTOR { display:none; }

Location This design pattern applies to all elements.

Limitations Firefox 2 does not support display:inline-block. I have included it in the design
pattern because future versions of Firefox are likely to support it.

There are additional display types, but they are not well supported. No major
browser supports compact. Internet Explorer 7 and Firefox 2 do not support
run-in and inline-table. Internet Explorer 7 does not support table,
table-cell, table-row, table-header-group, table-footer-group,
table-row-troup, table-column-group, table-column, and table-caption.

Tips When you display an element as a list item, its parent needs to be rendered as a
block and needs to provide left padding or left margin for the marker. This is
required because a list is a two-part structure: an outer block, such as , ,
or <dl>, and an inner block, such as , <dd>, or <dt>. You can assign a marker
to it using list-style-type.

A browser renders a list-item as a block with an inline marker. When you want
a list-item to look like a block, you can simply turn off the marker using
list-style-type:none—you do not need to change the display type because
a list is already a block. You may also want to remove its parent’s padding and
margin.

Example The example uses display:inline to render the blocks <p> and as inline
boxes. It uses display:inline-block to render the inline as an inline
block. It uses display:block to display the inline as a block. It uses
display:list-item to render the inline <dfn> elements as list items. It assigns
a marker to them using list-style-type. It also assigns left padding to their
parent to make room for the marker. Lastly, it uses display:none to hide an
image.

Related to Visibility (Chapter 6); Blocked (Chapter 11); Inlined, Run-in (Chapter 13);
Tabled, Rowed, and Celled (Chapter 15)

See also www.cssdesignpatterns.com/display

CHAPTER 4 ■ BOX MODELS 79

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Box Model

HTML

<h1>Box Model</h1>

<div class="box"></div>

<!-- The HTML code that creates the labels and extra borders is not shown. -->

CSS

*.box { display:static;
overflow:visible;
visibility:visible;
width:160px;
height:150px;
padding:30px;
border-top: 30px solid gray; border-bottom:30px solid black;
border-left:30px solid gray; border-right: 30px solid black;
margin-left:230px; margin-top:80px;
background-color:gold; }

/* Nonessential rules are not shown. */

CHAPTER 4 ■ BOX MODELS80

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Box Model

Problem You want to style the box of an element.

Solution The Box Model design pattern is built into CSS. This model defines the
relationship between the following properties: display, width, height, padding,
border, margin, background, overflow, and visibility.

width normally sets the width of an element’s inner box.

height normally sets the height of an element’s inner box.

padding sets the size of the padding surrounding the inner box. The padding is
transparent to the element’s background.

border sets the size, pattern, and color of the border surrounding the padding.

margin sets the size of the margin surrounding the border. The margin is
transparent to the background of the element’s parent. The outside of the
margin is the element’s outer box.

background assigns the padding area inside the box to a background color and/or
image.

overflow determines what happens when an element’s content is larger than its
inner box. The default is to show the overflowing content.

visibility can make the element visible or hidden.

Pattern SELECTOR { display:CONSTANT;
overflow:VALUE;
visibility:VALUE;
width:+VALUE;
height:+VALUE;
padding:+VALUE;
border:+WIDTH STYLE COLOR;
margin:±VALUE;
background:VALUES; }

Location This design pattern applies to all elements.

Example The example contains additional HTML markup and CSS rules that are not
shown. This extra code renders a label over each part of the box and draws the
outer box and inner box borders.

Notes CSS defines six main types of boxes: inline, inline-block, block, table, absolute,
and floated. The type of box is determined by the combination of the following
properties: display, position, and float. Box Model properties work differently
and produce different layouts depending on the type of box. Certain types of
boxes have additional functionality provided by additional properties, such as
line-height, border-collapse, and table-layout.

Related to All Box Model design patterns

See also www.cssdesignpatterns.com/box-model

CHAPTER 4 ■ BOX MODELS 81

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Inline Box

HTML

<h1>Inline Box</h1>

<div class="container">
BEFORE

← Left ↑ Top
Bottom ↓ Right →

AFTER
</div>

CSS

*.box { display:inline; visibility:visible;
line-height:100px;
margin:0 100px;
padding:20px 120px;

border-top: 5px solid gray;
border-bottom:5px solid black;
border-left: 5px solid gray;
border-right: 5px solid black;

background-color:gold; }

/* Nonessential rules are not shown. */

CHAPTER 4 ■ BOX MODELS82

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Inline Box

Aliases Inline, inline element, and static inline box are synonyms with inline box.

Problem You want to style the box of an inline element.

Solution Inline boxes are rendered in the inline flow. They flow horizontally from left to
right (or right to left in some languages) and are wrapped to new lines when they
exceed the width of their closest terminal block ancestor. This is called the inline
formatting context. CSS provides the following properties for styling inline
boxes:

width, height, and overflow do not work on inline elements, because they always
shrinkwrap to fit the width and height of their content.

margin and line-height are applied to inline elements in unique ways.
Horizontal margins change the position of inline elements in the flow. A positive
value in margin-left moves the element away from the previous element, and a
negative value moves it closer. A positive value in margin-right moves the next
element further away, and a negative value moves it closer. margin-top and
margin-bottom are ignored by inline elements. Instead, inline elements use
line-height to size the height of a line.

border is applied to inline elements in unique ways. Horizontal borders change
the position of inline elements in the flow. The left border moves the element
to the left, and the right border moves the next element to the right. The top
and bottom borders are rendered above and below the padding area without
expanding the height of the line or changing the vertical position of the inline
element. Because borders do not affect the height of the line, borders can overlap
neighboring lines unless you increase line-height. When a bordered element is
wrapped across lines, the browser does not render the right border at the end of
the line, and it does not render the left border at the beginning of the wrapped
line. The left and right borders occur only at the beginning and end of the
element.

padding is applied to inline elements in exactly the same way as borders.

Pattern INLINE_SELECTOR { display:inline; visibility:VALUE;
line-height:+VALUE;
margin:±VALUE;
padding:+VALUE;
border:+WIDTH STYLE COLOR;
background:VALUES; }

Location This design pattern applies to inline elements and any element displayed inline.

Related to Display, Box Model; Shrinkwrapped (Chapter 5); Margin, Border, Padding,
Background, Visibility (Chapter 6)

See also www.cssdesignpatterns.com/inline-box

CHAPTER 4 ■ BOX MODELS 83

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Inline-block Box

HTML

<h1>Inline-block Box</h1>

<div class="container">
BEFORE

AFTER

BEFORE
Inline element displayed as an inline block.

AFTER
</div>

CSS

*.replaced-box { display:inline-block;

overflow:visible; visibility:visible;
width:51px; height:52px;
margin:10px 100px; padding:10px 120px; }

*.inline-box { display:inline-block;

overflow:visible; visibility:visible;
width:275px; height:52px;
margin:10px 100px; padding:10px 10px; }

/* Nonessential rules are not shown.
See Inline Box for border and background properties. */

CHAPTER 4 ■ BOX MODELS84

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Inline-block Box

Problem You want to style the box of an inline-block element. Inline-block elements
include replaced elements and inline elements displayed as inline blocks. For
example, an image is a replaced element because the browser replaces the
element with an image. Also, you can use display:inline-block to display any
inline element as a block rendered within an inline context.

Solution Inline-block boxes participate in the inline flow like inline boxes but have
margins, borders, padding, width, and height like block boxes. An inline-block
box cannot be wrapped across lines. An inline-block box grows the height of a
line to fit its height, padding, borders, and margins. An inline-block box can be
shrinkwrapped, sized, or stretched. CSS provides the following properties for
styling inline-block boxes:

width and height set the width and height of the element. You can enlarge or
shrink a replaced element, such as an image, by setting width and/or height to a
measurement. You can set a replaced element to its natural size using width:auto
and height:auto. You can size an inline-block element, such as a span assigned
to display:inline-block, by setting width and/or height to a measurement. You
can shrinkwrap an inline-block element using width:auto and height:auto. You
can stretch an inline block using width:100%. Note that a stretched inline block is
the same as a block.

margin has unique inline-block features. A positive value in margin-top expands
the height of the line and a negative value shrinks it. A positive value in
margin-bottom raises the element and a negative value lowers it. margin-bottom
may also expand or shrink the height of a line. A positive value in margin-left
moves the element away from the previous element, and a negative value moves
it closer. A positive value in margin-right moves the next element further away,
and a negative value moves it closer.

border and padding expand the outer size of the inline element. This moves it
to the right and moves following content to the right. It also moves it up and
increases the height of the line containing it.

Pattern SELECTOR { display:inline-block; line-height:+VALUE;
overflow:VALUE; visibility:VALUE;
width: +VALUE; height: +VALUE;
margin:±VALUE; padding:+VALUE;
border:+WIDTH STYLE COLOR; background:VALUES; }

Location This design pattern applies to inline elements.

Limitations Firefox 2 does not support display:inline-block. It has a proprietary property,
display:-moz-inline-box, that works almost the same.

Example The example shows an image and a span displayed as inline blocks. Note that
you do not need to assign display:inline-block to replaced elements because a
browser automatically displays them as inline blocks.

Related to Display, Box Model; Width, Height, Sized, Shrinkwrapped, Stretched (Chapter 5);
Margin, Border, Padding, Background, Overflow, Visibility (Chapter 6)

See also www.cssdesignpatterns.com/inline-block-box

CHAPTER 4 ■ BOX MODELS 85

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Block Box

HTML

<h1>Block Box</h1>

<div class="container">
<div class="default">BEFORE</div>

<div class="box"> ↑
 Top
 ← Left
Right →
 Bottom
 ↓ </div>

<div class="default">AFTER</div>
</div>

CSS

*.box { display:block;
overflow:auto; visibility:visible;
width:220px; height:100px;
margin:10px auto; padding:10px; }

/* Nonessential rules are not shown.
See Inline Box for border and background properties. */

CHAPTER 4 ■ BOX MODELS86

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Block Box

Aliases Block, block element, and static block box are synonyms with block box.

Problem You want to style the box of a block element.

Solution Block boxes flow vertically from top to bottom in a block formatting context. This
is called the normal flow of blocks. Block boxes can contain other block boxes, or
they can terminate the block formatting context and start an inline formatting
context containing inline boxes. A terminal block creates an inline formatting
context inside its inner box, but occurs within a block formatting context on the
outside of its outer box.

A block can be stretched to the width and height of its parent or sized smaller or
larger than its parent. When sized larger, it overflows its parent. The overflow
property controls how the browser handles overflow.

width sets the width of the element. width:auto is the default value and stretches
the element to fill the width of its parent.

height sets the height of the element. height:auto is the default value and
shrinkwraps the element to the height of all its child blocks or lines.

margin-left and margin-right indent or outdent the sides of a stretched block,
and they offset the sides of a sized block. You cannot horizontally shrinkwrap a
block box.

margin-top and margin-bottom push blocks further apart with positive values,
but negative values bring them closer together, and can even overlap them. A
browser collapses top and bottom margins of neighboring blocks.

margin-left:auto and margin-right:auto control the horizontal alignment
of a sized block. When you size a block by setting width to a measurement,
margin-right:auto aligns the block to the left side of its parent, and
margin-left:auto aligns the block to the right side. When you set both
margin-left and margin-right to auto, the block is aligned to the center
of its parent (as shown in the example).

border and padding expand the outer width and height of the box. This pushes
down a block and its following blocks. On stretched blocks, horizontal borders
and padding shrink the size of the inner box. On sized blocks, they offset the
inner box.

Pattern SELECTOR { display:block; overflow:VALUE; visibility:VALUE;
width: +VALUE; height: +VALUE;
margin:±VALUE; padding:+VALUE;
border:+WIDTH STYLE COLOR;
background:VALUES; }

Location This design pattern applies to block elements.

Related to Display, Box Model; Width, Height, Sized, Shrinkwrapped, Stretched (Chapter 5);
Margin, Border, Padding, Background, Overflow, Visibility (Chapter 6)

See also www.cssdesignpatterns.com/block-box

CHAPTER 4 ■ BOX MODELS 87

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Table Box

HTML

<h1>Table Box Model</h1>
<div class="container">
<table class="default"><tr><td>BEFORE</td></tr></table>

<table class="table">

<tr><td class="cell">Table Cell </td><td class="cell">Table Cell </td></tr>
</table>

<table class="default"><tr><td>AFTER</td></tr></table>
</div>

CSS

*.table {

border-collapse:separate; table-layout:auto; visibility:visible;

width:auto; height:auto; margin:30px 50px; }

*.cell { width:auto; height:auto; padding:20px 50px; overflow:hidden; }

/* Nonessential rules are not shown.
See Inline Box for border and background properties. */

CHAPTER 4 ■ BOX MODELS88

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Table Box

Problem You want to style the box of a table and the boxes of its cells.

Solution A table is a block box on the outside containing rows of cells on the inside. A
table participates in the block flow, and its cells participate in the table flow of
rows and columns. A table has margins but does not have padding. A cell has
padding but does not have margins. Two additional properties affect the Table
Box model: border-collapse and table-layout. There are many design patterns
for laying out cells inside a table. These are found in Chapters 15 and 16, which
discuss tables and cells in detail. This design pattern focuses on the outside of
the table, and how the table interacts with the position of surrounding elements.

width sets the width of a table. Unlike other boxes, width refers to the outside of
the borders rather than to the inside of its padding.

height sets the height of the table. Unlike other boxes, height refers to the
outside of the borders rather than to the inside of its padding.

margin works differently depending on whether the table is sized, shrink-
wrapped, or stretched. When sized or shrinkwrapped, margins offset the table
and offset following elements. Negative margins can overlap the table with
neighboring elements. When a table is stretched, margins indent the table,
which decreases its internal size and shrinks its cells.

border decreases the size of a table’s inner box when a table is sized or stretched.
No other sized box works like this. This unusual behavior occurs because table
borders are inside the box specified by width and height. When the table is
shrinkwrapped, border works like other boxes and increases the size of a table’s
outer box.

overflow does not apply to tables because a table cannot overflow. Only a table’s
cells can overflow. overflow:hidden should be applied to cells to ensure
consistent behavior in all browsers when fixed cells overflow.

border-collapse determines whether or not adjacent borders combine into a
single border. See Chapters 15 and 16 for details.

table-layout determines whether the table is fixed sized or auto sized based on
its content. See Chapters 15 and 16 for details.

Pattern SELECTOR { display:table; visibility:VALUE;
width:+VALUE; height:+VALUE;
margin:±VALUE; border:+WIDTH STYLE COLOR;
background:VALUES;
border-collapse:VALUE; table-layout:VALUE; }

Location This design pattern applies to table elements.

Related to Table, Display, Box Model; Width, Height, Sized, Shrinkwrapped, Stretched
(Chapter 5); Margin, Border, Padding, Background, Overflow, Visibility
(Chapter 6)

See also Chapter 15 explains tables in much more detail.
www.cssdesignpatterns.com/table-box

CHAPTER 4 ■ BOX MODELS 89

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Absolute Box

HTML

<h1>Absolute Box</h1>

<div class="container" >
<div class="default">BEFORE</div>
<div class="box before">ABSOLUTE BEFORE</div>

<div class="box">↑
 Top
 ← Left
 Right →
 Bottom
 ↓ </div>

<div class="box after">ABSOLUTE AFTER</div>
<div class="default">AFTER</div>

</div>

CSS

*.container { position:relative; }

*.box { position:absolute; overflow:auto; visibility:visible;
z-index:auto; left:0; right:auto; top:0; bottom:auto;
width:220px; height:100px;
margin:10px; padding:10px;}

*.before {width:100px; height:auto; left:400px; right:auto; top:100px; bottom:auto;}
*.after {width:100px; height:auto; left:auto; right:0px; top:auto; bottom:0px; }

/* Nonessential rules are not shown.
See Inline Box for border and background properties. */

CHAPTER 4 ■ BOX MODELS90

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Absolute Box

Problem You want to style the box of an absolute or fixed element.

Solution An absolute element is removed from the normal flow and put in a layer above
or below it. It is positioned in relation to its closest positioned ancestor or fixed
to the viewport. It can be sized, shrinkwrapped, or stretched to its closest
positioned ancestor. Any element can be positioned absolutely. Unlike other
boxes, the position of an absolute box does not affect the position of other boxes.
Absolute boxes may overlap freely.

z-index controls the stacking order of positioned elements. A negative value
places them below the normal flow, and a positive value places them above the
flow. Larger values move them closer to the user in the stacking order.

left, right, top, and bottom apply to absolute boxes. When set to a measurement,
left aligns the left side of an absolute element to the left side of its container and
offsets it by a positive or negative value. right, top, and bottom work analogously.
When left, right, top, and bottom are all set to auto, a browser renders the
absolute box in the same position it would have had if it were rendered in the
normal flow.

width sets the width of the element. width:auto is the default value. When width
is auto and both left and right are auto, the box is shrinkwrapped. When width
is auto and both left and right are 0 or some other value, the box is stretched.
When width is a value, left is a value, and right is auto, the box is sized and
offset from the left. When width is a value, left is auto, and right is a value, the
box is sized and offset from the right.

height sets the height of the element. height, top, and bottom work analogously
to width, left, and right.

margin assigned to a positive value moves a side of an absolute box toward the
center of its container, and a negative value moves it away from center.

border and padding shrink the inner box of stretched absolute boxes. border and
padding expand the outer box of sized and shrinkwrapped absolute boxes and
move them toward the center of their container.

Pattern SELECTOR { position:ABSOLUTE_FIXED; z-index:+VALUE;
overflow:VALUE; visibility:VALUE;
left:±VALUE; right:±VALUE; top:±VALUE; bottom:±VALUE;
width: +VALUE; height: +VALUE;
margin:±VALUE; padding:+VALUE;
border:+WIDTH STYLE COLOR; background:VALUES; }

Location This design pattern applies to all elements.

Tip Chapters 7 through 9 show how to position absolute boxes.

Example Notice how all three absolute boxes are removed from the flow, which brings
together the static BEFORE and AFTER blocks.

Related to Positioned (Chapter 7); Display, Box Model (Chapter 4); Width, Height, Sized,
Shrinkwrapped, Stretched (Chapter 5); Margin, Border, Padding, Background,
Overflow, Visibility (Chapter 6)

See also www.cssdesignpatterns.com/absolute-box

CHAPTER 4 ■ BOX MODELS 91

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Floated Box

HTML

<h1>Floated Box</h1>

<div class="container">
<div class="default">BEFORE</div>
<div class="box small">FLOAT BEFORE</div>

<div class="box">↑
 Top
 ← Left
 Right →
 Bottom
 ↓ </div>

<div class="box small">FLOAT AFTER</div>
<div class="default">AFTER</div>

</div>

CSS

*.box { float:left; overflow:auto; visibility:visible;
width:220px; height:100px;
margin:10px; padding:10px; }

*.small { width:75px; height:auto; }

/* Nonessential rules are not shown.
See Inline Box for border and background properties. */

CHAPTER 4 ■ BOX MODELS92

B
O

X
M

O
D

E
LS

http://freepdf-books.com

Floated Box

Problem You want to style the box of a float.

Solution You can float any element using float:left or float:right. A float is removed
from the normal flow and placed above the borders and backgrounds of adjacent
blocks. This shrinks the float’s parent and collapses it completely when all its
children are floated. Even though a float is removed from the flow, it indents
adjacent content in the flow. Left floats indent adjacent content to the right,
and right floats indent content to the left. A float is positioned vertically at the
location in which it would have been rendered in the normal flow. It is positioned
horizontally inside its parent’s padding area on the left or right. A float stacks next
to other floats in the same general vertical location. When a float cannot fit next to
another float, it moves down below it. A float’s position, size, padding, borders,
and margins affect the position of adjacent floats and adjacent inline content. The
precise location of a float cannot be predetermined.

width sets the width of the float. width:auto is the default value and shrinkwraps
the float to fit the width of its widest line.

height sets the height of the float. height:auto is the default value and
shrinkwraps the float to the height of all its child blocks or lines.

margin has unique float features. A positive margin pushes the float away from its
point of alignment and pushes other floats and inline content away from it. A
negative margin pulls the float to the other side of its point of alignment and pulls
other floats and inline content closer. Margins around floats do not collapse.

border and padding expand the outer size of a float. The left border and padding
of a left float moves the float to the right, and its right border and padding moves
other floats and inline content on the right further to the right. This applies vice
versa for right floats. Top border and padding move the float down. The bottom
border and padding move down any floats below the float, and extends the float’s
effect on adjacent content in the normal flow.

Pattern SELECTOR { float:LEFT_RIGHT; width:+VALUE; height:+VALUE;
z-index:+VALUE; margin:±VALUE; padding:+VALUE;
border:+WIDTH STYLE COLOR; background:VALUES;
overflow:VALUE; visibility:VALUE; }

Location This design pattern applies to all elements.

Example The three floats in the example are removed from the flow, which brings together
the static BEFORE and AFTER boxes and shrinks the height of the floats’ parent.
The three floats stack next to each other from left to right. The AFTER text is
moved to the right by the last float. Margins, borders, and padding expand the
floats’ outer boxes and push away other floats.

Related to Display, Box Model; Width, Height, Sized, Shrinkwrapped, Stretched (Chapter 5);
Margin, Border, Padding, Background, Overflow, Visibility (Chapter 6)

See also www.cssdesignpatterns.com/float-box

CHAPTER 4 ■ BOX MODELS 93

B
O

X
M

O
D

E
LS

http://freepdf-books.com

http://freepdf-books.com

Box Model Extents

This is the second of three chapters on the Box Model. It shows how boxes can be sized,
shrinkwrapped, and stretched. The previous chapter discusses the six main types of boxes:
inline, inline-block, block, table, absolute, and floated. The next chapter discusses properties
that style the box.

Each type of box works differently. The design patterns in this chapter show how to apply
width and height to each type of box to size, shrinkwrap, or stretch it. Horizontal and vertical
dimensions are independent. You can freely combine different vertical and horizontal design
patterns. For example, you can stretch horizontally and shrinkwrap vertically.

Chapter Outline

• Width contrasts how width can size, shrinkwrap, or stretch each type of box.

• Height contrasts how height can size, shrinkwrap, or stretch each type of box.

• Sized shows how to set the height or width of an element. An element is sized when you
manually assign it a height and/or a width. For example, you can use height:50% to size
an element’s height to 50% of the height of its container.

• Shrinkwrapped shows how to shrink the width or height of an element to the size of
its content. For example, height:auto causes the height of a static block element to
expand automatically to fit the total height of its lines, and width:auto causes the width
of an absolute element to shrink to fit to the width of its widest line.

• Stretched shows how to stretch the width or height of an element to the sides of its con-
tainer. For example, width:auto causes the width of a static block element to expand
automatically to fit the width of its container. For example, top:0, bottom:0, and
height:auto cause an absolute element to expand automatically to fit the height of its
container. A stretched element’s left side aligns to the left side of its container, and its
right side aligns to the right side of the container. Similarly, its top and bottom sides
align to the top and bottom sides of its container.

95

C H A P T E R 5

http://freepdf-books.com

Width

CSS

*.static-inline-shrinkwrapped { width:auto; }
*.replaced-inline-shrinkwrapped { width:auto; }
*.replaced-inline-sized { width:35px; }
*.replaced-inline-stretched { width:100%; }

*.static-block-sized { width:300px; }
*.static-block-stretched { width:auto; }

*.table-shrinkwrapped { width:auto; }
*.table-sized { width:300px; }
*.table-stretched { width:100%; }

*.float-shrinkwrapped { width:auto; float:left; }
*.float-sized { width:300px; float:left; clear:both; }
*.float-stretched { width:100%; float:left; clear:both; }

*.absolute-shrinkwrapped { width:auto; left:0; right:auto; position:absolute; }
*.absolute-sized { width:300px; left:0; right:auto; position:absolute; }
*.absolute-stretched { width:auto; left:0; right:0; position:absolute; }

CHAPTER 5 ■ BOX MODEL EXTENTS96

B
O

X
M

O
D

E
L

E
X

T
E

N
T
S

http://freepdf-books.com

Width

Problem You want to set the width of an element to size it, shrinkwrap it, or stretch it.

Solution CSS provides the width property for this purpose.

This design pattern is an introduction to the Sized, Shrinkwrapped, and
Stretched design patterns. The purpose of this design pattern is to compare how
width applies to all six main types of boxes: inline, inline-block, block, table,
absolute, and floated. This comparison makes it easy to choose the proper
combination of width, element, and display box to create the layout you want.

width works on all types of elements except for inline elements. width works
differently depending on the type of element and whether or not it is positioned
or floated. width is completely independent from height. width:auto is the
default.

width:auto width:auto horizontally shrinkwraps the following boxes: inline, inline-block,
floated, table, and absolute (when both left and right are auto).
width:auto horizontally stretches block boxes and absolute boxes (when left and
right are both set to a value, such as 0).

width:+VALUE You can size an element by assigning pixels, ems, a percentage, or another fixed
measurement to width. Fixed-width elements may not be user friendly when the
viewport is much larger or much smaller than expected. Percentages are more
flexible because they can scale to the viewport.

width:100% width:100% stretches an element to the width of its parent, but unlike auto,
width:100% has limitations. A browser does not automatically adjust the width
to keep the element stretched. An element’s horizontal margins, borders, or
padding can expand its width beyond the width of the parent.

Pattern SELECTOR { width:+VALUE; }

Location width applies to all elements except for inline elements.

Tips A browser ignores width on a static inline element because font and font-size
determine the width of its text, which sets the element’s width.

Tables stretched using width:100% work almost as well as horizontally stretched
absolute elements. When you assign borders or padding to a table, the outer box
of a table does not expand, and the table does not overflow its parent. This is
because borders and padding are rendered on the inside of the table and do
not expand its outer box. On the other hand, a margin assigned to a table will
reposition the table, and it will overflow its parent.

Example The example illustrates all ways of using width to create horizontally
shrinkwrapped, stretched, and sized elements. I omitted nonessential CSS
rules and the HTML code to fit the example on one page. The text in the
element is the name of its class. The replaced element is an image of a star.

Related to Sized, Shrinkwrapped, Stretched; Static, Absolute, Float (Chapter 7);
Table (Chapter 15)

See also www.cssdesignpatterns.com/width

CHAPTER 5 ■ BOX MODEL EXTENTS 97

B
O

X
M

O
D

E
L

E
X

T
E

N
T
S

http://freepdf-books.com

Height

CSS

*.replaced-inline-shrinkwrapped { height:auto; }
*.replaced-inline-sized { height:65px; }
*.replaced-inline-stretched { height:100%; }

*.block-shrinkwrapped { height:auto; }
*.block-sized { height:65px; }
*.block-stretched { height:100%; }

*.table-shrinkwrapped { height:auto; }
*.table-sized { height:65px; }
*.table-stretched { height:100%; }

*.float-shrinkwrapped { height:auto; float:left; }
*.float-sized { height:65px; float:left; }
*.float-stretched { height:100%; float:left; }

*.absolute-shrinkwrapped { height:auto; top:0; bottom:auto; position:absolute; }
*.absolute-sized { height:65px; top:0; bottom:auto; position:absolute; }
*.absolute-stretched { height:auto; top:0; bottom:0; position:absolute; }

CHAPTER 5 ■ BOX MODEL EXTENTS98

B
O

X
M

O
D

E
L

E
X

T
E

N
T
S

http://freepdf-books.com

Height

Problem You want to set the height of an element to size it, shrinkwrap it, or stretch it.

Solution CSS provides the height property for this purpose. This design pattern is an
introduction to the Sized, Shrinkwrapped, and Stretched design patterns. The
purpose of this design pattern is to compare how height applies to all six main
types of boxes: inline, inline-block, block, table, absolute, and floated. This
comparison makes it easy to choose the proper combination of height,
element, and display box to create the layout you want.

height works on all types of elements except for inline elements. height works
differently depending on the type of element and whether or not it is
positioned or floated. height is completely independent from width.
height:auto is the default.

height:auto height:auto vertically shrinkwraps the following boxes: inline, inline-block,
block, floated, table, and absolute (when both top and bottom are auto).
height:auto also vertically stretches an absolute box when top and bottom are
both set to a value, such as 0. This is the best way to vertically stretch a box
because height:100% has limitations, but it is only available for absolute boxes.

height:+VALUE You can size an element by assigning pixels, ems, a percentage, or another fixed
measurement to height. Fixed heights may not be user friendly when the
viewport is much larger or much smaller than expected. Percentages are more
flexible because they can scale to the viewport.

height:100% height:100% stretches an element to the height of its parent, but unlike auto,
height:100% has limitations. A browser does not automatically adjust the height
to keep the element stretched. An element’s vertical margins, borders, or
padding can expand its height beyond the height of the parent.

Pattern SELECTOR { height:+VALUE; }

Location height applies to all elements except for inline elements.

Tips A browser ignores height on a static inline element because font and font-size
determine the height of its text, which sets the element’s height.

Tables stretched using height:100% work almost as well as vertically stretched
absolute elements. When you assign borders or padding to a table, the outer
box of a table does not expand, and the table does not overflow its parent. This
is because borders and padding are rendered on the inside of the table and do
not expand its outer box. On the other hand, a margin assigned to a table will
reposition the stretched table and overflow its parent.

Example The example illustrates all ways of using height to create vertically
shrinkwrapped, stretched, and sized elements. I omitted nonessential CSS
rules and the HTML code to fit the example on one page. The text in the
element is the name of its class. The replaced element is an image of a star.

Related to Sized, Shrinkwrapped, Stretched; Static, Absolute, Float (Chapter 7); Table
(Chapter 15)

See also www.cssdesignpatterns.com/height

CHAPTER 5 ■ BOX MODEL EXTENTS 99

B
O

X
M

O
D

E
L

E
X

T
E

N
T
S

http://freepdf-books.com

Sized

HTML

<h1>Sized</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="float" class="z">Sized Float</div>
<div id="static" class="z">Sized Static</div>
<table id="table" class="z"><tr><td>Sized Table</td></tr></table>
Sized Absolute

</div>
</div>

CSS

*.z { padding:5px; border:5px solid black; }

#float { width:150px; height:50px; }
#static { width:150px; height:50px; }
#table { width:150px; height:50px; }
#abs { width:150px; height:50px; }
#star { width:26px; height:26px; }

/* Nonessential rules are not shown. */

CHAPTER 5 ■ BOX MODEL EXTENTS100

B
O

X
M

O
D

E
L

E
X

T
E

N
T
S

http://freepdf-books.com

Sized

Problem You want to set the height and/or width of an element to a measurement or a
percentage of its containing block’s height and width.

Solution Apply styles to your chosen class or ID as follows:

- Use height to set the height of an element to a measurement or a percentage
of the height of its container.

- Use width to set the width of an element to a measurement or a percentage of
the width of its container.

- You can assign width and height independently. In other words, you can size
the height only, the width only, or both height and width.

- If you do not want to size the height or width, you can set width or height to
auto. auto is the default value for width and height.

Pattern SELECTOR { width:+VALUE; height:+VALUE; }

Location This pattern applies to all elements except for static inline elements.

Explanation Sized elements require width and height to be set to a measurement or
percentage. A percentage of 100% is used to stretch an element, but any other
percentage sizes the element smaller or larger than its container.

height and width specify the inner box of an element. Padding surrounds the
inner box. Borders surround the padding. Margins surround the borders. The
box surrounding the margins is the outer box. Padding, borders, and margin
expand the outer box and have no effect on the height and width of the inner
box. Negative margins may cause adjacent elements to overlap an element, but
they do not change its height and width.

Tables are an exception where height and width specify the outside of the
table’s border. This causes borders and padding to be placed inside the
specified height and width. This is why the table in the example is smaller
than the other elements.

When a float is sized, it changes the flow. width changes the left and right
boundaries in which the float’s content is flowed, affecting the location of
adjacent content and floats. height pushes down or pulls up adjacent floats.

When a static block element is sized, it changes the flow. height pushes down
or pulls up the following block element. height also shrinks or grows the height
of its parent (unless the parent is also sized). width changes the left and right
boundaries in which content is flowed.

When an absolute element is sized, it does not change the flow and it does not
change the position of other elements. Percentages in width and height refer to
its closest positioned ancestor’s width and height.

When sizing a replaced element, such as an image, the browser scales it to the
specified size. To use the intrinsic size, set height and width to auto.

Related to Width, Height, Shrinkwrapped, Stretched; Static, Absolute, Float (Chapter 7)

See also www.cssdesignpatterns.com/sized

CHAPTER 5 ■ BOX MODEL EXTENTS 101

B
O

X
M

O
D

E
L

E
X

T
E

N
T
S

http://freepdf-books.com

Shrinkwrapped

HTML

<h1>Shrinkwrapped</h1>

<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
Shrinkwrapped Float
Shrinkwrapped Static Inline

<div id="block" class="z">Vertically Shrinkwrapped Static Block</div>
<table id="table" class="z"><tr><td>Shrinkwrapped Table</td></tr></table>
Shrinkwrapped Absolute

</div>
</div>

CSS

#float { width:auto; height:auto; float:left; }
#inline { width:auto; height:auto; }
#star { width:auto; height:auto; }
#block { width:auto; height:auto; }
#table { width:auto; height:auto; }
#abs { width:auto; height:auto; left:auto; bottom:auto; position:absolute; }

/* Nonessential rules are not shown. */

CHAPTER 5 ■ BOX MODEL EXTENTS102

B
O

X
M

O
D

E
L

E
X

T
E

N
T
S

http://freepdf-books.com

Shrinkwrapped

Problem You want to shrinkwrap the width and/or height of an element to fit the width or
height of its content.

Solution Apply styles to your chosen class or ID as follows:

- Use height:auto to shrink the height to the height of all its lines.

- Use width:auto to shrink the width to the width of its widest line.

- width and height are independent. For example, you can shrinkwrap one and
size the other.

Patterns Shrinkwrapped Float
SELECTOR { width:auto; height:auto; float:LEFT_RIGHT; }

Shrinkwrapped Static Inline Element
INLINE-SELECTOR { width:auto; height:auto; }

Shrinkwrapped Static Inline-block Element
INLINE-BLOCK-SELECTOR { width:auto; height:auto; }

Vertically Shrinkwrapped Static Block Element
BLOCK-SELECTOR { height:auto; }

Shrinkwrapped Table Element
TABLE-SELECTOR { width:auto; height:auto; }

Horizontally Shrinkwrapped Absolute Element
SELECTOR { position:absolute; width:auto;
left:0; right:auto; }

or
SELECTOR { position:absolute; width:auto;
left:auto; right:0; }

Vertically Shrinkwrapped Absolute Element
SELECTOR { position:absolute; height:auto;
top:0; bottom:auto; }

or
SELECTOR { position:absolute; height:auto;
top:auto; bottom:0; }

Location This pattern applies to all elements.

Limitations You cannot horizontally shrinkwrap a static block.

Explanation Shrinkwrapped elements require width and height to be set to auto so that the
browser can automatically size the box based on the width and height of its
content. Absolute elements also require left or right, and top or bottom to be
set to auto to prevent them from being stretched.

Tip Because a shrinkwrapped table is sized based on its content, its behavior is the
same as any other shrinkwrapped element. Contrast this to a sized table where
the height and width are assigned to the outside of the table’s border, causing it
to be sized differently from other elements.

Related to Width, Height, Sized, Stretched; Static, Absolute, Float (Chapter 7)

See also www.cssdesignpatterns.com/shrinkwrapped

CHAPTER 5 ■ BOX MODEL EXTENTS 103

B
O

X
M

O
D

E
L

E
X

T
E

N
T
S

http://freepdf-books.com

Stretched

HTML

<h1>Stretched</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
Cannot stretch a static inline
<div id="sized"></div>
<div id="block" class="s">Horizontally Stretched Static Block</div>
<table id="table" class="s"><tr><td>Horiz. Stretched Table</td></tr></table>
<div id="abs-v" class="s">Vertically Stretched Absolute</div>
Horizontally Stretched Absolute
Almost Stretched Float

</div>
</div>

CSS

#star { width:100%; height:100%; }
#block { width:auto; }
#table { width:100%; }
#abs-v { height:auto; top:0; bottom:0; position:absolute; }
#abs-h { width:auto; left:0; right:0; position:absolute; }
#float { width:100%; float:left; }

/* Nonessential rules are not shown. */

CHAPTER 5 ■ BOX MODEL EXTENTS104

B
O

X
M

O
D

E
L

E
X

T
E

N
T
S

http://freepdf-books.com

Stretched

Problem You want to stretch the width or height of an element to fill the width or height of
its container. In other words, you want to stretch the outer box of an element to
the sides of its container.

Solution You can stretch a box by applying width:auto, width:100%, height:auto, or
height:100% to different types of boxes.

When using width:auto or height:auto, a browser calculates the width and
height of stretched elements from the outside in. A browser starts with the inner
box of the parent, and subtracts the stretched element’s margins, borders, and
padding to calculate its inner box. Contrast this with sized and shrinkwrapped
elements, which are sized from the inside out.

- Use width:auto to stretch the width of a block to the sides of its parent.

- Use width:auto, left:0, and right:0 to stretch an absolute element to the left
and right sides of its closest positioned ancestor.

- Use height:auto, top:0, and bottom:0 to stretch an absolute element to the top
and bottom of its closest positioned ancestor.

- Use width:100% to stretch a table, a float, or an inline block. This works as long
as the box does not have horizontal margins. Otherwise, it overflows its parent,
and the stretch effect is lost. Stretched floats and inline blocks also overflow their
parent when they have horizontal borders or padding.

- Use height:100% to stretch the height of inline blocks, blocks, tables, and floats
to the height of their containers. If the stretched element is not the first and only
child in its container, this technique will overflow the container.

Patterns Stretched Inline-block Element
INLINE-BLOCK-SELECTOR { width:100%; height:100%; }

Stretched Static Block Element
BLOCK-SELECTOR { width:auto; height:100%; }

Stretched Table
TABLE-SELECTOR { width:100%; height:100%; }

Vertically Stretched Absolute Element
SELECTOR { height:auto; top:0; bottom:0; position:absolute; }

Horizontally Stretched Absolute Element
SELECTOR { width:auto; left:0; right:0; position:absolute; }

Stretched Float
SELECTOR { width:100%; height:100%; float:LEFT_RIGHT; }

Location This pattern works on all elements except for inline elements.

Limitations Internet Explorer 6 cannot stretch absolute elements, but version 7 can. An
absolutely positioned table is stretched using width:100% and height:100%.

Example The star image is the only child inside a 50-pixel centered division, and is
stretched to all four sides of its parent. Notice how the float is not stretched
perfectly because its padding and border causes it to overflow its parent.

Related to Width, Height, Sized, Shrinkwrapped; Static, Absolute, Float (Chapter 7)

See also www.cssdesignpatterns.com/stretched

CHAPTER 5 ■ BOX MODEL EXTENTS 105

B
O

X
M

O
D

E
L

E
X

T
E

N
T
S

http://freepdf-books.com

http://freepdf-books.com

Box Model Properties

This chapter shows how box model properties style the various types of boxes. These are
basic design patterns.

The Margin, Border, and Padding design patterns contain examples contrasting how each
property works in each type of box. Their main purpose is to contrast in one place how the
same property means different things in different contexts. When using this book as a refer-
ence, you may also want to refer to the Margin, Border, and Padding design patterns to
determine which type of element, box, and property will do what you want.

Chapter Outline

• Margin contrasts how margins work differently for different types of boxes. It shows
how margins change the position of an element in relation to its container and siblings.

• Border contrasts how borders work differently for different types of boxes. It shows how
borders change the position of an element in ways similar to margins, and in some
ways different from margins.

• Padding contrasts how padding works differently for different types of boxes. It shows
how padding works almost identically to borders and margins.

• Background shows how to assign a color to the background of an element. It also
shows how to use a tiled image for the background. You can tile the image across and
down, across only, down only, or show the image only once. You can position the image
at a specific location in the background. You can also direct whether the image scrolls
with the content or remains in a fixed location.

• Overflow shows how to hide overflowing content, display it, or display scrollbars.

• Visibility shows how to hide an element while leaving a placeholder for it in the flow.

• Page Break shows how to insert a page break into your document before an element or
after an element. It also shows how to print blank pages.

107

C H A P T E R 6

http://freepdf-books.com

Margin

CSS

*.before { margin:0; }

*.after { margin-top:10px; margin-bottom:0;
margin-left:30px; margin-right:10px; }

/* Nonessential rules are not shown.
HTML code is omitted to allow the example to fit on one page. */

CHAPTER 6 ■ BOX MODEL PROPERTIES108

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

Margin

Problem You want to put a margin on one or more of the sides of an element. You want the
margin to be transparent to the background of the element’s parent.

Solution You can use a selector to assign the margin property to an element. You can
independently set margin-left, margin-right, margin-top, and margin-bottom.
margin can be positive or negative. Negative values may overlap elements. margin
works differently depending on the type of element.

margin:±VALUE You can assign a measurement or percentage to margin. A percentage refers to a
percentage of the containing block’s width. margin:0 is the default CSS value, but
browsers assign different default margins to specific elements.

- On an inline element, margin-top and margin-bottom are ignored.

- On an inline or inline-block element, a positive value in margin-left moves
the element away from the previous element, and a negative value moves it
closer. A positive value in margin-right moves the next element further away,
and a negative value moves it closer.

- On an inline-block element, such as an image, a positive value in margin-top
expands the height of the line and a negative value shrinks it. A positive value in
margin-bottom raises the element, and a negative value lowers it.

- On a sized block element, a positive or negative value in margin-left and
margin-right offsets it from its point of alignment. A positive value in margin-top
and margin-bottom pushes neighboring blocks further apart, and a negative value
brings them closer together. A browser collapses top and bottom margins of
neighboring block elements.

- On a stretched block or stretched absolute element, a positive margin indents
the sides of the element, and a negative value outdents them. Indents shrink an
element’s inner box, pushing borders and padding inward.

- On a table or a sized or shrinkwrapped absolute element, a positive or
negative margin value offsets it from its point of alignment. Margins on a
stretched table do not indent the table, but cause it to overflow its container.

- On a float, a positive margin pushes the float away from its point of alignment,
and pushes other floats and inline content away from it. A negative margin pulls
the float to the other side of its point of alignment, and pulls other floats and
inline content closer. Margins on a stretched float do not indent the float but
cause it to overflow its container.

margin:auto On most elements, margin:auto is the same as margin:0, (i.e., no margin).

- On a static block element and a stretched absolute element, auto
automatically expands the margin. For example, margin-left:auto and
margin-right:0 aligns a sized element to the right.

Pattern SELECTOR { margin:±VALUE; }

Location margin works on most elements. It does not work on internal table elements,
such as table cells. Vertical margins do not work on inline elements.

Related to Border, Padding; all patterns in Chapters 4, 7, 8 and 9; Spacing, Inline Spacer,
Linebreak, Inline Horizontal Rule (Chapter 11); Text Indent, Hanging Indent
(Chapter 12); Lists, Background Bulleted, Collapsed Margins, Horizontal Rule,
Block Spacer, Block Spacer Remover, Left Marginal, Right Marginal (Chapter 13);
Outside-in Box, Float Divider (Chapter 17)

See also www.cssdesignpatterns.com/margin

CHAPTER 6 ■ BOX MODEL PROPERTIES 109

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

Border

CSS

*.before { border:1px solid black; }

*.after { border-top:10px solid dimgray; border-bottom:1px solid black;
border-left:30px solid black; border-right:5px solid black; }

/* Nonessential rules are not shown.
HTML code is omitted to allow the example to fit on one page. */

CHAPTER 6 ■ BOX MODEL PROPERTIES110

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

Border

Problem You want to put a border on one or more of the sides of an element.

Solution You can use a selector to assign the border property to an element. You can
independently set border-left, border-right, border-top, and border-bottom.
border affects an element differently depending on the type of element and its
alignment. You can set the style and color of the border. border:none is the
default.

Borders work almost identically to margins. Borders work like margins in the way
they change the position of an element and the position of its neighbors.

The descriptions in the Margin design pattern apply to borders except as follows:

- Borders are visible instead of transparent, but you can set the color of a border
to transparent if you want. (Note that Internet Explorer 6 does not support
transparent as a color, but version 7 does.)

- Borders cannot be negative because they are inside the margin.

- Borders between static block elements do not collapse like margins.

- Left and right borders around inline text elements are only visible at the start of
the element and at the end of the element. Right and left borders are not drawn
where a browser wraps an inline element across lines.

- Top and bottom borders on inline elements overlap neighboring lines unless
you increase the line height to make room for them. In other words, vertical
inline borders do not automatically increase the height of the line. Notice in the
example how the border above the text “Static Inline Shrinkwrapped” overlaps
the top of its container, and how the word “Element” overlaps the previous line.

- Since a table’s width and height refer to the outside of its borders (rather than to
the inside of its padding), borders are drawn inside the box specified by width
and height. This means borders do not add to the size of shrinkwrapped or sized
tables. This also means borders on a stretched table do not cause it to overflow
its container; instead, they indent the table like a stretched block or a stretched
absolute element. Notice in the example how the width of the sized table’s outer
box does not change when borders are enlarged; instead, the inner box shrinks.
Also notice how borders indent the stretched table instead of causing it to
overflow its container like it did in the Margin design pattern and like the
stretched float does in this example.

Pattern SELECTOR { border: WIDTH STYLE COLOR;
border: none;
border-left: WIDTH STYLE COLOR;
border-right: WIDTH STYLE COLOR;
border-top: WIDTH STYLE COLOR;
border-bottom: WIDTH STYLE COLOR; }

Location This design pattern applies to all elements.

Related to Margin, Padding; all Box Model patterns in Chapter 4; Absolute (Chapter 7); Text
Decoration (Chapter 10); Inline Decoration, Inline Horizontal Rule (Chapter 11);
Horizontal Rule (Chapter 13); Table, Separated Borders, Collapsed Borders,
Styled Collapsed Borders, Hidden and Removed Cells (Chapter 15); Outside-in
Box, Float Divider, Tab Menu (Chapter 17)

See also www.cssdesignpatterns.com/border

CHAPTER 6 ■ BOX MODEL PROPERTIES 111

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

Padding

CSS

*.before { padding:0; }

*.after { padding-top:10px; padding-bottom:0;
padding-left:30px; padding-right:10px; }

/* Nonessential rules are not shown.
HTML code is omitted to allow the example to fit on one page. */

CHAPTER 6 ■ BOX MODEL PROPERTIES112

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

Padding

Problem You want to use padding on one or more of the sides of an element.

Solution Use a selector to assign the padding property to an element. You can
independently set padding-left, padding-right, padding-top, and padding-
bottom. padding affects the position of an element differently depending on the
type of element and its alignment. The element’s background is displayed in
the padding area. padding:0 is the default.

Padding works almost identically to borders.

- Padding works like margins and borders in the way it changes the position of
an element and the position of its neighbors.

- Like borders, top and bottom padding on inline elements overlap
neighboring lines unless you increase the line height to make room for them.

- Like borders, padding does not add to the size of shrinkwrapped or sized
tables, and applying padding to the cells of a stretched table does not cause
the table to overflow its container.

The remaining descriptions in the Border and Margin design patterns apply to
Padding except as follows:

- Borders are transparent to the element’s background. Contrast this with
margins, which are transparent to the parent’s background, and borders,
which are styled.

- Padding cannot be negative because it is inside the border.

- Padding does not apply to tables, but it does apply to table cells. In the
example, I applied padding to the cells in the table rather than to the table.

- Padding defaults to 0, which is no padding.

Pattern SELECTOR { padding: +WIDTH;
padding: 0;
padding: +VERTICAL +HORIZONTAL;
padding: +TOP +RIGHT +BOTTOM +LEFT;
padding-left: +WIDTH;
padding-right: +WIDTH;
padding-top: +WIDTH;
padding-bottom: +WIDTH; }

Location This design pattern applies to all elements.

Tips Margins and borders share the same shortcut notation. You can set all four
margins and borders using one width; you can set the vertical and horizontal
using two widths; or you can set the four individual sides using four widths.
The four sides start with the top and move clockwise around the box to the
right, bottom, and left.

Related to Margin, Border; all Box Model patterns in Chapter 4; Highlight, Text
Decoration (Chapter 10); Spacing, Padded Content, Inline Decoration
(Chapter 11); Hanging Indent (Chapter 12); Lists, Background Bulleted
(Chapter 13); Basic Shadowed Image (Chapter 14); Outside-in Box
(Chapter 17)

See also www.cssdesignpatterns.com/padding

CHAPTER 6 ■ BOX MODEL PROPERTIES 113

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

Background

HTML

<h1>Background</h1>
<p> No background</p>
<p> Background color</p>
<p> Background image not tiled</p>
<p> Background image tiled</p>
<p> Background image repeat-x</p>
<p> Background image repeat-y →</p>
<p> Background image center bottom</p>
<p> Background image right bottom</p>

CSS

p { margin-left:240px; margin-top:0px; margin-bottom:10px; }
span { margin-left:-230px; margin-right:30px; padding-left:195px; font-size:19px;
background-position:left bottom; background-repeat:no-repeat;

background-color:black; background-image:url("star.gif"); }

*.no-bg { background-image:none; background-color:transparent; }
*.bg-color { background-image:none; background-color:black; }
*.bg-image { background-repeat:no-repeat; }
*.bg-repeat { background-repeat:repeat; }
*.bg-rx { background-repeat:repeat-x; }
*.bg-pos-lt { background-position:center bottom; }
*.bg-pos-rb { background-position:right bottom; }
*.bg-ry { background-repeat:repeat-y; background-position:center top;

padding-left:22px; float:right; height:263px; margin:0px;
position:relative; top:-170px; }

CHAPTER 6 ■ BOX MODEL PROPERTIES114

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

Background

Problem You want to put a background color or image behind an element.

Solution Apply styles as follows:

- Use background-color to set the background color of an element.
- Use background-color:transparent for a transparent background color.
- Use background-image:none to show no background image.
- Use background-image:url("file.jpg") to display an image behind the
contents of an element. The image fills the padding area of the element.
- Use background-repeat:repeat to tile a background image across and down to
fill the entire padding area. This is the default value.
- Use background-repeat:repeat-x to tile the image across one row.
- Use background-repeat:repeat-y to tile the image down one column.
- Use background-repeat:no-repeat not to tile the image.
- Use background-position to set the horizontal and vertical starting location of
the image. This applies whether or not the image is tiled.
- Use background-attachment:scroll to scroll a background image when the user
scrolls the content. This is the default value.
- Use background-attachment:fixed to prevent the image from scrolling.

The background property is a composite of all these properties. The property
values can be presented in any order. Each property value is separated by a
space. background:none transparent repeat left top scroll; is the default.

Pattern SELECTOR { background-color: COLOR;
background-image: url("file.jpg");
background-repeat: CONSTANT;
background-position: HORIZONTAL VERTICAL;
background-attachment: SCROLL_FIXED; }

Location This design pattern applies to all elements.

Tips background-position requires two values: the first for the horizontal position and
the second for vertical. Percentages position an image at a percentage of an
element’s width and height. Pixels position it at an offset. Ems position it
proportional to the element’s font-size.

Whenever you assign a background-image to an element, you should also assign a
background-color and a contrasting color. This provides a fallback in case the
image does not load, and it ensures text does not become invisible or hard to see,
such as white text on a white background.

Example I assigned all the spans in the example to display a transparent GIF of a star on a
black background starting at the left bottom of each span. Specific spans
override these settings to demonstrate various background settings.

Related to Box Model (Chapter 4); Stacking Context, Atomic (Chapter 7); Font, Highlight,
Text Decoration, Text Replacement, Invisible Text (Chapter 10); Inline
Decoration, Inline Horizontal Rule (Chapter 11); Background Bulleted,
Horizontal Rule (Chapter 13); Fade-out, Semi-transparent, Replaced Text,
Content-over Background Image, CSS Sprite, Shadowed Image, Rounded
Corners (Chapter 14); Striped Tables, Table Selectors (Chapter 15); Undersized
Columns (Chapter 16); Padded Graphic Dropcap, Floating Graphic Dropcap,
Marginal Graphic Dropcap (Chapter 18); Block Quote, Inline Block Quote
(Chapter 19); Graphical Alert (Chapter 20)

See also www.cssdesignpatterns.com/background

CHAPTER 6 ■ BOX MODEL PROPERTIES 115

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

Overflow

HTML

<div id="ex1">
<h1><code>overflow:visible</code></h1>
<p class="ex1" >
OVERFLOW

The text in this span does not wrap!
<select size="2">
<option>select me</option>
<option selected="selected">select me</option>

</select>

Vertical Overflow.

</p>
</div>

CSS

*.ex1 { overflow:visible; }

*.ex2 { overflow:hidden; }

*.ex3 { overflow:scroll; }

*.ex4 { overflow:auto; }

/* Nonessential rules are not shown. */

CHAPTER 6 ■ BOX MODEL PROPERTIES116

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

Overflow

Problem You want to control how a block handles the situation when its content overflows
its bounds horizontally and vertically.

Solution CSS provides the overflow property to control how overflowing content is
handled. You can set overflow to one of four constant values: visible, hidden,
scroll, or auto. The default value is visible. visible allows overflowing content
to be rendered outside the containing block. hidden hides the overflowing
content and does not provide scrollbars. This prevents a user from scrolling
overflowed content into view. scroll clips the overflowing content and provides
scrollbars so the user can scroll the overflowed content into view. auto works like
scroll except that it shows scrollbars only as needed.

Pattern SIZED_BLOCK_SELECTOR { overflow:visible; }
or
SIZED_BLOCK_SELECTOR { overflow:hidden; }
or
SIZED_BLOCK_SELECTOR { overflow:scroll; }
or
SIZED_BLOCK_SELECTOR { overflow:auto; }

Location This design pattern applies to sized block elements that have width and/or
height set to a measurement or percentage.

Exceptions Internet Explorer 6 implements overflow:visible incorrectly. Instead of allowing
content to overflow the block, it expands the width and/or height of the block to
accommodate the content. Internet Explorer 7 fixes this flaw.

Tips It is usually best to avoid using overflow:hidden, overflow:scroll, or
overflow:auto because users get frustrated when you truncate content
or require them to scroll.

This property is only needed when you size a block smaller than its content.
If you use shrinkwrapped and stretched blocks, you do not need to use this
property, and your layouts will dynamically expand as needed to display their
content.

CSS 3 defines two properties, overflow-x and overflow-y, that can be used in
place of overflow. They separately direct how horizontal and vertical overflow
should be handled. All major browsers support them except for Opera 9. For
example, you can always display one scrollbar, and let the other scrollbar
appear as needed using overflow-x:scroll and overflow-y:auto. You could
also hide overflow in one dimension and scroll overflow in the other using
overflow-x:hidden and overflow-y:scroll.

Example To fit the example on one page, I had to omit some code. The example shows
enough HTML to create one of the overflow divisions, and it contains the four
CSS overflow rules.

Related to Box Model, Inline Box, Table Box (Chapter 4); Width, Height, Stretched
(Chapter 5); Atomic (Chapter 6); Screenreader Only (Chapter 10); Nowrap
(Chapter 11); Replaced Text (Chapter 14); Sized Columns, Undersized Columns
(Chapter 16); Tabs (Chapter 17)

See also www.cssdesignpatterns.com/overflow

CHAPTER 6 ■ BOX MODEL PROPERTIES 117

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

Visibility

HTML

<h1>Visibility</h1>

<p>There is hidden content here: CAN YOU SEE ME NOW?

You can't see it, because it is styled with <code>visibility:hidden</code>,
but you can see where it would have been rendered. </p>

<p>There is visible content here: CAN YOU SEE ME NOW?

You can see it, because it is styled with <code>visibility:visible</code>. </p>

CSS

span { padding:4px; background-color:white;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

p { background-color:gold; padding:10px; line-height:1.5em; }

*.hidden { visibility:hidden; }

*.visible { visibility:visible; }

span:hover { visibility:hidden; }

CHAPTER 6 ■ BOX MODEL PROPERTIES118

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

Visibility

Problem You want to hide an element and leave a blank spot where the element would
have been rendered.

Solution CSS provides the visibility property for hiding an element without affecting
the position of other elements in the inline flow, block flow, or float flow.
Contrast this with display:none, which does not render an element by
completely removing it from all flows—as if it never existed. Since absolute
elements are already removed from all flows, there is no functional difference
in applying visibility:hidden and display:none to absolute elements.

Apply styles to your chosen class or ID as follows:

- Use visibility:hidden to hide an element without removing it.

- Use visibility:visible to show an element. This is the default.

Pattern CSS
SELECTOR { visibility:hidden; }
SELECTOR { visibility:visible; }

Location This design pattern applies to all elements. visibility is inherited by all
elements.

Tips The main advantage of visibility:hidden is that you can hide content using
JavaScript without forcing the browser to reflow the whole page. This could be
useful when you want to hide selected content while the user drags and drops it
to a new location.

A document management system could mark text for removal and let the user
toggle the display of such text between visibility:visible, visibility:hidden,
display:none, and text-decoration:line-through. This would toggle through
showing the text, hiding it, removing it, and running a line through it.

You can create an unpleasant flickering effect when a user mouses over an
element by selecting an element using the hover pseudo class and styling it
with visibility:hidden as shown in the example.

display:none is more commonly used than visibility:hidden because it not
only hides an element—it completely removes it from the flow.

Related to Page Break; Box Model, Display (Chapter 4); Row and Column Groups, Hidden
and Removed Cells, Removed and Hidden Rows and Columns (Chapter 15);
Popup Alert (Chapter 20)

See also www.cssdesignpatterns.com/visibility

CHAPTER 6 ■ BOX MODEL PROPERTIES 119

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

Page Break

HTML

<div class="page-break-after">Page break after this element. </div>
<div class="page-break-after">Page break after this element. </div>

<div class="page-break-before">Page break before this element.</div>

CSS

*.page-break-before { page-break-before:always; }
*.page-break-after { page-break-after:always; }

Print Preview

CHAPTER 6 ■ BOX MODEL PROPERTIES120

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

Page Break

Problem You want to insert a page break in the document for printing purposes.

Solution CSS provides two properties for inserting page breaks: page-break-before and
page-break-after. You can insert a page break before an element by using
page-break-before:always. You can insert a page break after an element by
using page-break-after:always.

The default values are page-break-before:auto and page-break-after:auto.
These default values direct the browser to use its default algorithm to
automatically determine the location of page breaks. You can override a
previously set page break using page-break-before:auto and page-break-
after:auto.

Pattern SELECTOR { page-break-before:always; }
or
SELECTOR { page-break-after:always; }
or
SELECTOR { page-break-before:auto; }
or
SELECTOR { page-break-after:auto; }

Location This design pattern applies to all elements.

Limitations Internet Explorer 6 and Opera 9 always insert a page break whenever they
encounter an element set to page-break-before:always or page-break-after:
always. This inserts an extra blank page whenever one element is set to
page-break-after:always and the next element is set to page-break-before:
always. The example demonstrates this “feature.” The example shows a
screenshot of print preview in Internet Explorer 6 containing four printed pages.
The third printed page is blank. Firefox 2 does not insert this extra blank page.
An easy way to avoid inserting blank pages is not to use both page-break-after
and page-break-before in the same document.

Tips If you want to print a blank page, insert an element into the document and style
it with page-break-before and visibility:hidden.

CSS provides other values for these properties and other page break properties,
but only page-break-before:always and page-break-after:always work reliably
in the major browsers.

See also www.cssdesignpatterns.com/page-break

CHAPTER 6 ■ BOX MODEL PROPERTIES 121

B
O

X
M

O
D

E
L

P
R

O
P

E
R

T
IE

S

http://freepdf-books.com

http://freepdf-books.com

Positioning Models

This is the first of three chapters on positioning. This chapter presents the CSS positioning
models. Chapter 8 shows how to indent, offset, and align elements. Chapter 9 combines these
techniques to create advanced positioning design patterns.

Chapter Outline

• Positioning Models introduces and demonstrates the six positioning models.

• Positioned explains, demonstrates, and contrasts the four values of the position
property: static, absolute, fixed, and relative.

• Closest Positioned Ancestor shows how absolute boxes can be positioned relative to
any ancestor element rather than just the element’s parent.

• Stacking Context shows how positioned boxes can be stacked behind or in front of
static elements and each other.

• Atomic explains how to render inline content in a block rather than on a block.

• Static explains the basics of normal flow.

• Absolute shows how to remove any element from the normal flow and position it
absolutely with respect to the inside of the border of its closest positioned ancestor.

• Fixed shows how to remove any element from the normal flow and position it
absolutely with respect to the viewport.

• Relative shows how to use relative positioning to control stacking order, or offset an
element without affecting its shape or the position of other elements.

• Float and Clear shows how you can remove an element from the normal flow and float
it to the left or right side of its parent. It also shows how to clear elements so that they
are positioned below floats on the left, right, or both sides.

• Relative Float shows how you can relatively position a float.

123

C H A P T E R 7

http://freepdf-books.com

Positioning Models

HTML

<h1>Positioning Models</h1>
<div class="section"><h2>Before</h2>
<p>StaticAbsolute
FixedRelative
FloatRelative Float</p></div>

<div class="section"><h2>After</h2>
<p class="static centered" >
Static
Absolute
Fixed
Relative
Float
Relative Float</p></div>

CSS

*.centered { width:380px; margin-left:auto; margin-right:auto; }
*.static { position:static; }
*.absolute { position:absolute; top:20px; left:215px; }
*.fixed { position:fixed; bottom:20px; right:5px; }
*.relative { position:relative; top:20px; left:30px; }
*.float { float:right; }

CHAPTER 7 ■ POSIT IONING MODELS124

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Positioning Models

Introduction This is not a design pattern, but an introduction to positioning.

CSS provides six positioning models for positioning an element: static, absolute,
fixed, relative, float, and relative float. The six positioning models are related to
the six box models, but they are not the same. The static positioning model can
position inline, inline-block, block, and table boxes. The absolute and fixed
positioning models can position absolute boxes, which can be any type of
element. The float positioning model can position float boxes, which can be any
type of element. The relative positioning model can relatively position any type
of box except for absolute boxes. The relative-float positioning model can
relatively position float boxes.

Each positioning model controls positioning using the same basic properties of
display, width, height, and margin. Even though these properties are the same,
their values have different functions in each model. For example, width:auto
stretches a static block, whereas width:auto shrinkwraps an absolute element.
You can see this in the example where the first paragraph is stretched and the
absolute span is shrinkwrapped.

Positioning models also use additional properties in ways that are unique to the
model. Absolute and fixed positioning use left, right, top, bottom, and z-index
to control the alignment of the absolute box. Relative positioning uses left, top,
and z-index to control the offset of the box. Float positioning uses float and
clear.

Because these models use the same basic properties, different positioning
layouts are triggered using unique combinations of element type, display box,
and property values. Each design pattern exposes the exact combination of rules
and elements that triggers each type of layout. For example, setting width to a
value, margin-left to auto, and margin-right to auto centers a static block, but it
does not center a static inline. For example, to center an absolute element, you
must also set left and right to 0.

There are over 50 combinations of design patterns that produce unique layouts.
These patterns are presented in these three chapters on positioning (Chapters 7
through 9). These patterns are easy to learn because they are combinations of
box models, extents, margins, and positioning. In other words, the six box
models (inline, inline-block, block, table, absolute, and float) can be combined
with the three extents (sized, shrinkwrapped, and stretched) and the three types
of margins (indented, offset, and aligned). In addition, any type of box except
absolute can be relatively positioned.

Box models, extents, and margins are discussed in Chapters 4 through 6. The
positioning models are discussed in this chapter. Indents, offsets, and alignment
are discussed in Chapter 8. Chapter 9 systematically combines the design
patterns in these chapters to create over 50 unique layouts.

Related to Positioned, Static, Absolute, Fixed, Relative, Float and Clear, Relative Float

See also www.cssdesignpatterns.com/positioning-models

CHAPTER 7 ■ POSIT IONING MODELS 125

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Positioned

HTML

<h1>Positioned</h1>
<div class="relative" id="canvas">
<p class="static">Static Positioned</p>
<p class="static">This text contains a relatively positioned span that is
offset from its normal position.</p>

<em class="absolute">Absolutely Positioned

<p class="fixed2">Fixed Positioned</p>
</div>

CSS

div,p,em { margin:10px; padding:10px; background-color:white;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

*.static { position:static; }
*.relative { position:relative; left:auto; top:auto; bottom:auto; right:auto; }
*.absolute { position:absolute; left:35%; top:-40px; }
*.fixed1 { position:fixed; z-index:20; right:5px; bottom:35px; }
*.fixed2 { position:fixed; z-index:10; right:0px; bottom:0;

width:100px; margin:0;}

*.offset { bottom:-15px; left:-20px; }

#canvas { background-color:gold; }

/* Nonessential rules are not shown. */

CHAPTER 7 ■ POSIT IONING MODELS126

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Positioned

Problem You want to turn an element into a positioned element so that its descendants
can be positioned relative to it. You may also want to offset the element from its
current location, its nearest positioned ancestor, or the viewport; move the
element into its own layer; remove the element from the flow; or change the
stacking order of the element to control when it overlaps other elements or is
overlapped.

Solution You can use position:static to “unposition” an element so that it is rendered
normally in the flow. static is the default value for position. You can use
position:relative to position an element at an offset from its location in the
normal flow. You can use position:absolute to position an element at an offset
from its location in the normal flow or from its nearest positioned ancestor. You
can use position:fixed to position an element at an offset from the viewport.

You can use left to offset the left side of an element from the left side of its
reference position. Positive values offset to the right and negative to the left.
You can use right to offset the right side of an element from the right side of its
reference position. Positive values offset to the left and negative to the right.
You can use top to offset the top of an element from the top of its reference
position. Positive values offset down and negative offset up. You can use bottom
to offset the bottom of an element from the bottom of its reference position.
Positive values offset up and negative offset down. You can use z-index to
position an element in a specific layer of the stacking order. Larger numbers
bring the item closer to the front. You can use margin to offset elements from
their position.

Pattern SELECTOR { position:ABSOLUTE_FIXED_RELATIVE;
z-index:+VALUE;
left:±VALUE; right:±VALUE;
margin-left:±VALUE; margin-right:±VALUE;
top:±VALUE; bottom:±VALUE;
margin-top:±VALUE; margin-bottom:±VALUE; }

Location This design pattern applies to all elements.

Limitations Fixed position does not work in Internet Explorer 6.

Example I assigned position:relative to the division to make it “positioned.”
An element is “positioned” when it has been assigned to position:relative,
position:absolute, or position:fixed. Floats can be “positioned” using
position:relative. Being “positioned” makes an element the reference point
to which its closest absolutely positioned descendants are positioned.

The image of the star comes before the final paragraph in document order. This
would normally cause the final paragraph to be render on top of the star, but I
assigned a higher z-index to the image to place it on top.

Related to Closest Positioned Ancestor, Static, Absolute, Fixed, Relative, Float and Clear

See also www.cssdesignpatterns.com/positioned

CHAPTER 7 ■ POSIT IONING MODELS 127

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Closest Positioned Ancestor

HTML

<body>

<h1>Closest Positioned Ancestor</h1>

<div class="static ggp">Non-positioned Great-grandparent
<div class="absolute sized bottom-right box1">Absolute #1 Bottom Right
<em class="absolute offset box2">Nested Absolute</div>

<div class="relative gp">Positioned Grandparent
<div class="static parent">Non-positioned Parent
Absolute #2 Bottom Right

<em class="absolute offset box2">Nested Absolute
</div></div></div>

</body>

CSS

*.static { position:static; }
*.relative { position:relative; }
*.absolute { position:absolute; }

*.sized { width:230px; height:70px; }
*.bottom-right { bottom:0; right:0; }
*.offset { left:45px; top:30px; }

/* Nonessential rules are not shown. */

CHAPTER 7 ■ POSIT IONING MODELS128

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Closest Positioned Ancestor

Problem You want to position an element so you can position other elements in
relation to it. Such an element is the closest positioned ancestor to its
descendants.

Solution You can position an element by assigning position:relative,
position:absolute, or position:fixed to it. Positioned elements are
positioned relative to their closest positioned ancestor. This allows you to
remove elements from the normal flow and position them far away from
their original position in the flow. Notice in the example how the absolute
span (Absolute #2) is removed from its non-positioned parent and aligned
to the bottom right of its positioned grandparent, which is its closest
positioned ancestor.

When a positioned element has no positioned ancestor, <body> is the
positioned ancestor. In other words, <body> is positioned by default. Notice
in the example how the absolute division (Absolute #1) is removed from its
non-positioned parent and aligned to the bottom right of <body>.

The main purpose for aligning positioned elements to their closest positioned
ancestors is to create self-contained layouts. You can reposition a self-
contained layout and all its descendants will move along with it—both
positioned and non-positioned. Notice in the example how the absolute
elements are positioned relative to their closest positioned ancestors, as these
ancestors are moved to the bottom right of their closest positioned ancestors.

Pattern SELECTOR { position:relative; }
or
SELECTOR { position:absolute; }
or
SELECTOR { position:fixed; }

Location This pattern applies to all elements.

Limitations A closest positioned ancestor has to be an actual ancestor. CSS does not
provide a way to position elements relative to any element in a document.
That would be a very welcome feature, but as it is, you must choose an
ancestor to be the reference for positioned elements.

Advantages There is no limit on how deep you can nest self-contained positioned layouts.
This is a very powerful feature for creating reusable layouts.

Disadvantages Positioning is very powerful, but its biggest weakness is that it ultimately
requires elements to be sized, and sized layouts do not scale well on devices
with displays or fonts that are smaller or larger than designed for.

Tip position:relative is a great way to create a positioned ancestor because it
does not remove it from the normal flow. This allows you to create layouts
that combine normal flow and absolute position.

Related to Positioned, Stacking Context, Atomic, Absolute, Fixed, Relative, Relative Float

See also www.cssdesignpatterns.com/closest-positioned-ancestor

CHAPTER 7 ■ POSIT IONING MODELS 129

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Stacking Context

HTML

<h1>Stacking Context</h1>
<div class="stacking-context1 box">
<div class="caption">1. Background and Borders of Stacking Context #1

<code>z-index:2</code></div>

2. Absolute <code>z-index:-999</code>
<div class="level3 box">3. Static Block

4. Static Float
5. Static Span

<p class="clear"></p>
6. Relative Span <code>z-index:0</code>
7. Absolute <code>z-index:999</code>

</div>
</div>
<div class="stacking-context2 box"><!-- ...Same exact code as previous... --></div>

CSS

*.stacking-context1 { z-index:2; position:absolute; left:10px; top:70px; }
*.stacking-context2 { z-index:1; position:absolute; left:223px; top:120px; }

*.level2 { z-index:-999; position:absolute; }
*.level3 { position:static; }
*.level4 { float:left; }
*.level5 { position:static; }
*.level6 { z-index:0; position:relative; }
*.level7 { z-index:999; position:absolute; }

/* Nonessential rules are not shown. */

CHAPTER 7 ■ POSIT IONING MODELS130

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Stacking Context

Aliases Stacking Order, Stacking Level, Z-index, Layering, Painting Order

Problem You want to control how positioned elements are stacked from front to back.

Solution CSS provides z-order to control the stacking of elements. Static elements are
stacked from back to front in document order. Positioned elements are stacked
from back to front from smallest to largest z-index with document order
breaking ties. Positioned elements with a negative z-index are placed behind
static elements and non-positioned floats. z-index values do not have to be
contiguous. The default value for z-index is auto.

A positioned element with a numeric z-index creates a local, self-contained,
stacking context, in which all its descendants are rendered—static, float, and
positioned. A stacking context is not created when z-index is set to auto or when
z-index is assigned to a non-positioned element. The following values create
stacking contexts: z-index:0, z-index:-1, and z-index:9999.

Each stacking context is atomic and does not allow ancestors or siblings to be
layered in between its children. Each local stacking context is assigned to an
internal stacking level of 0, and its descendants are stacked relative to it. This is
an important point. z-index is not global. It is relative to the closest positioned
ancestor that has been assigned to a numeric z-index. The root element, <html>,
creates the root stacking context.

A stacking context is rendered in layers from back to front as follows:

1. Background color, image, and borders of the stacking context element

2. Descendant positioned elements with a negative z-index

3. Descendant non-positioned block elements

4. Descendant non-positioned floats

5. Descendant non-positioned inline elements

6. Descendant positioned elements with z-index:auto and z-index:0

7. Descendant positioned elements with a positive z-index

Steps 2, 6, and 7 each recursively render stacking contexts because each
positioned element with a numeric z-index creates a local stacking context.

Before a browser renders an element’s content, it renders its box starting with its
background color, then its background image, and then its borders. A browser
then renders a box’s contents on top of the box.

Pattern SELECTOR { z-index:±VALUE; position:ABSOLUTE_FIXED_RELATIVE; }

Location This pattern applies to all elements.

Limitations Firefox 2 incorrectly switches steps 1 and 2, which puts negative child stacking
contexts behind the background and borders of the parent context!

Example The example shows all seven stacking levels repeated in two stacking contexts.
Notice how stacking levels are relative to each stacking context.

Related to Positioned, Closest Positioned Ancestor, Absolute, Relative, Relative Float

See also www.cssdesignpatterns.com/stacking-context

CHAPTER 7 ■ POSIT IONING MODELS 131

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Atomic

HTML

<h1>Atomic</h1>
<div>Layered
<p class="static">Static Overlapping Block</p>
<p class="static overlap">Static Overlapping Block</p>
<table class="static overlap"><tr><td>Overlapping Table</td></tr></table></div>

<div>Atomic
<p class="relative">Relative Overlapping Block</p>
<p class="fixed">Fixed Overlapping Block</p>
<p class="absolute">Absolute Overlapping Block</p></div>

CSS

*.static { position:static; }
*.overlap { margin-top:-22px; }

*.relative { position:relative; }
*.fixed { position:fixed; margin-top:-16px; }
*.absolute { position:absolute; top:65px; }

/* Nonessential rules are not shown. */

CHAPTER 7 ■ POSIT IONING MODELS132

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Atomic

Aliases hasLayout, Grouped

Problem You want content to be rendered in a block, not on it. In other words, you want
text and inline content to be rendered atomically with its block so that when the
block is overlapped by another block, its content is overlapped too.

The problem is that a browser renders static inline content in a separate layer
above the backgrounds of static blocks. When static blocks overlap each other,
their backgrounds overlap, but their inline content does not! Notice in the
example how the borders and backgrounds of the blocks in the first division
overlap, but their text does not. All the major browsers work this way because a
stacking context renders all block backgrounds and borders first, then all floats,
and then all inline elements and content. This places the backgrounds and
borders of blocks in a layer below floats and inline content.

This may seem unusual because we tend to think of inline content as being in
the blocks that contain them, not on them. But it makes sense that inline
elements are rendered on blocks because inline content overflows by default.

Solution A positioned element is atomic, which means no external elements can be
layered in between its static descendants, its inline content, and its background.
Notice in the second division of the example how neighboring blocks overlap
each other, including their inline text. This is because they are positioned, and
the stacking context requires positioned elements to be rendered atomically.
You can use relative, absolute, and fixed positioning to make an element atomic.
Blocks set to overflow:scroll are also atomic because their content is literally
contained in the block’s scrollable area.

Pattern SELECTOR { position:RELATIVE_ABSOLUTE_FIXED; }

Location This pattern applies to all elements.

Limitations overflow does not consistently create atomicity in the major browsers. Blocks set
to overflow:hidden are atomic in Firefox 2.0 and Internet Explorer 7, but not in
Internet Explorer 6 and not in other major browsers. Blocks set to
overflow:scroll are atomic except for in Internet Explorer 6.

All tables and sized blocks are atomic in Internet Explorer 7, but not in other
major browsers. This is because Internet Explorer 7 and earlier versions use an
internal feature and a proprietary DOM property called hasLayout, which is true
when an element has layout. When an element has layout, it is rendered in its
own window with its own layout context. All of its children are rendered
atomically inside its rectangular box. It cannot shrinkwrap, and external floats
do not affect the position of its inline content.

Tip Internet Explorer 6 has bugs that are sometimes fixed by triggering hasLayout.
You can use its proprietary property zoom:1 to trigger layout, but be aware that
zoom causes your stylesheet not to validate.

Related to Positioned, Static, Absolute, Fixed, Relative, Float and Clear

See also www.cssdesignpatterns.com/atomic

CHAPTER 7 ■ POSIT IONING MODELS 133

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Static

HTML

<h1>Static</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="box">Sized Static Block </div>
<div id="ss" class="box">Stretched Static Block</div>
<div class="box"> Shrinkwrapped Static Inline

Shrinkwrapped Static Inline
Shrinkwrapped Static Inline
Shrinkwrapped Static Inline

</div></div></div>

CSS

span { position:static; margin:40px; line-height:32px;
padding:3px; border:2px solid black; background-color:yellow; }

#zs { position:static; width:120px; height:100px; margin:10px auto; }

#ss { position:static; width:auto; height:auto; margin:10px 50px; }

CHAPTER 7 ■ POSIT IONING MODELS134

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Static

Problem You want elements to flow automatically one after the other in lines and blocks
so they fluidly adapt to the size of the user’s display.

Solution You can apply position:static to an element to position an element in the
normal flow. Since this is the default, elements are automatically rendered in
the normal flow. The normal flow consists of nested blocks rendered vertically
down the viewport. Inside a block, one or more blocks or lines are rendered
vertically down the block. Inside a line, text and objects are rendered horizontally
across the line. The starting position of a static element is determined by the
previous static element. The size, padding, borders, and margins of a static
element determine the starting position of the next element.

Patterns Inline Static Element
INLINE-SELECTOR { position:static; line-height:±VALUE;
margin-left:±VALUE; margin-right:±VALUE; }

Block Static Element
BLOCK-SELECTOR { position:static; width:+VALUE; height:+VALUE;
margin-left:±VALUE; margin-right:±VALUE;
margin-top:±VALUE; margin-bottom:±VALUE; }

Location This pattern applies to all elements.

Example All elements in the example are static. Block elements are rendered in blocks that
flow down from the top. Each block, except for the sized block, is automatically
stretched to the width of its container minus its left and right margins and the
parent’s padding.

The top margin pushes the selected static block element down, and the bottom
margin pushes down the following static block element. Adjacent vertical
margins collapse into each other. The resulting margin is the larger of the two
adjacent margins. In the example, each block has a top and bottom margin of
10 pixels. These margins collapse so that only a 10-pixel margin exists between
them.

You can assign height and width to a static block to create a sized block. Left
and/or right margins assigned to auto expand to compensate for the specified
width. You can center a sized static block element by setting both left and right
margins to auto, as shown in the first block in the example.

The static inline elements in the example have left and right margins of 40 pixels.
Left and right margins push inline elements apart, and they do not collapse.
When the content of an inline element exceeds the width of its container, a
browser wraps it into a new line. Top and bottom margins are ignored on inline
elements because line-height directs the height of lines.

Related to Absolute, Fixed, Relative; Sized, Stretched, Shrinkwrapped (Chapter 5)

See also www.cssdesignpatterns.com/static

CHAPTER 7 ■ POSIT IONING MODELS 135

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Absolute

HTML

<h1>Absolute</h1>
<div class="gp"><h2>Positioned Grandparent</h2>
<div class="parent"><h2>Non-positioned Parent</h2>
Absolute elements are positioned in their own layer in front of or behind the
normal flow.
In-place Absolute
Sized Absolute
<p id="stretched" class="box">Stretched Absolute</p>
<p id="shrinkwrapped" class="box">Shrinkwrapped Absolute</p></div></div>

CSS

#in-place { position:absolute; z-index:1; }

#shrinkwrapped { position:absolute; z-index:0;
width:auto; left:0; bottom:0; margin:0; }

#sized { position:absolute; z-index:auto;
width:170px; height:115px; bottom:0; left:270px; margin:0; }

#stretched { position:absolute; z-index:-1;
height:auto; right:0; top:0; bottom:0; margin:0; }

/* Nonessential rules are not shown. */

CHAPTER 7 ■ POSIT IONING MODELS136

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Absolute

Problem You want to remove an element from the normal flow and move it into its
own layer. You also want to position it relative to the inner border of its closest
positioned ancestor, or you want it to be positioned at the same position it
would have had in the normal flow. You do not want its position to have any
effect on the position of other elements.

Solution You can use position:absolute to render any element as an absolute box. You
can use width and height to size it. Percentages refer to its closest positioned
ancestor rather than its parent. You can assign a value, such as 0, to left,
right, top, and bottom to align it to the sides of its closest position ancestor.
Or you can assign auto to left, right, top, and bottom to render it at the same
position it would have had in the normal flow. You can use margin-left,
margin-right, margin-top, and margin-bottom to offset its sides from the sides
of its closest positioned ancestor. You can use z-index to control the stacking
order of the element. Elements with a larger z-index are rendered in a layer
closer to the user. You can assign position:relative, position:absolute, or
position:fixed to an ancestor element to make it positioned. If you do not
have any positioned ancestors, a browser will use <body> as the closest
positioned ancestor.

Patterns SELECTOR { position:absolute; z-index:VALUE;
width:+VALUE; left:±VALUE; margin-left:±VALUE;
right:±VALUE; margin-right:±VALUE;
height:+VALUE; top:±VALUE; margin-top:±VALUE;
bottom:±VALUE; margin-bottom:±VALUE; }

plus
ANCESTOR-SELECTOR { position:relative; }

or ANCESTOR-SELECTOR { position:absolute; }
or ANCESTOR-SELECTOR { position:fixed; }

Location You can absolutely position any type of element.

Limitations Internet Explorer 6 shrinkwraps stretched absolute elements. Internet
Explorer 7 and earlier versions cannot center absolute elements.

Advantages Absolute elements give you precise control over their placement in relation
to their closest positioned ancestor. Absolute elements can be sized,
shrinkwrapped, and stretched. An absolute element is rendered in a layer
above the normal flow as an absolute box, which is much like a block box.
Unlike floats, absolutes do not flow. Their position is unaffected by and does
not affect the position of other elements and content. This may cause them to
overlap or be overlapped. If all children are positioned absolutely, the parent
collapses to a height of zero (unless you set the height to a value) because its
children have been removed from the normal flow.

Disadvantages Layouts created using absolute positioning do not scale well on devices with
displays or fonts that are much smaller or larger than you designed for.

Related to Offset Absolute (Chapter 8); Fixed; Sized, Shrinkwrapped, Stretched
(Chapter 5)

See also www.cssdesignpatterns.com/absolute

CHAPTER 7 ■ POSIT IONING MODELS 137

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Fixed

HTML

<h1>Fixed</h1>
<div class="gp"><h2>Positioned Grandparent</h2>
<div class="parent"><h2>Non-positioned Parent</h2>
Absolute elements are positioned in their own layer in front of or behind the
normal flow.
In-place Absolute
Sized Absolute
<p id="stretched" class="box">Stretched Absolute</p>
<p id="shrinkwrapped" class="box">Shrinkwrapped Absolute</p></div></div>

CSS

*.gp { position:relative; z-index:1; }

#in-place { position:fixed; z-index:1; }

#shrinkwrapped { position:fixed; z-index:0;
width:auto; left:0; bottom:0; margin:0; }

#sized { position:fixed; z-index:auto;
width:170px; height:115px; bottom:0; left:270px; margin:0; }

#stretched { position:fixed; z-index:-1;
height:auto; right:0; top:0; bottom:0; margin:0; }

/* Nonessential rules are not shown. */

CHAPTER 7 ■ POSIT IONING MODELS138

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Fixed

Problem You want to move an element into its own layer and fix its position to the
viewport, or you want it to be positioned at the same position it would have
had in the normal flow. You also do not want the element to scroll when the
viewport scrolls. This is called a fixed-position element or a fixed element.

Solution You can use position:fixed to turn any element into a fixed-positioned
element. Fixed works identically to Absolute except that an element is
positioned relative to the viewport rather than its closest positioned ancestor,
and the element does not scroll when the viewport scrolls. If you have
positioned the fixed element at the same position it would have had in the
normal flow, it still does not scroll when the viewport scrolls.

Pattern SELECTOR { position:fixed; z-index:VALUE;
width:+VALUE; left:±VALUE; margin-left:±VALUE;
right:±VALUE; margin-right:±VALUE;
height:+VALUE; top:±VALUE; margin-top:±VALUE;
bottom:±VALUE; margin-bottom:VALUE; }

Location This pattern applies to all elements.

Limitations Internet Explorer 6 renders fixed-position elements as absolute. Internet
Explorer 7 renders fixed elements properly.

Advantages Fixed elements give you precise control over their placement in relation to
the viewport. They do not scroll with the viewport. They are well suited for
holding controls, such as menus, toolbars, buttons, etc.

Disadvantages Layouts created using fixed positioning do not scale well on devices with
displays or fonts that are much smaller than you designed for.

Example This example contains the same positioned elements as the Absolute design
pattern example. The only difference is the elements are fixed instead of
absolute. Notice how the browser window is scrolled down in the example,
and the position of the fixed elements remains the same. Notice how the fixed
elements are positioned relative to the viewport instead of their grandparent,
which is the closest positioned ancestor. Notice how the in-place absolute is
initially positioned where it would have been in the normal flow, but remains
fixed at that position and does not scroll when the viewport scrolls. If the in-
place absolute is initially rendered offscreen, it will not be visible even when
the viewport is scrolled.

Notice how the fixed elements in the example are layered exactly the same as
the absolute elements in the Absolute design pattern example. The in-place
absolute is in front of the sized absolute because it has a z-index of 1 and the
sized absolute has a z-index of auto. The stretched absolute is layered behind
the positioned grandparent because it has a z-index of -1 and the positioned
grandparent has a z-index of 1. Since the positioned grandparent has a
transparent background, you can see the stretched absolute element
behind it.

Related to Absolute; Sized, Shrinkwrapped, Stretched (Chapter 5)

See also www.cssdesignpatterns.com/fixed

CHAPTER 7 ■ POSIT IONING MODELS 139

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Relative

HTML

<h1>Relative</h1>
<div class="relative">Before Relative Positioning
<p class="static">Static Block
Static Inline on top</p>
<p class="static ontop">Static Block on top</p>
<p class="absolute">Absolute</p></div>

<div class="relative">After Relative Positioning
<p class="relative">Relative Block
Relative Inline on top</p>
<p class="relative ontop">Relative Block on top</p>
<p class="absolute">Absolute</p></div>

CSS

*.ontop { z-index:1; }
*.static { position:static; }
*.relative { position:relative; }
*.absolute { position:absolute; z-index:auto; }
*.offset { left:20px; top:auto; }

/* Nonessential rules are not shown. */

CHAPTER 7 ■ POSIT IONING MODELS140

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Relative

Problems You want to control the stacking order of a float or an element in the normal
flow. The problem is that z-index does not apply to floats or static-positioned
elements. Controlling the stacking order is important when you have positioned
elements overlapping floats and static elements.

You want to position an element so it can be a closest positioned ancestor.

You want to offset an element without removing its place in the normal flow. You
do not want to change the shape it has in the normal flow. And you do not want
the offset to change the position of other elements.

Solutions To control the stacking order of an element in the normal flow, you can position
it relatively using position:relative. You can use z-index to set its stacking
order in relation to other positioned elements.

A relative element is positioned without leaving the normal flow, and without
changing the shape that it has in the normal flow. For example, if an inline
element is wrapped across one or more lines, it retains this unique layout when
relatively positioned. Contrast this with absolute positioning, which changes an
inline element into an absolute box and reflows the content into the absolute
block box, which may change its layout.

You can optionally offset a relatively positioned element from its position in the
flow using left and top. This does not change the position of other elements in
the flow. left and top default to auto, and auto keeps relatively positioned
elements in their normal position in the normal flow.

You can assign position:relative to any element so that absolute descendants
can be positioned relative to it—for details see Closest Positioned Ancestor
in this chapter. You can use position:relative, left, and top to offset any
element—for details, see Offset Relative in Chapter 8. You can use position:
relative to offset and control the stacking order of floats—for details, see
Relative Float in this chapter.

Pattern SELECTOR { position:relative; z-index:+VALUE;
left:auto; top:auto; }

Location This pattern applies to all elements.

Limitations Because of the way Internet Explorer 7 and earlier versions implement
hasLayout, relative inline elements in a positioned block cannot be stacked on
top of elements outside the block. Because of this, Internet Explorer 7 cannot
render the relative inline span in the example in front of the absolute paragraph.
This happens because the inline span is literally contained within the paragraph
because the paragraph has layout. This problem does not occur in other major
browsers, and it does not occur in Internet Explorer when the parent block does
not have layout, such as when it is a static block.

Related to Positioned, Closest Positioned Ancestor, Stacking Context, Atomic, Relative
Float; Offset Relative (Chapter 8)

See also www.cssdesignpatterns.com/relative

CHAPTER 7 ■ POSIT IONING MODELS 141

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Float and Clear

HTML

<h1>Float</h1>
<div>
<div class="float left clear-left" >Float Left </div>
<div class="float right clear-right">Float Right</div>
<p class="clear-none">This paragraph does not clear floats.
Float Right - cleared right
Float Right - NOT cleared</p>

<p class="clear-left">This paragraph clears floats on its left side.</p>
<div class="float left clear-left">Float Left - cleared left</div>
<div class="float left clear-none">Float Left - NOT cleared</div>

<p class="clear-right">This paragraph clears floats on its right side.
Float Left
Float Right</p>

<p class="clear-both">This paragraph clears floats on both sides.</p> </div>

CSS

*.float { margin:0px 10px; width:120px; background-color:yellow; color:black; }
*.left { float:left; }
*.right { float:right; }
*.clear-left { clear:left; }
*.clear-right { clear:right; }
*.clear-both { clear:both; }
*.clear-none { clear:none; }

/* Nonessential rules are not shown. */

CHAPTER 7 ■ POSIT IONING MODELS142

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Float and Clear

Problem You want to remove an element from the normal flow and display it on the left or
right side of its parent. You want it rendered as a block aligned to the inside of its
parent’s padding. You also want its top to align with the line from which it was
extracted. You also want to control when other floats and nonfloated content
flows next to floats or is moved below them on one or both sides.

Solution You can use float:left or float:right to remove an element from the normal
flow and place it on the left or right inner edge of its parent’s padding area. You
can use float:none to override another rule that floats an element. Floats exist
in their own layer above the backgrounds of block elements and next to inline
content in the normal flow. A left float indents content on its right side, and a
right float indents content on its left. A float does not affect the position of block
boxes—just their inline content. Floats affect the position of other floats and may
be stacked next to each other on the left or right. Floats also may push down
other floats and inline content. A float’s vertical and horizontal margins offset
it from its parent and from other floats. Floats do not overlap other floats or
content (unless a float has a negative margin).

You can use clear:left to move a block or float below any floats on its left side.
You can use clear:right to move a block or float below any floats on its right
side. You can use clear:both to move a block or float below floats on its right or
left.

Patterns SELECTOR { float:none; }
SELECTOR { float:left; }
SELECTOR { float:right; }

SELECTOR { clear:none; }
SELECTOR { clear:left; }
SELECTOR { clear:right; }
SELECTOR { clear:both; }

Location Any element can be floated. clear works on tables, blocks, and floats. clear has
no effect on inline, absolutely positioned, or fixed-position elements.

Tips When you need to predict the vertical location of a float, it is best to float a block
element. A browser places the top of a floated block exactly where it would have
been rendered if it were not floated. A browser places the top of a floated inline
element depending on where it would have been rendered in a line if it were not
floated. If at the beginning of a line, its top is aligned to the top of the line;
otherwise, its top is aligned to the bottom of the line.

Example The example contains eight floats: four spans and four divisions. The four
paragraphs demonstrate each setting of clear. When a float is not cleared on
the side that it is floated, it stacks next to other floats on that side. When cleared
on a side, a float or block element moves below floats on that side.

Related to Static, Absolute, Fixed

See also www.cssdesignpatterns.com/float

CHAPTER 7 ■ POSIT IONING MODELS 143

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Relative Float

HTML

<h1>Relative Float</h1>

<div class="parent">
<div class="relative1 float">Relative Float 1</div>
<div class="relative2 float">Relative Float 2</div>

<p>This text is next to a relative float. A relative float works just like a
static float except that it is relatively positioned. This allows it to be
offset using <code>left</code> and <code>right</code> without affecting
the position of other elements. It also allows <code>z-index</code> to
control the stacking order of floats.

absolute</p></div>

CSS

*.parent { position:relative; padding:20px; }

*.relative1 { position:relative; z-index:3; top:10px; left:10px; }
*.relative2 { position:relative; z-index:2; top:20px; left:-30px; }

*.float { float:left; width:100px; height:50px;
margin-right:25px; margin-bottom:40px; }

*.absolute { position:absolute; z-index:1; top:102px; left:215px; }

/* Nonessential rules are not shown. */

CHAPTER 7 ■ POSIT IONING MODELS144

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

Relative Float

Problem You want to offset a float from its current position without affecting the position
of any other element, including other floats and inline content. You also want to
control the stacking order of floats in relation to each other and in relation to
positioned elements.

Solution You can use position:relative to relatively position a float. A relative float
remains in the normal flow of floats and can be offset from its position in the
flow using left and top. A relative float is rendered in a positioned layer, which
allows you to use z-index to control its stacking order in relation to floats and
other positioned elements. Since a relative float is positioned, absolute
descendants can be positioned relative to it.

Pattern SELECTOR { position:relative;
left:±VALUE;
right:±VALUE;
z-index:±VALUE;

float:LEFT_RIGHT;
width:+VALUE;
height:+VALUE;
margin:±VALUE; }

Location This pattern applies to all elements.

Advantages This design pattern allows you to use margin to adjust the position of inline
content in relation to the float. You can then use left and top to adjust the
position of the float without changing the location of the inline content. This
gives you great flexibility in positioning floats.

Without this design pattern, you could not control the stacking order of floats
and other positioned elements—other than controlling their order in the
document.

Tip Only position:relative and position:static are compatible with floats. If you
assign position:absolute or position:fixed to a float, the results are undefined,
and each browser handles the situation differently. For example, Firefox 2 sets
float to none and renders the element as an absolute element, and Internet
Explorer 7 partly floats and partly positions it.

Example The example contains two relative floats, a static paragraph and an absolutely
positioned span. Using left and top, I relatively offset each float from its floated
position without affecting the location of the neighboring inline content in the
paragraph. Using z-index, I stacked each float and the absolute element in
reverse order in comparison to document order.

Related to Positioned, Static, Absolute, Fixed, Relative, Float and Clear

See also www.cssdesignpatterns.com/relative-float

CHAPTER 7 ■ POSIT IONING MODELS 145

P
O

S
IT

IO
N

IN
G

M
O

D
E

LS

http://freepdf-books.com

http://freepdf-books.com

Positioning: Indented, Offset,
and Aligned

This chapter shows how margins can offset and align elements.
A stretched element is indented or outdented when one or more of its sides is displaced

into or out of its container, changing the width or height of an element.
A sized or shrinkwrapped element is offset when the entire element is shifted from its

normal position without changing the height or width of an element.
A sized or shrinkwrapped element is aligned when it is relocated to one of the sides of its

container without changing its size and optionally offset from that side.

Chapter Outline

• Indented shows how to indent an element from the sides of its container.

• Offset Static shows how to offset an element from surrounding elements.

• Offset or Indented Static Table shows how to offset a table from its container.

• Offset Float shows how to offset a float from surrounding floats and content.

• Offset Absolute and Offset Fixed shows how to offset an absolute element from the
position it would have had in the normal flow.

• Offset Relative shows how to offset any element without affecting other elements.

• Aligned Static Inline shows how to align inline elements horizontally and vertically.

• Aligned and Offset Static Block shows how to align and offset static block elements.

• Aligned and Offset Static Table shows how to align and offset tables.

• Aligned and Offset Absolute shows how to align and offset absolute elements.

• Aligned-center Absolute shows how to center absolute elements.

• Aligned Outside shows how to align elements to the outside of their container.

147

C H A P T E R 8

http://freepdf-books.com

Indented

HTML

<h1>Indented</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="hss" class="s">Horizontally Stretched Static</div>
<div id="vsa" class="s">Vertically Stretched Absolute</div>
Horizontally Stretched Absolute

</div>
</div>

CSS

*.gp { position:relative; z-index:10; }

#hss { position:static;
width:auto; margin-left:30px; margin-right:30px;

height:auto; margin-top:auto; margin-bottom:20px; }

#vsa { position:absolute;
width:120px; left:auto; margin-left:auto; right:0; margin-right:70px;
height:auto; top:0; margin-top:-30px; bottom:0; margin-bottom:-30px; }

#hsa { position:absolute;
width:auto; left:0; margin-left:-30px; right:0; margin-right:-30px;
height:auto; top:auto; margin-top:30px; bottom:auto; margin-bottom:auto; }

/* Nonessential rules are not shown. */

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED148

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LI
G

N
E

D

http://freepdf-books.com

Indented

Problem You want to indent the left and right sides of a static element, or you want to
indent the left, right, top, and bottom sides of a stretched absolute element. You
also want to outdent these elements.

Solution Indenting is a combination of stretching an element to the sides of its container
and then offsetting its sides. Indenting to the inside shrinks the size of an
element. Indenting to the outside (or outdenting) expands the size of an
element. Each side may be indented or outdented independently. Margins
expand or shrink the height and width of a stretched element. Contrast this
with the offset design patterns where margins move a sized or shrinkwrapped
element without changing its size.

Positive margins indent and negative margins outdent. In other words, positive
margins move sides toward the center, and negative margins move them away
from the center. You can use left:0, right:0, top:0, and bottom:0 to align the
sides of the absolute element to the sides of its closest positioned ancestor. Once
opposite sides of an element are aligned to its container (in other words, the
element is stretched), margins can indent or outdent each side independently.

Patterns Horizontally Indented Static Block Element
BLOCK-SELECTOR { position:static; width:auto;
margin-left:±VALUE;
margin-right:±VALUE; }

Horizontally Indented Absolute Element
SELECTOR { position:absolute; width:auto;
left:0; margin-left:±VALUE;
right:0; margin-right:±VALUE; }

Vertically Indented Absolute Element
SELECTOR { position:absolute; height:auto;
top:0; margin-top:±VALUE;
bottom:0; margin-bottom:±VALUE; }

Location This pattern works on static block elements and absolute elements.

Limitations You cannot vertically stretch and indent a static element.
You cannot stretch and indent a float.
You cannot stretch and indent an inline-text element.
You cannot indent or outdent an element that is stretched using
width:100% or height:100%.
Internet Explorer 6 cannot stretch absolute elements; it shrinkwraps them.

Related to Sized, Shrinkwrapped (Chapter 5); Margin (Chapter 6); Static, Absolute
(Chapter 7); Text Indent, Hanging Indent (Chapter 12); Lists, Left Marginal, Right
Marginal (Chapter 13); Padded Graphic Dropcap, Floating Dropcap, Floating
Graphic Dropcap, Marginal Dropcap, Marginal Graphic Dropcap (Chapter 18);
Left Marginal Callout, Right Marginal Callout (Chapter 19); Hanging Alert, Left
Marginal Alert, Right Marginal Alert (Chapter 20)

See also www.cssdesignpatterns.com/indented

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED 149

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LIG
N

E
D

http://freepdf-books.com

Offset Static

HTML

<h1>Offset Static</h1>
<div>
← Moved-left
→ Moved-right
Push-right →
Pull-left ←
None

</div>
<div class="moved-down center">↓
Moved-down Static Block </div>
<div class="moved-up center">↑
Moved-up Static Block</div>
<div class="push-down center">Push-down Static Block
↓</div>
<div class="pull-up center">Pull-up Static Block
↑</div>
<div class="center">None</div>

CSS

*.moved-left { margin-left:-26px; } *.push-right { margin-right:50px; }

*.moved-right { margin-left:50px; } *.pull-left { margin-right:-20px; }

*.moved-down { margin-top:20px; } *.push-down { margin-bottom:20px; }

*.moved-up { margin-top:-13px; } *.pull-up { margin-bottom:-16px; }

/* Nonessential rules are not shown. */

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED150

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LI
G

N
E

D

http://freepdf-books.com

Offset Static

Problem You want to control the spacing between static elements in the normal flow
by moving them closer together or further apart.

Solution Margins offset sized and shrinkwrapped elements. Left and top margins
offset an element from the ending position set by the previous element.
Right and bottom margins define the starting position of the following
element. Negative margins move an element closer to surrounding elements,
and positive margins move an element farther away. In other words,
margins extend or retract the starting and ending positions of sized and
shrinkwrapped elements.

For example, you can use a positive value in margin-left to move an inline
element to the right, and a negative value to move it to the left. A negative left
margin can cause an inline element to overlap or precede the previous inline
element, or overlap the left side of its containing block! margin-right does not
affect an inline element’s position; it affects the following element’s position.
A positive value in margin-right pushes the next element to the right, and a
negative value pulls it to the left. A negative right margin can cause the
following inline element to overlap or precede an element!

margin-top and margin-bottom work similarly with block elements except that
they pull and push blocks up and down. margin-top moves a block up or
down, and margin-bottom moves the following block up or down. Negative
margins can move blocks on top of neighboring blocks.

Inline Patterns Left-extended Static Inline Element (Moved-right)
INLINE-SELECTOR { position:static; margin-left:+VALUE; }

Left-retracted Static Inline Element (Moved-left)
INLINE-SELECTOR { position:static; margin-left:-VALUE; }

Right-extended Static Inline Element (Push-right)
INLINE-SELECTOR { position:static; margin-right:+VALUE; }

Right-retracted Static Inline Element (Pull-left)
INLINE-SELECTOR { position:static; margin-right:-VALUE; }

Block Patterns Top-extended Static Block Element (Moved-down)
BLOCK-SELECTOR { position:static; margin-top:+VALUE; }

Top-retracted Static Block Element (Moved-up)
BLOCK-SELECTOR { position:static; margin-top:-VALUE; }

Bottom-extended Static Block Element (Push-down)
BLOCK-SELECTOR { position:static; margin-bottom:+VALUE; }

Bottom-retracted Static Block Element (Pull-up)
BLOCK-SELECTOR { position:static; margin-bottom:-VALUE; }

Location This pattern applies to all static elements.

Related to Offset Relative, Aligned Static Inline, Aligned and Offset Static Block; Sized,
Shrinkwrapped (Chapter 5); Static (Chapter 7); all offset design patterns in
Chapter 9; Spacing, Inline Spacer, Inline Decoration, Linebreak, Inline
Horizontal Rule (Chapter 11); Vertical-offset Content (Chapter 12); Block
Horizontal Rule, Block Spacer, Block Space Remover (Chapter 13)

See also www.cssdesignpatterns.com/offset-static

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED 151

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LIG
N

E
D

http://freepdf-books.com

Offset or Indented Static Table

HTML

<h1>Offset or Indented Static Table</h1>

<div class="parent">
<table class="l-wrap"><tr><td>Left-offset Shrinkwrapped Table</td></tr></table>
<table class="r-wrap"><tr><td>Right-offset Shrinkwrapped Table</td></tr></table>
<table class="stretched"><tr><td>Indented Stretched Table</td></tr></table>
<table class="r-sized"><tr><td>Right-offset Sized Table</td></tr></table>
<table class="l-sized"><tr><td>Left-offset Sized Table</td></tr></table>
</div>

CSS

*.l-wrap { width:auto; margin-left:60px; margin-right:auto; }
*.r-wrap { width:auto; margin-left:auto; margin-right:60px; }

*.stretched { width:80%; margin-left:auto; margin-right:auto; }

*.r-sized { width:300px; margin-left:auto; margin-right:60px; text-align:right; }
*.l-sized { width:300px; margin-left:60px; margin-right:auto; text-align:left; }

/* Nonessential rules are not shown. */

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED152

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LI
G

N
E

D

http://freepdf-books.com

Offset or Indented Static Table

Problem You want to offset a shrinkwrapped or sized table in the normal flow, or you want
to indent a stretched table in the normal flow.

Solution You can offset a sized or shrinkwrapped table using left and right margins.
You can use a negative margin to move the table away from the center of its
container, and you can use a positive margin to move the table toward the center
of its container. When you assign a value to margin-left, you need to assign
margin-right to auto, and vice versa.

You can indent a stretched table equally on both sides by reducing its width to a
percentage less than 100% and setting the left and right margins to auto. This
creates a centered effect where both sides are indented equally. Because of
browser incompatibilities and because you have to use width:100% to stretch a
table to the width of its container, there is no automatic way to indent left and
right sides unequally and keep the table stretched. On the other hand, since
block elements stretch automatically to the width of their container, you can
indent the left and right sides of a block unequally.

Unlike positioned elements, you cannot center a table and then offset it.

HTML Pattern <table><tr><td>CONTENT</td></tr> </table>

CSS Patterns Left-offset Shrinkwrapped Static Table
SELECTOR { position:static; width:auto;
margin-left:±VALUE; margin-right:auto; }

Right-offset Shrinkwrapped Static Table
SELECTOR { position:static; width:auto;
margin-left:auto; margin-right:±VALUE; }

Offset Stretched Static Table
SELECTOR { position:static; width:100%;
margin-left:auto; margin-right:auto; }

Left-offset Sized Static Table
SELECTOR { position:static; width:+VALUE;
margin-left:±VALUE; margin-right:auto; }

Right-offset Sized Static Table
SELECTOR { position:static; width:+VALUE;
margin-left:auto; margin-right:±VALUE; }

Location This pattern applies to table elements.

Limitations Internet Explorer versions 6 and 7 have a bug that ignores margin-left when a
shrinkwrapped table is a child of any element besides <body>.

Tips Margins apply to the table element, but they do not apply to cells, rows, row
groups, columns, or column groups.

Related to Left Aligned, Right Aligned, Centered Aligned (Chapter 9); Sized, Shrinkwrapped,
Stretched (Chapter 5); Table (Chapter 15)

See Also www.cssdesignpatterns.com/offset-static-table

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED 153

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LIG
N

E
D

http://freepdf-books.com

Offset Float

HTML

<h1>Offset Float</h1>
<div>
<p class="float-left sized">Sized Float</p>
<p class="float-left right-retracted">Right-retracted Float</p>
<p class="float-left shrunk">Float</p>

<p class="float-right sized">Sized Float</p>
<p class="float-right left-retracted">Left-retracted Float</p>
<p class="float-right shrunk">Float</p>
<p class="float-right widened right-extended top-extended">
Right-extended & Top-extended Float</p>

<p class="float-left clear-left shrunk">Float</p>
<p class="float-right clear-right shrunk">Float</p>

</div>

CSS

*.sized { width:70px; height:60px; margin:10px; }

*.widened { width:175px; }
*.shrunk { margin:3px; padding:1px; background-color:white; }

*.right-extended { margin-right:120px; }

*.right-retracted { margin-right:-55px; }

*.left-retracted { margin-left:-185px; }

*.top-extended { margin-top:20px; }

*.float-left { float:left; } *.float-right { float:right; }

*.clear-left { clear:left; } *.clear-right { clear:right; }

/* Nonessential rules are not shown. */

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED154

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LI
G

N
E

D

http://freepdf-books.com

Offset Float

Problem You want to control the spacing between floats by moving them closer
together or further apart.

Solution A float’s margins work just like static inline elements and blocks. Positive
margins push content and other floats away, and negative margins bring
them closer. Large enough negative margins can cause floats to overlap
with each other and with neighboring inline content.

Thus, floats exist in their own flow where the position of one float
affects the position of neighboring floats and inline content. Contrast
this with absolute and fixed elements where each one is positioned
independently.

Margins offset floats rather than indent them because they do not change
their size, they change their position.

Horizontal Patterns Left-extended Float
SELECTOR { float:LEFT_OR_RIGHT; margin-left:+VALUE; }

Left-retracted Float
SELECTOR { float:LEFT_OR_RIGHT; margin-left:-VALUE; }

Right-extended Float
SELECTOR { float:LEFT_OR_RIGHT; margin-right:+VALUE; }

Right-retracted Float
SELECTOR { float:LEFT_OR_RIGHT; margin-right:-VALUE; }

Vertical Patterns Top-extended Float
SELECTOR { float:LEFT_OR_RIGHT; margin-top:+VALUE; }

Top-retracted Float
SELECTOR { float:LEFT_OR_RIGHT; margin-top:-VALUE; }

Bottom-extended Float
SELECTOR { float:LEFT_OR_RIGHT; margin-bottom:+VALUE; }

Bottom-retracted Float
SELECTOR { float:LEFT_OR_RIGHT; margin-bottom:-VALUE; }

Location This pattern applies to all elements.

Advantages Floats can create versatile layouts. These layouts easily reflow to fit
displays of all sizes.

Disadvantages Floats tend to trigger browser bugs in all browsers, but particularly in
Internet Explorer 6.

Tips Stacking floats to the left or right aligns floats, and extending or
retracting margins fine-tunes their position.

Related to Float and Clear (Chapter 7); Outside-in Box, Floating Section, Float
Divider, Fluid Layout, Opposing Floats (Chapter 17); Floating Dropcap,
Floating Graphic Dropcap (Chapter 18); Left Floating Callout, Right
Floating Callout (Chapter 19); Floating Alert (Chapter 20)

See also www.cssdesignpatterns.com/offset-float

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED 155

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LIG
N

E
D

http://freepdf-books.com

Offset Absolute and Offset Fixed

HTML

<h1>Offset Absolute and Offset Fixed</h1>

<div class="gp"><h2>Positioned Grandparent</h2>
<div class="parent"><h2>Non-positioned Parent</h2>
The default position of an offset absolute element is where it would have
been rendered if it were not absolutely positioned:
Absolute

<p>You can use left and top margins to offset it from its
default position: Fixed</p>

</div>
</div>

CSS

#absolute { position:absolute; width:140px; height:auto; }

#fixed { position:fixed;

height:50px; margin-top:10px;
width:auto; margin-left:10px; }

/* Nonessential rules are not shown. */

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED156

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LI
G

N
E

D

http://freepdf-books.com

Offset Absolute and Offset Fixed

Problem You want to remove an element from the normal flow and offset it from the
position it would have had in the flow. Unlike the Offset Relative design pattern,
you do not want the element to retain its exact shape that it would have had in
the normal flow. Instead, you want it to be rendered as a block that can be sized
or shrinkwrapped. You optionally want the element to be fixed to the viewport so
it does not scroll when the document scrolls.

Solution You can use position:absolute to position the element absolutely or
position:fixed to lock its position so it does not scroll with the document.
Do not set left, right, top, or bottom to a value other than auto, or you will
align the element to its closest positioned ancestor. Since auto is their default
value, you can omit left, right, top, and bottom.

You can use margin-top and margin-left to offset the element from the position
it would had in the normal flow. Positive values move it down and right, and
negative values move it up and left. You can use width:auto or height:auto to
shrinkwrap the element, or you can use width:+VALUE or height:+VALUE to size it.

Patterns Shrinkwrapped-offset Absolute Element
SELECTOR { position:ABSOLUTE_FIXED;
height:auto; width:auto;
margin-top:±VALUE; margin-left:±VALUE; }

Sized-offset Absolute Element
SELECTOR { position:ABSOLUTE_FIXED;
height:+VALUE; width:+VALUE;
margin-top:±VALUE; margin-left:±VALUE; }

Location This pattern applies to all elements.

Advantages This pattern allows you to remove an element from the normal flow, shrinkwrap
or size it, and then offset it from the position it would have had in the normal
flow. Contrast this with the Aligned and Offset Absolute design pattern where
an absolute element is aligned and offset from an edge of its closest positioned
ancestor.

Tips The horizontal and vertical dimensions are independent. You can shrinkwrap
one dimension and size the other. You can also align one dimension to an edge
of the closest positioned ancestor and offset the other dimension from the
position it would have had in the normal flow.

Example Notice how both the absolute and the fixed spans are located in the flow where
they would have been located if they were not positioned. Margins vertically and
horizontally offset the fixed span by 10 pixels.

Related to Aligned and Offset Absolute; Sized, Shrinkwrapped (Chapter 5); Margin
(Chapter 6); Positioned, Closest Positioned Ancestor, Absolute, Fixed (Chapter 7)

See also www.cssdesignpatterns.com/offset-absolute
www.cssdesignpatterns.com/offset-fixed

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED 157

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LIG
N

E
D

http://freepdf-books.com

Offset Relative

HTML

<h1>Offset Relative</h1>
<div>
<p class="relative offset-none">
When inline content is relatively offset, it retains its
 rendered shape—including

line breaks.</p>
<p class="relative offset2 float">Float </p>
<p class="relative offset3 sized">Sized Static </p>
<p class="relative offset4 indented">Indented Static Block </p>

</div>

CSS

*.float { float:left; width:90px; height:40px; }
*.sized { width:90px; height:40px; margin-left:auto; margin-right:0; }
*.indented { margin-left:60px; margin-right:60px; }

*.relative { position:relative; }

*.offset1 { left:0px; top:-12px; }

*.offset2 { left:-50px; top:10px; }

*.offset3 { left:50px; top:10px; }

*.offset4 { left:0px; top:-32px; }

/* Nonessential rules are not shown. */

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED158

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LI
G

N
E

D

http://freepdf-books.com

Offset Relative

Problem You want to offset an element up, down, left, or right from its position in the
normal flow or floating flow. You want the offset to have no effect on the position
of other elements. And unlike the Offset Absolute and Offset Fixed design
patterns, you want the element to retain its exact shape (size, line breaks, line
spacing, etc.) that it would have had in the normal flow.

Solution A relative element is a float or static element that is set to position:relative. It is
initially positioned by the normal or floating flow.

You can use top and left to offset it from this position. Positive values move it
down and right, and negative values move it up and left. Unlike an element’s
margins, relative offsets have absolutely no effect on the position of other
elements.

A relative element is rendered in a layer without leaving the flow. This allows you
to overlap elements and control their stacking order using z-index. A relative
element is positioned, which allows absolute descendants to be positioned
relative to it. A relative element is atomic, which means external elements cannot
be layered in between its static descendants, inline content, and its background.
If z-index is set to a nonzero value, a relative element creates its own stacking
context, which means no external elements can be layered between any of its
descendants even if they are positioned.

Patterns SELECTOR { position:relative; top:±VALUE; left:±VALUE;
z-index:+VALUE }

Location This pattern applies to all elements.

Limitations A relative element cannot be absolute or fixed at the same time.

Example Notice in the example how the inline span retains its shape when offset relatively.
Also notice how the left float is relatively offset to the left by 50 pixels, the sized
static block is offset to the right by 50 pixels, and both are lowered 10 pixels. The
indented static block is raised 32 pixels to fit between the float and the sized
static block.

Related to Positioned, Closest Positioned Ancestor, Static, Absolute, Fixed, Relative, Relative
Float (Chapter 7); Nested Alignment (Chapter 12); Floating Dropcap, Floating
Graphic Dropcap (Chapter 18); Left Floating Callout, Right Floating Callout,
Center Callout, Block Quote (Chapter 19)

See also www.cssdesignpatterns.com/offset-relative

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED 159

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LIG
N

E
D

http://freepdf-books.com

Aligned Static Inline

HTML

<h1>Aligned Static Inline</h1>
<div>
<p id="l">Left-aligned content</p>
<p id="c">Horizontally and Vertically Center-aligned Content</p>
<p id="r">Right-aligned content</p>
<p id="j">Justify-aligned works on all but the last line. This line is
justified but the last line is not.</p>
<p>Aligned to baseline.
Lowered relative to the baseline.
Raised relative to... </p></div>

CSS

*.baseline { vertical-align:baseline; }
*.raised { vertical-align:10px; }
*.lowered { vertical-align:-10px; }

#l { position:static; text-align:left; }
#c { position:static; text-align:center; line-height:48px; }
#r { position:static; text-align:right; }
#j { position:static; text-align:justify; }

/* Nonessential rules are not shown. */

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED160

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LI
G

N
E

D

http://freepdf-books.com

Aligned Static Inline

Problem You want to align static inline elements horizontally and/or vertically,
and you want to offset them from their alignment.

Solution To horizontally align content to the sides of its terminal block container,
you can use text-align. text-align:left aligns content to the left side.
text-align:right aligns content to the right side. text-align:center
centers content. text-align:justify aligns content to the left and right
sides of its container. For content to be justified, there must be more than
one line, because the browser does not justify the last line.

To align inline content to the vertical center of a line, you can set
line-height to a value larger than the height of the content. This works
because a browser vertically centers the content of each line. This effect
does not work when you have more than one line.

To align inline content vertically, you can use vertical-align:CONSTANT
or vertical-align:±VALUE. The only time you can see the vertical
alignment is when items in the same line have different heights or
different vertical alignment. Vertical alignment does not persist between
lines because a browser shrinkwraps and vertically centers the content
of each line. Thus, inline vertical alignment is relative to the content
actually present in a line.

Horizontal Patterns Left-aligned Static Inline Element
TERMINAL-BLOCK-SELECTOR { position:static; text-align:left; }

Center-aligned Static Inline Element
TERMINAL-BLOCK-SELECTOR { position:static; text-align:center; }

Right-aligned Static Inline Element
TERMINAL-BLOCK-SELECTOR { position:static; text-align:right; }

Justified Static Inline Element
TERMINAL-BLOCK-SELECTOR { position:static; text-align:justify; }

Vertical Patterns Middle-aligned Static Inline Element
SELECTOR { position:static; line-height:+VALUE; }

Relative-aligned Static Inline Element
SELECTOR { position:static; vertical-align:±VALUE; }

Location These patterns work on inline elements.

Related to Aligned and Offset Static Block; Left Aligned, Left Offset, Right Aligned,
Right Offset, Center Aligned, Center Offset (Chapter 9); Invisible Text
(Chapter 10); Spacing, Blocked (Chapter 11); Horizontal-aligned Content
(Chapter 12); Table (Chapter 15)

See also www.cssdesignpatterns.com/aligned-static-inline

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED 161

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LIG
N

E
D

http://freepdf-books.com

Aligned and Offset Static Block

HTML

<h1>Aligned and Offset Static Block</h1>
<div class="gp">
<p id="left">Left Aligned</p>
<p id="left-off">Left Aligned & Offset</p>
<p id="center">Center Aligned</p>
<p id="right-off">Right Aligned & Offset</p>
<p id="right">Right Aligned</p>
</div>

CSS

#left { position:static; width:120px; margin-left:0; margin-right:auto; }
#left-off { position:static; width:200px; margin-left:50px; margin-right:auto; }
#center { position:static; width:120px; margin-left:auto; margin-right:auto; }
#right { position:static; width:120px; margin-left:auto; margin-right:0; }
#right-off { position:static; width:200px; margin-left:auto; margin-right:50px; }

/* Nonessential rules are not shown. */

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED162

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LI
G

N
E

D

http://freepdf-books.com

Aligned and Offset Static Block

Problem You want to align a static block element to the left side, right side, or center of its
parent, and you want to offset it from its alignment.

Solution Sized blocks can be aligned and offset from their container. Static blocks cannot
be horizontally shrinkwrapped, and thus are either sized or stretched. If a block
is stretched, it cannot be aligned and offset because it is indented.
- Use width:+VALUE to specify an element’s width. You cannot align a static block
unless you set its width to a measurement or percentage.

To align to the left side:
- Use margin-right:auto to align the element to the left side.
- Use margin-left:+VALUE to offset the element to the right of the left side.
- Use margin-left:-VALUE to offset the element to the left of the left side.

To align to the center:
- Use both margin-left:auto and margin-right:auto to horizontally center the
element within its container.

To align to the right side:
- Use margin-left:auto to align the element to the right side.
- Use margin-right:+VALUE to offset the element to the right of the right side.
- Use margin-right:-VALUE to offset the element to the left of the right side.

Patterns Left-aligned Sized Static Block Element
BLOCK-SELECTOR { position:static; width:+VALUE;
margin-left:±VALUE; margin-right:auto; }

Center-aligned Sized Static Block Element
BLOCK-SELECTOR { position:static; width:+VALUE;
margin-left:auto; margin-right:auto; }

Right-aligned Sized Static Block Element
BLOCK-SELECTOR { position:static; width:+VALUE;

margin-left:auto; margin-right:±VALUE; }

Location This pattern works on static block elements.

Explanation A static element expands to fill the width of its container. When you set the
width of a static element, its width no longer fills the container. Instead, its
margins expand to fill the container. You can use the auto value to control
which margins expand. margin-left:auto automatically expands the left margin
to let the element align to the right. Conversely, margin-right:auto expands
the right margin to let the element align to the left. margin-left:auto and
margin-right:auto automatically expand both margins equally to center the
element.

Limitations You cannot vertically align a static block element because it is always aligned to
the top of its parent block or below its previous sibling.

Related to Aligned Static Inline; Sized (Chapter 5); Left Aligned, Left Offset, Right Aligned,
Right Offset, Center Aligned, Center Offset (Chapter 9); Left Marginal, Right
Marginal (Chapter 13); Marginal Dropcap, Marginal Graphic Dropcap
(Chapter 18); Left Marginal Callout, Right Marginal Callout (Chapter 19);
Left Marginal Alert, Right Marginal Alert (Chapter 20)

See also www.cssdesignpatterns.com/aligned-offset-static-block

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED 163

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LIG
N

E
D

http://freepdf-books.com

Aligned and Offset Static Table

HTML

<h1>Aligned Static Table</h1>
<div class="parent">
<table class="l-wrap"><tr><td>Left-aligned Shrinkwrapped Table</td></tr></table>
<table class="c-wrap"><tr><td>Centered Shrinkwrapped Table</td></tr></table>
<table class="r-wrap"><tr><td>Right-offset Shrinkwrapped Table</td></tr></table>
<table class="stretched"><tr><td>Stretched Table</td></tr></table>
<table class="r-sized"><tr><td>Right-aligned Sized Table</td></tr></table>
<table class="c-sized"><tr><td>Centered Sized Table</td></tr></table>
<table class="l-sized"><tr><td>Left-offset Sized Table</td></tr></table>

</div>

CSS

*.l-wrap { width:auto; margin-left:0; margin-right:auto; }
*.c-wrap { width:auto; margin-left:auto; margin-right:auto; }
*.r-wrap { width:auto; margin-left:auto; margin-right:20px; }

*.stretched { width:100%; margin-left:0; margin-right:0; }

*.r-sized { width:350px; margin-left:auto; margin-right:0; text-align:right; }
*.c-sized { width:350px; margin-left:auto; margin-right:auto; text-align:center; }
*.l-sized { width:350px; margin-left:20px; margin-right:auto; text-align:left; }

/* Nonessential rules are not shown. */

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED164

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LI
G

N
E

D

http://freepdf-books.com

Aligned and Offset Static Table

Problem You want to align a shrinkwrapped, stretched, or sized table without removing
it from the normal flow.

Solution The table is the only element in normal flow that can shrinkwrap to fit the
width of its content or be sized to a specific width. Block elements cannot be
shrinkwrapped to their width unless they are positioned or floated. Inline
elements cannot be sized unless they are positioned or floated.

Since a table can be shrinkwrapped, sized, and stretched, it is the most
versatile element. It can also be aligned to the left, right, or center while it
is shrinkwrapped or sized.

You can align a table to the left using margin-left:0 and margin-right:auto.
You can align a table to the right using margin-left:auto and margin-right:0.
You can align a table to the center using margin-left:auto and
margin-right:auto.

You can offset a table by changing the margin to a nonzero value. A positive
value offsets toward the center, and a negative offsets away from the center.

HTML Pattern <table><tr><td>CONTENT</td></tr></table>

CSS Patterns Left-aligned Shrinkwrapped Static Table
SELECTOR { position:static;
width:auto; margin-left:0; margin-right:auto; }

Centered Shrinkwrapped Static Table
SELECTOR { position:static;
width:auto; margin-left:auto; margin-right:auto; }

Right-aligned Shrinkwrapped Static Table
SELECTOR { position:static;
width:auto; margin-left:auto; margin-right:0; }

Stretched Static Table
SELECTOR { position:static;
width:100%; margin-left:0; margin-right:0; }

Left-aligned Sized Static Table
SELECTOR { position:static;
width:+VALUE; margin-left:0; margin-right:auto; }

Centered Sized Static Table
SELECTOR { position:static;
width:+VALUE; margin-left:auto; margin-right:auto; }

Right-aligned Sized Static Table
SELECTOR { position:static;
width:+VALUE; margin-left:auto; margin-right:0; }

Location This pattern applies to table elements.

Related to Sized, Shrinkwrapped, Stretched (Chapter 5); Left Aligned, Left Offset,
Right Aligned, Right Offset, Center Aligned, Center Offset (Chapter 9);
Table (Chapter 15)

See Also www.cssdesignpatterns.com/aligned-static-table

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED 165

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LIG
N

E
D

http://freepdf-books.com

Aligned and Offset Absolute

HTML

<h1>Aligned and Offset Absolute</h1>
<div>
<p id="lt">Left-top Aligned & Offset</p>
<p id="lb">Left-bottom Aligned & Offset</p>
<p id="cm">Center-middle Aligned</p>
<p id="rt">Right-top Aligned & Offset</p>
<p id="rb">Right-bottom Aligned & Offset</p>

</div>

CSS

div { position:relative; }

#lt { position:absolute;
width:auto; left:0; margin-left:8px; right:auto; margin-right:auto;
height:auto; top:0; margin-top:8px; bottom:auto; margin-bottom:auto; }

#lb { position:absolute;
width:240px; left:0; margin-left:8px; right:auto; margin-right:auto;
height:18px; top:auto; margin-top:auto; bottom:0; margin-bottom:8px; }

#cm { position:absolute;
width:200px; left:0; margin-left:auto; right:0; margin-right:auto;

height:18px; top:0; margin-top:auto; bottom:0; margin-bottom:auto; }
#rt { position:absolute;
width:220px; left:auto; margin-left:auto; right:0; margin-right:8px;

height:18px; top:0; margin-top:8px; bottom:auto; margin-bottom:auto; }
#rb { position:absolute;
width:auto; left:auto; margin-left:auto; right:0; margin-right:8px;

height:auto; top:auto; margin-top:auto; bottom:0; margin-bottom:8px; }

/* Nonessential rules are not shown. */

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED166

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LI
G

N
E

D

http://freepdf-books.com

Aligned and Offset Absolute

Problem You want to align an absolutely positioned element to the left, right, top, or
bottom of its closest positioned ancestor. You also want to offset it from its
alignment. You also want to size or shrinkwrap the element.

Solution Apply styles to your chosen class or ID as follows:
- Use width:+VALUE and height:+VALUE to size the element.
- Use width:auto and height:auto to shrinkwrap the element.

To offset from the left side:
- Use left:0 and right:auto to align an element to the left.
- Use margin-left:+VALUE to offset the element to the right of the left side.
- Use margin-left:-VALUE to offset the element to the left of the left side.

To offset from the right side:
- Use right:0 and left:auto to align an element to the right.
- Use margin-right:+VALUE to offset the element to the left of the right side.
- Use margin-right:-VALUE to offset the element to the right of the right side.

To offset from the top:
- Use top:0 and bottom:auto to align an element to the top.
- Use margin-top:+VALUE to offset the element below the top.
- Use margin-top:-VALUE to offset the element above the top.

To offset from the bottom:
- Use bottom:0 and top:auto to align an element to the bottom.
- Use margin-bottom:+VALUE to offset the element above the bottom.
- Use margin-bottom:-VALUE to offset the element below the bottom.

Patterns Left-offset Absolute Element
SELECTOR { position:absolute; left:0; right:auto;
margin-left:±VALUE; margin-right:auto; }

Right-offset Absolute Element
SELECTOR { position:absolute; left:auto; right:0;
margin-left:auto; margin-right:±VALUE; }

Top-offset Absolute Element
SELECTOR { position:absolute; top:0; bottom:auto;
margin-top:±VALUE; margin-bottom:auto; }

Bottom-offset Absolute Element
SELECTOR { position:absolute; top:auto; bottom:0;
margin-top:auto; margin-bottom:±VALUE; }

Location This pattern applies to all elements.

Example Each absolute element in the example is shrinkwrapped. Each could be sized
without affecting the alignment or the offset. The centered element is discussed
in the next design pattern—Aligned-center Absolute. I included it in the example
because it is a combination of all four of these design patterns.

Related to Sized, Shrinkwrapped (Chapter 5); Margin (Chapter 6); Positioned, Closest
Positioned Ancestor, Absolute, Fixed (Chapter 7); all design patterns in
Chapter 9; Text Replacement, Screenreader Only (Chapter 10); Left Marginal,
Right Marginal (Chapter 13); Content-over Image, Content-over Background
Image (Chapter 14); Flyout Menu (Chapter 17); Marginal Dropcap, Marginal
Graphic Dropcap (Chapter 18); Left Marginal Callout, Right Marginal Callout
(Chapter 19); Popup Alert, Graphical Alert, Left Marginal Alert, Right Marginal
Alert (Chapter 20)

See also www.cssdesignpatterns.com/aligned-offset-absolute

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED 167

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LIG
N

E
D

http://freepdf-books.com

Aligned-center Absolute

HTML

<h1>Aligned-center Absolute</h1>
<div>
<p id="cm" class="hc vc">Horizontally & Vertically Centered</p>

</div>

CSS

div { position:relative; }
#cm { position:absolute; }

*.hc { width:200px; left:0; margin-left:auto; right:0; margin-right:auto; }
*.vc { height:40px; top:0; margin-top:auto; bottom:0; margin-bottom:auto; }

/* Nonessential rules are not shown. */

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED168

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LI
G

N
E

D

http://freepdf-books.com

Aligned-center Absolute

Problem You want to align an absolutely positioned element to horizontal and/or vertical
center of its closest positioned ancestor.

Solution Apply styles to your chosen class or ID as follows:

To horizontally center:
- Use width:+VALUE to specify the element’s width.
- Use left:0 and right:0 to align the element to the left and right sides.
- Use margin-left:auto and margin-right:auto to center the element.

To vertically center:
- Use height:+VALUE to specify the element’s height.
- Use top:0 and bottom:0 to align the element to the top and bottom.
- Use margin-top:auto and margin-bottom:auto to center the element.

Patterns Vertically Aligned-center Absolute Element
SELECTOR { position:absolute; left:0; right:0;
margin-left:auto; margin-right:auto; }

Horizontally Aligned-center Absolute Element
SELECTOR { position:absolute; left:0; right:0;
margin-left:auto; margin-right:auto; }

Location This pattern applies to all elements.

Limitations This pattern does not work in Internet Explorer 7 (and earlier versions) because
it does not support aligning to the left and right sides at the same time, and it
does not support aligning to the top and bottom sides at the same time.

Explanation This is an extension of the Aligned and Offset Absolute design pattern. It aligns
an element to the sides of its closest positioned ancestor and then uses
automatic margins to center it. The element must be sized for automatic
margins to work.

Related to Indented; Positioned, Closest Positioned Ancestor, Absolute, Fixed (Chapter 7);
Center Aligned, Center Offset, Middle Aligned, Middle Offset (Chapter 9)

See also www.cssdesignpatterns.com/aligned-center-absolute

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED 169

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LIG
N

E
D

http://freepdf-books.com

Aligned Outside

HTML

<h1>Aligned Outside</h1>
<div class="parent">Parent
<p class="sized-block-outside-left">Sized Block Outside Left</p>
<p class="sized-block-outside-right">Sized Block Outside Right</p>
<p class="sized-float-outside-left">Sized Float Outside Left</p>
<p class="sized-float-outside-right">Sized Float Outside Right</p>
<p class="top left">Absolute Outside Top Left</p>
<p class="top right">Absolute Outside Top Right</p>
<p class="bottom left">Absolute Outside Bottom Left</p>
<p class="bottom right">Absolute Outside Bottom Right</p> </div>

CSS

*.parent { position:relative; height:140px; width:200px; }

*.sized-block-outside-left { width:220px; margin-left:-234px; }
*.sized-block-outside-right { width:220px; margin-left:100%; }
*.sized-float-outside-left { width:220px; margin-left:-234px; float:left; }
*.sized-float-outside-right { width:220px; margin-left:100%; float:left; }

*.left { position:absolute; right:100%; margin-right:5px; }
*.right { position:absolute; left:100%; margin-left:5px; }
*.top { position:absolute; bottom:100%; margin-bottom:5px; }
*.bottom { position:absolute; top:100%; margin-top:5px; }

/* Nonessential rules are not shown. */

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED170

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LI
G

N
E

D

http://freepdf-books.com

Aligned Outside

Problem You want to align an element to the outside of its container. For example, you
want to align the left side of an element to the right side of its container, or vice
versa. Or you want to align the bottom of an element to the top of its container,
or vice versa.

Solution You can align an absolute element to the outside of any of the four sides of its
closest positioned ancestor. Since 100% is the width of an element’s container,
offsetting an element 100% from one side aligns it to the outside of the other
side. In addition, you can use margin to offset the element further. An aligned-
outside absolute element can be sized or shrinkwrapped.

You can align static blocks and floats to the outside left or right sides of their
parent, but not to the top or bottom. They must be sized. The technique
described previously can align blocks and floats to the outside right, but not
to the outside left. To align blocks and floats to the outside left, you need to
put the negative of the element’s outer width in margin-left. The outer width
is the inner width plus left and right padding and borders.

Patterns Sized Block Aligned Outside Left
SELECTOR { width:INNER; margin-left:-OUTER; }

Sized Block Aligned Outside Right
SELECTOR { width:INNER; margin-left:100%; }

Sized Float Aligned Outside Left
SELECTOR { width:INNER; margin-left:-OUTER; float:left; }

Sized Float Aligned Outside Right
SELECTOR { width:INNER; margin-left:100%; float:left; }

Absolute Aligned Outside Left
SELECTOR { right:100%; margin-right:±OFFSET; position:absolute; }

Absolute Aligned Outside Right
SELECTOR { left:100%; margin-left:±OFFSET; position:absolute; }

Absolute Aligned Outside Top
SELECTOR { bottom:100%; margin-bottom:±OFFSET; position:absolute; }

Absolute Aligned Outside Bottom
SELECTOR { top:100%; margin-top:±OFFSET; position:absolute; }

Location This pattern applies to all elements when positioned absolutely.

Limitations You cannot align inline elements to the outside of their containers. You cannot
align static blocks or floats to the outside top or bottom of their containers.
Internet Explorer 6 cannot outside-align static blocks and floats, but Internet
Explorer 7 can.

Related to Aligned and Offset Absolute; Sized, Shrinkwrapped (Chapter 5); Flyout Menu
(Chapter 17)

See also www.cssdesignpatterns.com/aligned-outside

CHAPTER 8 ■ POSIT IONING: INDENTED, OFFSET, AND ALIGNED 171

IN
D

E
N

T
E

D
,O

F
F
S

E
T,

A
N

D
A

LIG
N

E
D

http://freepdf-books.com

http://freepdf-books.com

Positioning: Advanced

This is the third of three chapters on positioning. It combines the positioning techniques of
the previous two chapters into 12 design patterns that align and offset static and positioned
elements to the left, center, right, top, middle, or bottom of its container while stretching,
sizing, or shrinkwrapping them. This chapter focuses on static and absolute positioned
elements.

This chapter combines design patterns from Chapter 8 to align and offset elements from
their containers. It also introduces new patterns to align and offset elements from the top,
middle, and bottom of their containers. If you are not already familiar with the design patterns
in Chapters 5 through 8, you may want to review them. Because aligning and offsetting from
the left and right sides are similar, you may want to skim over Right Aligned and Right Offset.

Chapter Outline

• Left Aligned shows how to align an element to the left side of its container.

• Left Offset shows how to offset a left-aligned element.

• Right Aligned shows how to align an element to the right side of its container.

• Right Offset shows how to offset a right-aligned element.

• Center Aligned shows how to align an element to the center of its container.

• Center Offset shows how to offset a center-aligned element.

• Top Aligned shows how to align an element to the top of its container.

• Top Offset shows how to offset a top-aligned element.

• Bottom Aligned shows how to align an element to the bottom of its container.

• Bottom Offset shows how to offset a bottom-aligned element.

• Middle Aligned shows how to align an element to the middle of its container.

• Middle Offset shows how to offset a middle-aligned element.

173

C H A P T E R 9

http://freepdf-books.com

Left Aligned

HTML

<h1>Left Aligned</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="example">Sized Static Block </div>
<div id="ss" class="example">Stretched Static Block</div>
Sized Absolute
Shrinkwrapped Absolute
Stretched Absolute</div></div>

CSS

*.gp { position:relative; height:295px; width:600px; border:2px solid black; }
*.parent { margin:10px; padding:10px; padding-top:0; border:1px solid black; }
*.example { padding:5px; border:5px solid black; background-color:gold; }

#zs { position:static; text-align:left; margin-top:5px;
width:400px; margin-left:0; margin-right:auto; }

#ss { position:static; text-align:left; margin-top:5px;
width:auto; margin-left:0; margin-right:0; }

#za { position:absolute; text-align:left; top:0; margin-top:155px;
width:400px; left:0; margin-left:0; right:auto; margin-right:auto; }

#wa { position:absolute; text-align:left; top:0; margin-top:200px;
width:auto; left:0; margin-left:0; right:auto; margin-right:auto; }

#sa { position:absolute; text-align:left; top:0; margin-top:245px;
width:auto; left:0; margin-left:0; right:0; margin-right:0; }

CHAPTER 9 ■ POSIT IONING: ADVANCED174

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Left Aligned

Problem You want to align an element and its content to the left side of its parent or
closest positioned ancestor.

Solution To left-align content, assign text-align:left to the containing block.

To create a left-aligned sized element, you can use width:+VALUE to size it. You
can use margin-left:0 to align it to the left side. You can use margin-right:auto
to prevent it from aligning to the right side. For an absolute element, you can
also use left:0 to align the element to the left side and right:auto to prevent it
from aligning to the right side.

To create a left-aligned stretched element, you can use width:auto,
margin-left:0, and margin-right:0 to stretch its width to the sides of its
container. For an absolute element, you can also use left:0 and right:0 to
stretch it to the left and right sides.

To create a left-aligned shrinkwrapped element, you can use width:auto,
right:auto, and margin-right:auto to shrinkwrap the width. You can use
left:0 and margin-left:0 to align it to the left side.

Patterns Left-aligned Sized Static Block
BLOCK-SELECTOR { position:static; text-align:left;

width:+VALUE; margin-left:0;
margin-right:auto; }

Left-aligned Stretched Static Block
BLOCK-SELECTOR { position:static; text-align:left;

width:auto; margin-left:0;
margin-right:0; }

Left-aligned Sized Absolute Element
SELECTOR { position:absolute; text-align:left;

width:+VALUE; left:0; margin-left:0;
right:auto; margin-right:auto; }

Left-aligned Shrinkwrapped Absolute Element
SELECTOR { position:absolute; text-align:left;

width:auto; left:0; margin-left:0;
right:auto; margin-right:auto; }

Left-aligned Stretched Absolute Element
SELECTOR { position:absolute; text-align:left;

width:auto; left:0; margin-left:0;
right:0; margin-right:0; }

Location This pattern applies to all elements.

Limitations Stretched Absolute patterns do not work in Internet Explorer 6.

Related to Left Offset, Right Aligned, Center Aligned; Static, Absolute (Chapter 7); Sized,
Shrinkwrapped, Stretched (Chapter 5); Aligned design patterns in Chapter 8

See also www.cssdesignpatterns.com/left-aligned

CHAPTER 9 ■ POSIT IONING: ADVANCED 175

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Left Offset

HTML

<h1>Left Offset</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="ex">Sized Static Block: +50px</div>
<div id="ss" class="ex">Stretched Static Block: +50px</div>
Sized Absolute: -50px
Shrinkwrapped Absolute: -50px
Stretched Absolute:-50px</div></div>

CSS

*.gp { position:relative; height:295px; width:600px; border:2px solid black; }
*.parent { margin:10px; padding:10px; padding-top:0; border:1px solid black; }
*.ex { padding:5px; border:5px solid black; background-color:gold; }
div.ex span { margin-left:-60px; border:1px dotted black; }
span.ex span { margin-left:30px; border:none; }

#zs { position:static; text-align:left; margin-top:5px;
width:400px; margin-left:50px; margin-right:auto; }

#ss { position:static; text-align:left; margin-top:5px;
width:auto; margin-left:50px; margin-right:0; }

#za { position:absolute; text-align:left; top:0; margin-top:155px;
width:400px; left:0; margin-left:-50px; right:auto; margin-right:auto;}

#wa { position:absolute; text-align:left; top:0; margin-top:200px;
width:auto; left:0; margin-left:-50px; right:auto; margin-right:auto;}

#sa { position:absolute; text-align:left; top:0; margin-top:245px;
width:auto; left:0; margin-left:-50px; right:0; margin-right:0; }

CHAPTER 9 ■ POSIT IONING: ADVANCED176

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Left Offset

Problem You want to offset an element and its content from the left side of its parent or
closest positioned ancestor.

Solution To offset a left-aligned element from its left side, you can assign a value other
than zero to margin-left. A positive value in margin-left offsets to the right
(toward the inside), and a negative value offsets to the left (toward the outside).
This design pattern is symmetrical to the Right Offset pattern in every way.

See the Left Aligned design pattern for details on how to left-align an element.

Patterns Left-offset Sized Static Block
BLOCK-SELECTOR { position:static; text-align:left;

width:+VALUE; margin-left:±VALUE; margin-right:auto; }

Left-offset Stretched Static Block
BLOCK-SELECTOR { position:static; text-align:left;

width:auto; margin-left:±VALUE; margin-right:0; }

Left-offset Sized Absolute Element
SELECTOR { position:absolute; text-align:left;

width:+VALUE; left:0; margin-left:±VALUE;
right:auto; margin-right:auto; }

Left-offset Shrinkwrapped Absolute Element
SELECTOR { position:absolute; text-align:left;

width:auto; left:0; margin-left:±VALUE;
right:auto; margin-right:auto; }

Left-offset Stretched Absolute Element
SELECTOR { position:absolute; text-align:left;

width:auto; left:0; margin-left:±VALUE;
right:0; margin-right:0; }

Location This pattern applies to all elements.

Limitations Stretched Absolute patterns do not work in Internet Explorer 6, but they do work
in version 7. Inline text cannot extend outside a sized block in Internet Explorer
version 6 or 7.

Related to Left Aligned, Right Offset, Center Offset; Offset and Aligned design patterns in
Chapter 8

See also www.cssdesignpatterns.com/left-offset

CHAPTER 9 ■ POSIT IONING: ADVANCED 177

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Right Aligned

HTML

<h1>Right Aligned</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="example">Sized Static Block </div>
<div id="ss" class="example">Stretched Static Block</div>
Sized Absolute
Shrinkwrapped Absolute
Stretched Absolute</div></div>

CSS

*.gp { position:relative; height:295px; width:600px; border:2px solid black; }
*.parent { margin:10px; padding:10px; padding-top:0; border:1px solid black; }
*.example { padding:5px; border:5px solid black; background-color:gold; }

#zs { position:static; text-align:right; margin-top:5px;
width:400px; margin-left:auto; margin-right:0; }

#ss { position:static; text-align:right; margin-top:5px;
width:auto; margin-left:0; margin-right:0; }

#za { position:absolute; text-align:right; top:0; margin-top:155px;
width:400px; left:auto; margin-left:auto; right:0; margin-right:0; }

#wa { position:absolute; text-align:right; top:0; margin-top:200px;
width:auto; left:auto; margin-left:auto; right:0; margin-right:0; }

#sa { position:absolute; text-align:right; top:0; margin-top:245px;
width:auto; left:0; margin-left:0; right:0; margin-right:0; }

CHAPTER 9 ■ POSIT IONING: ADVANCED178

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Right Aligned

Problem You want to align an element and its content to the right side of its parent or
closest positioned ancestor.

Solution This design pattern is symmetrical to Left Aligned in every way.

To right-align content, assign text-align:right to the containing block.

To create a right-aligned sized element, you can use width:+VALUE to size it. You
can use margin-right:0 to align it to the right side. You can use margin-left:auto
to prevent it from aligning to the left side. For an absolute element, you can also
use right:0 to align the element to the right side and left:auto to prevent it
from aligning to the left side.

To create a right-aligned stretched element, you can use width:auto,
margin-left:0, and margin-right:0 to stretch its width to the sides of its
container. For an absolute element, you can also use left:0 and right:0 to
stretch it to the left and right sides.

To create a right-aligned shrinkwrapped element, you can use width:auto,
left:auto, and margin-left:auto to shrinkwrap the width. You can use right:0
and margin-right:0 to align it to the right side.

Patterns Right-aligned Sized Static Block
BLOCK-SELECTOR { position:static; text-align:right;

width:+VALUE; margin-left:auto;
margin-right:0; }

Right-aligned Stretched Static Block
BLOCK-SELECTOR { position:static; text-align:right;

width:auto; margin-left:0;
margin-right:0; }

Right-aligned Sized Absolute Element
SELECTOR { position:absolute; text-align:right;

width:+VALUE; left:auto; margin-left:auto;
right:0; margin-right:0; }

Right-aligned Shrinkwrapped Absolute Element
SELECTOR { position:absolute; text-align:right;

width:auto; left:auto; margin-left:auto;
right:0; margin-right:0; }

Right-aligned Stretched Absolute Element
SELECTOR { position:absolute; text-align:right;

width:auto; left:0; margin-left:0;
right:0; margin-right:0; }

Location This pattern applies to all elements.

Limitations Stretched Absolute does not work in Internet Explorer 6, but it does work in
version 7.

Related to Left Aligned, Right Offset, Center Aligned; Static, Absolute (Chapter 7); Sized,
Shrinkwrapped, Stretched (Chapter 5); Aligned design patterns in Chapter 8

See also www.cssdesignpatterns.com/right-aligned

CHAPTER 9 ■ POSIT IONING: ADVANCED 179

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Right Offset

HTML

<h1>Right Offset</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="ex">Sized Static Block: +50px</div>
<div id="ss" class="ex">Stretched Static Block: +50px</div>
Sized Absolute: -50px
Shrinkwrapped Absolute: -50px
Stretched Absolute:-50px</div></div>

CSS

*.gp { position:relative; height:295px; width:600px; border:2px solid black; }
*.parent { margin:10px; padding:10px; padding-top:0; border:1px solid black; }
*.ex { padding:5px; border:5px solid black; background-color:gold; }
div.ex span { margin-right:-60px; border:1px dotted black; }
span.ex span { margin-right:30px; border:none; }

#zs { position:static; text-align:right; margin-top:5px;
width:400px; margin-left:auto; margin-right:50px; }

#ss { position:static; text-align:right; margin-top:5px;
width:auto; margin-left:0; margin-right:50px; }

#za { position:absolute; text-align:right; top:0; margin-top:155px;
width:400px; left:auto; margin-left:auto; right:0; margin-right:-50px; }

#wa { position:absolute; text-align:right; top:0; margin-top:200px;
width:auto; left:auto; margin-left:auto; right:0; margin-right:-50px; }

#sa { position:absolute; text-align:right; top:0; margin-top:245px;
width:auto; left:0; margin-left:0; right:0; margin-right:-50px; }

CHAPTER 9 ■ POSIT IONING: ADVANCED180

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Right Offset

Problem You want to align an element and its content to the right side of its parent or
closest positioned ancestor.

Solution To offset a right-aligned element from its right side, you can assign a value other
than zero to margin-right. A positive value in margin-right offsets to the left
(toward the inside), and a negative value offsets to the right (toward the outside).
This design pattern is symmetrical to the Left Offset pattern in every way.

See the Right Aligned design pattern for details on how to right-align an element.

Patterns Right-offset Sized Static Block
BLOCK-SELECTOR { position:static; text-align:right;

width:+VALUE; margin-left:auto;
margin-right:±VALUE; }

Right-offset Stretched Static Block
BLOCK-SELECTOR { position:static; text-align:right;

width:auto; margin-left:0;
margin-right:±VALUE; }

Right-offset Sized Absolute Element
SELECTOR { position:absolute; text-align:right;

width:+VALUE; left:auto; margin-left:auto;
right:0; margin-right:±VALUE; }

Right-offset Shrinkwrapped Absolute Element
SELECTOR { position:absolute; text-align:right;

width:auto; left:auto; margin-left:auto;
right:0; margin-right:±VALUE; }

Right-offset Stretched Absolute Element
SELECTOR { position:absolute; text-align:right;

width:auto; left:0; margin-left:0;
right:0; margin-right:±VALUE; }

Location This pattern applies to all elements.

Limitations Stretched Absolute does not work in Internet Explorer 6, but it does work in
version 7.

Related to Left Offset, Right Aligned, Center Offset; Offset and Aligned design patterns in
(Chapter 8)

See also www.cssdesignpatterns.com/right-offset

CHAPTER 9 ■ POSIT IONING: ADVANCED 181

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Center Aligned

HTML

<h1>Center Aligned</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="example">Sized Static Block </div>
<div id="ss" class="example">Stretched Static Block</div>
Sized Absolute
An element can't be shrinkwrapped if it is centered.
Stretched Absolute</div></div>

CSS

*.gp { position:relative; height:295px; width:600px; border:2px solid black; }
*.parent { margin:10px; padding:10px; padding-top:0; border:1px solid black; }
*.example { padding:5px; border:5px solid black; background-color:gold; }

#zs { position:static; text-align:center; margin-top:5px;
width:400px; margin-left:auto; margin-right:auto; }

#ss { position:static; text-align:center; margin-top:5px;
width:auto; margin-left:70px; margin-right:70px; }

#za { position:absolute; text-align:center; top:0; margin-top:155px;
width:67%; left:0; margin-left:auto; right:0; margin-right:auto; }

#wa { position:absolute; text-align:center; top:0; margin-top:200px;
width:auto; left:0; margin-left:0; right:0; margin-right:0; }

#sa { position:absolute; text-align:center; top:0; margin-top:245px;
width:auto; left:0; margin-left:15%; right:0; margin-right:15%; }

CHAPTER 9 ■ POSIT IONING: ADVANCED182

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Center Aligned

Problem You want to align an element and its content to the horizontal center of its
parent or closest positioned ancestor.

Solution To center-align content, assign text-align:center to its containing block.

To create a center-aligned sized element, you can use margin-left:auto; and
margin-right:auto; and set width:+VALUE to size it. For absolute elements, you
can also use right:0 and left:0 to align the element to the left and right sides.

To create a center-aligned stretched element, set margin-left and margin-right
to the same value. A larger value shrinks the element, and a smaller value grows
it. For absolute stretched elements, you can also use left:0 and right:0.

Patterns Center-aligned Sized Static Block
BLOCK-SELECTOR { position:static; text-align:center;

width:+VALUE; margin-left:auto;
margin-right:auto; }

Center-aligned Stretched Static Block
BLOCK-SELECTOR { position:static; text-align:center;

width:auto; margin-left:+VALUE;
margin-right:+VALUE; }

Center-aligned Sized Absolute Element
SELECTOR { position:absolute; text-align:center;

width:+VALUE; left:0; margin-left:auto;
right:0; margin-right:auto; }

Center-aligned Stretched Absolute Element
SELECTOR { position:absolute; text-align:center;

width:auto; left:0; margin-left:+VALUE;
right:0; margin-right:+VALUE; }

Location This pattern applies to all elements.

Limitations A horizontally shrinkwrapped element cannot be center aligned.
Internet Explorer 6 cannot center absolute elements; version 7 can center
stretched absolute elements, but still cannot center sized absolute elements.

Tips A center-aligned sized pattern keeps the width constant and grows the margins
dynamically. A center-aligned stretched pattern grows the width dynamically
and keeps the margins constant. You can use percentages for widths and
margins. A percentage sizes the width or margin proportional to the width
of the containing block.

Related to Left Aligned, Right Aligned, Center Offset; Static, Absolute (Chapter 7); Sized,
Shrinkwrapped, Stretched (Chapter 5); Aligned design patterns in Chapter 8

See also www.cssdesignpatterns.com/center-aligned

CHAPTER 9 ■ POSIT IONING: ADVANCED 183

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Center Offset

HTML

<h1>Center Offset</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" >
A sized static block can't be center offset.</div>
<div id="ss" class="ex">Stretched Static Block → 40px</div>
Sized Absolute → 40px
An element can't be shrinkwrapped if it is centered.
Stretched Absolute → 40px

</div></div>

CSS

*.gp { position:relative; height:295px; width:600px; border:2px solid black; }
*.parent { margin:10px; padding:10px; padding-top:0; border:1px solid black; }
*.ex { padding:5px; border:5px solid black; background-color:gold; }
*.ex span { margin-left:-40px; }

#zs { position:static; text-align:center; margin-top:5px;
width:auto; margin-left:90px; margin-right:10px; }

#ss { position:static; text-align:center; margin-top:5px;
width:auto; margin-left:90px; margin-right:10px; }

#za { position:absolute; text-align:center; top:0; margin-top:155px;
width:440px; left:80px; margin-left:auto; right:0; margin-right:auto; }

#wa { position:absolute; text-align:center; top:0; margin-top:200px;
width:auto; left:0; margin-left:110px; right:0; margin-right:30px; }

#sa { position:absolute; text-align:center; top:0; margin-top:245px;
width:auto; left:0; margin-left:110px; right:0; margin-right:30px; }

CHAPTER 9 ■ POSIT IONING: ADVANCED184

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Center Offset

Problem You want to align an element and its content to the center of its parent or closest
positioned ancestor and then offset it from the center.

Solution To create a center-offset inline element, you can use margin-left:+VALUE to
offset the element to the right and margin-left:-VALUE to offset it to the left.
Also assign text-align:center to the containing block element.

To create a center-offset sized absolute element, you can use a positive value in
left to offset to the right, and a negative value to offset to the left. You can also
assign the following to the element: margin-left:auto;, margin-right:auto;, and
right:0;, and set width:+VALUE to size the element.

To create a center-offset stretched element, set margin-left and margin-right to
the same value. A larger value shrinks the element, and a smaller value grows it.
To offset it to the left, subtract the desired offset from margin-left and add it to
margin-right. To offset it to the right, add the desired offset to margin-left and
subtract it from margin-right. For absolute stretched elements, you can also use
left:0 and right:0.

A sized static block element cannot be center offset.
A shrinkwrapped absolute element cannot be center offset.

Patterns Center-offset Inline Element
INLINE-SELECTOR { margin-left:±VALUE; }
BLOCK-SELECTOR { text-align:center; }

Center-offset Stretched Static Block
BLOCK-SELECTOR { position:static; text-align:center;

width:auto; margin-left:±VALUE;
margin-right:±VALUE; }

Center-offset Sized Absolute Element
SELECTOR { position:absolute; text-align:center;

width:+VALUE; left:±VALUE; margin-left:auto;
right:0; margin-right:0; }

Center-offset Stretched Absolute Element
SELECTOR { position:absolute; text-align:center;

width:auto; left:0; margin-left:±VALUE;
right:0; margin-right:±VALUE; }

Location This pattern applies to all elements.

Limitations Same as Center Aligned.

Example Notice how each block is centered and then offset to the right by 80 pixels.
Also notice how the text in each block is centered and then offset to the left by
40 pixels.

Related to Left Offset, Right Offset, Center Aligned; Static, Absolute (Chapter 7); Sized,
Shrinkwrapped, Stretched (Chapter 5); Offset and Aligned design patterns in
Chapter 8

See also www.cssdesignpatterns.com/center-offset

CHAPTER 9 ■ POSIT IONING: ADVANCED 185

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Top Aligned

HTML

<h1>Top Aligned</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="ex">Sized Static Block</div>
<div id="ws" class="ex">Shrinkwrapped Static Block</div>
Sized Absolute
<div id="wa" class="ex">Shrinkwrapped Absolute</div>
Stretched Absolute</div></div>

CSS

*.gp { position:relative; height:300px; width:700px; border:2px solid black; }
*.parent { margin:10px; padding:10px; padding-top:0; border:1px solid black; }
*.ex { padding:5px; border:5px solid black; background-color:gold;

width:120px; text-align:center; position:relative; }
*.ex span { left:0; width:130px; height:auto; }

#zs { height:100px; margin-top:0; margin-bottom:auto;
position:static; }

#ws { height:auto; margin-top:0; margin-bottom:auto;
position:static; }

#za { height:100px; top:0; margin-top:0; bottom:auto; margin-bottom:auto;
position:absolute; margin-left:200px; }

#wa { height:auto; top:0; margin-top:0; bottom:auto; margin-bottom:auto;
position:absolute; margin-left:355px; }

#sa { height:auto; top:0; margin-top:0; bottom:0; margin-bottom:0;
position:absolute; margin-left:510px; }

CHAPTER 9 ■ POSIT IONING: ADVANCED186

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Top Aligned

Problem You want to align an element and its content to the top of its parent or closest
positioned ancestor.

Solution To create a top-aligned sized element, you can use height:+VALUE to size it. You
can use margin-top:0 to align it to the top. You can use margin-bottom:auto to
prevent it from aligning to the bottom. For an absolute element, you can also use
top:0 to align the element to the top and bottom:auto to prevent it from aligning
to the bottom.

To create a top-aligned shrinkwrapped element, you can use height:auto,
bottom:auto, and margin-bottom:auto to shrinkwrap the height. You can use
top:0 and margin-top:0 to align it to the top.

To create a top-aligned stretched element, you can use height:auto,
margin-top:0, and margin-bottom:0 to stretch its height to the top and bottom of
its container. For an absolute element, you can also use top:0 and bottom:0 to
stretch it to the top and bottom.

Patterns Top-aligned Sized Static Block
BLOCK-SELECTOR { position:static; height:+VALUE;

margin-top:0; margin-bottom:auto; }

Top-aligned Shrinkwrapped Static Block
BLOCK-SELECTOR { position:static; height:auto;

margin-top:0; margin-bottom:0; }

Top-aligned Sized Absolute Element
SELECTOR { position:absolute; height:+VALUE;

margin-top:0; margin-bottom:auto;
top:0; bottom:auto; }

Top-aligned Shrinkwrapped Absolute Element
SELECTOR { position:absolute; height:auto;

margin-top:0; margin-bottom:auto;
top:0; bottom:auto; }

Top-aligned Stretched Absolute Element
SELECTOR { position:absolute; height:auto;

margin-top:0; margin-bottom:0;
top:0; bottom:0; }

Location This pattern applies to all elements.

Limitations Stretched Absolute does not work in Internet Explorer 6, but it does work in
version 7.

Tip A browser renders blocks and content starting at the top of their containers and
flows them down. This automatically aligns the first item to the top of its
container and the top of the next item to the bottom of the previous item.

Related to Top Offset, Bottom Aligned, Middle Aligned; Static, Absolute (Chapter 7); Sized,
Shrinkwrapped, Stretched (Chapter 5)

See also www.cssdesignpatterns.com/top-aligned

CHAPTER 9 ■ POSIT IONING: ADVANCED 187

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Top Offset

HTML

<h1>Top Offset</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="ex">Sized Static Block</div>
<div id="ws" class="ex">Shrinkwrapped Static Block</div>
Sized Absolute
<div id="wa" class="ex">Shrinkwrapped Absolute</div>
Stretched Absolute</div></div>

CSS

*.gp { position:relative; height:300px; width:700px; border:2px solid black; }
*.parent { margin:10px; padding:10px; padding-top:0; border:1px solid black; }
*.ex { padding:5px; border:5px solid black; background-color:gold;

width:120px; text-align:center; position:relative; }
*.ex span { left:0; width:130px; height:auto; }

#zs { height:100px; margin-top:25px; margin-bottom:0;
position:static; }

#ws { height:auto; margin-top:-70px; margin-bottom:0;
position:static; background-color:yellow; }

#za { height:100px; top:0; margin-top:70px; bottom:auto; margin-bottom:auto;
position:absolute; margin-left:200px; }

#wa { height:auto; top:0; margin-top:70px; bottom:auto; margin-bottom:0;
position:absolute; margin-left:355px; }

#sa { height:auto; top:0; margin-top:70px; bottom:0; margin-bottom:0;
position:absolute; margin-left:510px; }

CHAPTER 9 ■ POSIT IONING: ADVANCED188

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Top Offset

Problem You want to offset an element and its content from the top of its parent or closest
positioned ancestor.

Solution To offset a top-aligned element from the top, you can assign a value other than
zero to margin-top. A positive value in margin-top offsets down (toward the
inside), and a negative value offsets up (toward the outside).

This design pattern is symmetrical to the Bottom Offset pattern except content
inside bottom-offset elements cannot be automatically aligned to the bottom.

See the Top Aligned design pattern for details on how to top-align an element.

Patterns Top-offset Sized Static Block
BLOCK-SELECTOR { position:static; height:+VALUE;

margin-top:±VALUE; margin-bottom:auto; }

Top-offset Shrinkwrapped Static Block
BLOCK-SELECTOR { position:static; height:auto;

margin-top:±VALUE; margin-bottom:0; }

Top-offset Sized Absolute Element
SELECTOR { position:absolute; height:+VALUE;

margin-top:±VALUE; margin-bottom:auto;
top:0; bottom:auto; }

Top-offset Shrinkwrapped Absolute Element
SELECTOR { position:absolute; height:auto;

margin-top:±VALUE; margin-bottom:auto;
top:0; bottom:auto; }

Top-offset Stretched Absolute Element
SELECTOR { position:absolute; height:auto;

margin-top:±VALUE; margin-bottom:0;
top:0; bottom:0; }

Location This pattern applies to all elements.

Limitations Stretched Absolute does not work in Internet Explorer 6, but it does work in
version 7.

Example The shrinkwrapped static block has a negative top margin that moves it up and
over the previous sized static block.

Related to Top Aligned, Bottom Offset, Middle Offset

See also www.cssdesignpatterns.com/top-offset

CHAPTER 9 ■ POSIT IONING: ADVANCED 189

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Bottom Aligned

HTML

<h1>Bottom Aligned</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="ex">Sized Static Block</div>
<div id="ws" class="ex">Shrinkwrapped Static Block</div>
Sized Absolute
<div id="wa" class="ex">Shrinkwrapped Absolute</div>
Stretched Absolute</div></div>

CSS

*.gp { position:relative; height:300px; width:700px; border:2px solid black; }
*.parent { margin:10px; padding:10px; padding-top:0; border:1px solid black; }
*.ex { padding:5px; border:5px solid black; background-color:gold;

width:120px; text-align:center; position:relative; }
*.ex span { height:auto; left:0; width:130px; }

span.ex span {position:absolute;top:auto;margin-top:auto;bottom:0;margin-bottom:0; }
#zs { height:100px; margin-top:auto; margin-bottom:0;

position:static; margin-left:0px; }
#ws { height:auto; margin-top:auto; margin-bottom:0;

position:static; }
#za { height:100px; top:auto; margin-top:auto; bottom:0; margin-bottom:0;

position:absolute; margin-left:200px; }
#wa { height:auto; top:auto; margin-top:auto; bottom:0; margin-bottom:0;

position:absolute; margin-left:355px; }
#sa { height:auto; top:0; margin-top:0; bottom:0; margin-bottom:0;

position:absolute; margin-left:510px; }

CHAPTER 9 ■ POSIT IONING: ADVANCED190

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Bottom Aligned

Problem You want to align an element and its content to the bottom of its parent or
closest positioned ancestor.

Solution This design pattern is symmetrical to Top Aligned except that it applies this
pattern twice: once to the element and once to the element’s content.

To create a bottom-aligned sized element, you can use height:+VALUE to
size it. You can use margin-bottom:0 to align it to the bottom. You can use
margin-top:auto to prevent it from aligning to the top. For an absolute element,
you can also use bottom:0 to align the element to the bottom and top:auto to
prevent it from aligning to the top.

You cannot bottom-align a static shrinkwrapped element because normal flow
determines its position.

To create a bottom-aligned shrinkwrapped absolute element, you can use
bottom:0 and margin-bottom:0 to align it to the bottom. You can use height:auto,
top:auto, and margin-top:auto to shrinkwrap the height.

To create a bottom-aligned stretched element, you can use height:auto,
margin-bottom:0, and margin-top:0 to stretch its height to the bottom and top of
its container. For an absolute element, you can also use bottom:0 and top:0 to
stretch it.

Patterns Bottom-aligned Sized Static Block
BLOCK-SELECTOR { position:static; height:+VALUE;

margin-top:auto; margin-bottom:0; }

Bottom-aligned Sized Absolute Element
SELECTOR { position:absolute; height:+VALUE;

margin-top:auto; margin-bottom:0;
top:auto; bottom:0; }

Bottom-aligned Shrinkwrapped Absolute Element
SELECTOR { position:absolute; height:auto;

margin-top:auto; margin-bottom:0;
top:auto; bottom:0; }

Bottom-aligned Stretched Absolute Element
SELECTOR { position:absolute; height:auto;

margin-top:0; margin-bottom:0;
top:0; bottom:0; }

Location This pattern applies to all elements.

Limitations Stretched Absolute does not work in Internet Explorer 6, but it does work in
version 7.

Tip There is no property to align content to the bottom of its container. Instead, you
need to use this design pattern to align content to the bottom of its parent. See
the absolutely positioned spans in the example. Note that when a parent is
shrinkwrapped, positioning its content collapses its height.

Related to Top Aligned, Bottom Offset, Middle Aligned; Static, Absolute (Chapter 7); Sized,
Shrinkwrapped, Stretched (Chapter 5)

See also www.cssdesignpatterns.com/bottom-aligned

CHAPTER 9 ■ POSIT IONING: ADVANCED 191

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Bottom Offset

HTML

<h1>Bottom Offset</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="ex">Sized Static Block</div>
<div id="ws" class="ex">Shrinkwrapped Static Block</div>
Sized Absolute
<div id="wa" class="ex">Shrinkwrapped Absolute</div>
Stretched Absolute</div></div>

CSS

*.gp { position:relative; height:300px; width:700px; border:2px solid black; }
*.parent { margin:10px; padding:10px; padding-top:0; border:1px solid black; }
*.ex { padding:5px; border:5px solid black; background-color:gold;

width:120px; text-align:center; position:relative; }
*.ex span { height:auto; left:0; width:130px; }
span.ex span{position:absolute;top:auto;margin-top:auto;bottom:5px;margin-bottom:0;}

#zs { height:100px; margin-top:auto; margin-bottom:-70px;
position:static; }

#ws { height:auto; margin-top:auto; margin-bottom:120px;
position:static; background-color:yellow; }

#za { height:100px; top:auto; margin-top:auto; bottom:0; margin-bottom:50px;
position:absolute; margin-left:200px; }

#wa { height:auto; top:auto; margin-top:auto; bottom:0; margin-bottom:50px;
position:absolute; margin-left:355px; }

#sa { height:auto; top:0; margin-top:auto; bottom:0; margin-bottom:50px;
position:absolute; margin-left:510px; }

CHAPTER 9 ■ POSIT IONING: ADVANCED192

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Bottom Offset

Problem You want to offset an element and its content from the bottom of its parent or
closest positioned ancestor.

Solution To offset a bottom-aligned element from the bottom, you can assign a value
other than zero to margin-bottom. A positive value in margin-bottom offsets up
(toward the inside), and a negative value offsets down (toward the outside).

This design pattern is symmetrical to Top Offset except that it applies this
pattern twice: once to the element and once to the element’s content.

See the Bottom Aligned design pattern for details on how to top-align an
element.

Patterns Bottom-offset Sized Static Block
BLOCK-SELECTOR { position:static; height:+VALUE;

margin-top:auto; margin-bottom:±VALUE; }

Bottom-offset Sized Absolute Element
SELECTOR { position:absolute; height:+VALUE;

margin-top:auto; margin-bottom:±VALUE;
top:auto; bottom:0; }

Bottom-offset Shrinkwrapped Absolute Element
SELECTOR { position:absolute; height:auto;

margin-top:auto; margin-bottom:±VALUE;
top:auto; bottom:0; }

Bottom-offset Stretched Absolute Element
SELECTOR { position:absolute; height:auto;

margin-top:0; margin-bottom:±VALUE;
top:0; bottom:0; }

Location This pattern applies to all elements.

Limitations Stretched Absolute does not work in Internet Explorer 6, but it does work in
version 7.

Tip There is no property to align content to the bottom of its container. Instead, you
need to apply this design pattern to the content to align it to the bottom of its
parent. See the absolutely positioned spans in the example. Note that when a
parent is shrinkwrapped, positioning its content collapses its height.

Example The sized static block has a negative bottom margin that moves the
shrinkwrapped static block up and over it. The shrinkwrapped static block has
a large bottom margin that lowers the bottom of its parent. Notice how the
example applies this pattern to the sized and stretched absolute elements and
to the spans within them.

Related to Top Offset, Bottom Aligned, Middle Offset

See also www.cssdesignpatterns.com/bottom-offset

CHAPTER 9 ■ POSIT IONING: ADVANCED 193

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Middle Aligned

HTML

<h1>Middle Aligned</h1>
<div class="gp">
<div id="ia" class="ex1 ex2">INLINE</div>
<div id="za" class="ex1 ex2">Sized Absolute</div>
<div id="wa" class="ex1">Can't middle-align a static element

or a shrinkwrapped element.</div>
<div id="sa" class="ex1 ex2">Stretched Absolute</div></div>

CSS

*.gp { position:relative; height:300px; width:700px; border:2px solid black; }
*.ex1 { width:120px; padding:5px; text-align:center; border:1px dotted black; }
*.ex2 { position:relative; border:5px solid black; background-color:gold; left:0; }
*.ex1 span { height:36px; left:0; width:130px;

position:absolute; top:0; margin-top:auto; bottom:0; margin-bottom:auto; }

#ia { height:100px; top:0; margin-top:auto; bottom:0; margin-bottom:auto;

position:absolute; line-height:100px; margin-left:40px; }
#za { height:100px; top:0; margin-top:auto; bottom:0; margin-bottom:auto;

position:absolute; margin-left:200px; }
#wa { height:auto; top:0; margin-top:90px; bottom:0; margin-bottom:90px;

position:absolute; margin-left:355px; }
#sa { height:auto; top:0; margin-top:90px; bottom:0; margin-bottom:90px;

position:absolute; margin-left:510px; }

CHAPTER 9 ■ POSIT IONING: ADVANCED194

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Middle Aligned

Problem You want to align an element and its content to the vertical middle of its closest
positioned ancestor.

Solution To create a middle-aligned inline element, assign line-height:+VALUE to the
same measurement or percentage assigned to the height of its parent. This
pattern requires the element’s parent to be sized.

To create a middle-aligned sized absolute element, set height to size it. You can
use top:0 and bottom:0 to align the element to the top and bottom. You can use
margin-top:auto and margin-bottom:auto to realign the element to the middle.

To create a middle-aligned stretched absolute element, set margin-top and
margin-bottom to the same value. A larger value shrinks the element, and a
smaller value grows it. A negative value expands the element beyond the height
of its container. You can use top:0 and bottom:0 to align the element to the top
and bottom.

A static element cannot be middle aligned.

A shrinkwrapped element cannot be middle aligned.

Patterns Middle-aligned Inline Element
SELECTOR { line-height:+VALUE; }

Middle-aligned Sized Absolute Element
SELECTOR { position:absolute; height:+VALUE;

margin-top:auto; margin-bottom:0;
top:0; bottom:0; }

Middle-aligned Stretched Absolute Element
SELECTOR { position:absolute; height:auto;

margin-top:±VALUE; margin-bottom:±VALUE;
top:0; bottom:0; }

Location This pattern works only on absolute elements.

Limitations Internet Explorer 6 cannot middle-align absolute elements. Version 7 can
middle-align stretched absolute elements, but not sized absolute elements.

Tip There is no text-align property to align content to the middle. Instead, you need
to wrap content in an inline element, absolutely position it, and align it to the
middle. This technique only works with elements that are inside stretched or
sized absolute elements.

Example In the example, this pattern aligns the content in each division to the middle of
its parent division. The inline content is middle aligned. The elements are
middle aligned. The divisions are middle aligned.

Related to Center Offset, Top Aligned, Bottom Aligned; Static, Absolute (Chapter 7); Sized,
Shrinkwrapped, Stretched (Chapter 5)

See also www.cssdesignpatterns.com/middle-aligned

CHAPTER 9 ■ POSIT IONING: ADVANCED 195

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Middle Offset

HTML

<h1>Middle Offset</h1>
<div class="gp">

<div id="ia" class="ex1 ex2">INLINE</div>
<div id="za" class="ex1 ex2">Sized Absolute</div>
<div id="wa" class="ex1">Can't middle-offset a static element

or a shrinkwrapped element.</div>
<div id="sa" class="ex1 ex2">Stretched Absolute</div></div>

CSS

*.gp { position:relative; height:300px; width:700px; border:2px solid black; }
*.ex1 { width:120px; padding:5px; text-align:center; border:1px dotted black; }
*.ex2 { position:relative; border:5px solid black; background-color:gold; left:0; }
*.ex1 span { height:36px; left:0; width:130px;

position:absolute; top:0; margin-top:auto; bottom:0; margin-bottom:auto; }

#ia { height:100px; top:60px; margin-top:auto; bottom:-60px; margin-bottom:auto;
position:absolute; line-height:100px; margin-left:40px; }

#za { height:100px; top:60px; margin-top:auto; bottom:-60px; margin-bottom:auto;
position:absolute; margin-left:200px; }

#wa { height:auto; top:0; margin-top:150px; bottom:0; margin-bottom:30px;
position:absolute; margin-left:355px; }

#sa { height:auto; top:0; margin-top:150px; bottom:0; margin-bottom:30px;
position:absolute; margin-left:510px; }

CHAPTER 9 ■ POSIT IONING: ADVANCED196

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

Middle Offset

Problem You want to align an element and its content to an offset from the vertical middle
of its closest positioned ancestor.

Solution To create a middle-offset sized absolute element, you can use the Middle-
aligned Sized Absolute Element pattern and set top to the desired offset and
set bottom to the inverse of the desired offset.

To create a middle-offset stretched absolute element, you can use the Middle-
aligned Stretched Absolute Element pattern and add the desired offset to
margin-top and subtract the desired offset from margin-bottom.

An inline element cannot be middle-offset.

A static element cannot be middle-offset.

A shrinkwrapped element cannot be middle-offset.

Patterns Middle-offset Sized Absolute Element
SELECTOR { position:absolute; height:+VALUE;

margin-top:auto; margin-bottom:0;
top:±VALUE; bottom:±VALUE; }

where top = top + OFFSET and bottom = bottom – OFFSET

Middle-offset Stretched Absolute Element
SELECTOR { position:absolute; height:auto;

margin-top:±VALUE; margin-bottom:±VALUE;
top:0; bottom:0; }

where margin-top = margin-top + OFFSET
and margin-bottom = margin-bottom – OFFSET

Location This pattern works only on absolute elements.

Limitations Internet Explorer 6 cannot middle-align absolute elements. Version 7 can
middle-align stretched absolute elements, but not sized absolute elements.

Example This example is the same as the middle-aligned example, except it is offset by
60 pixels. The first two divisions are sized absolute elements. I offset them from
the middle by setting top to an offset of 60 pixels and bottom to the inverse offset
of –60 pixels. The last two divisions are stretched absolute elements. I vertically
centered them by assigning them to a margin-top and margin-bottom of 90 pixels.
I then offset them from the middle by adding 60 pixels to margin-top to create a
value of 150px, and subtracting 60 pixels from margin-bottom to create a value
of 30px.

Related to Center Offset, Top Aligned, Bottom Aligned; Static, Absolute (Chapter 7); Sized,
Shrinkwrapped, Stretched (Chapter 5)

See also www.cssdesignpatterns.com/middle-offset

CHAPTER 9 ■ POSIT IONING: ADVANCED 197

P
O

S
IT

IO
N

IN
G

:A
D

VA
N

C
E

D

http://freepdf-books.com

http://freepdf-books.com

Styling Text

This chapter is the first of three chapters containing design patterns that style text. The next
chapter discusses how to put space around text. Chapter 12 discusses how to align text.
Strictly speaking, this is the only chapter that actually styles text. The following two chapters
style inline elements, which can contain text or be replaced by images, objects, controls,
movies, and so on.

This chapter contains the following design patterns:

• Font shows how to style text using fonts.

• Highlight shows how to highlight text using color and tiled background images.

• Text Decoration shows how to create custom styles for underlines, overlines, and
line-throughs.

• Text Shadow shows how to automatically generate shadows behind text in Internet
Explorer 6 and Safari.

• Text Replacement shows how to replace text with an image. The text is readable by
screen readers and degrades nicely when the image is unavailable. This is an essential
tool for making sites beautiful and accessible.

• Invisible Text shows how to hide text without adding markup. It is not as useful as Text
Replacement, but requires no additional markup.

• Screenreader-only shows how to make text readable by screen readers while com-
pletely hiding it from sighted users. This is an essential tool for making sites accessible
for nonsighted users, while keeping them uncluttered for sighted users.

199

C H A P T E R 1 0

http://freepdf-books.com

Font

HTML

<h1>Font</h1>

<p><code>font-family:</code>sans serif
serif monospace</p>

<p><code>font-size:</code>small
mediumlarge</p>

<p><code>color:</code>black
gold</p>
<p><code>font-style:</code>normal
italic</p>
<p><code>font-weight:</code>normal
bold</p>
<p><code>font-variant:</code>normal
smallcaps</p>
<p><code>text-transform:</code>none
lowercaseuppercase
capitalize</p>

CSS

*.family1 { font-family:sans-serif; } *.family2 { font-family:serif; }
*.family3 { font-family:monospace; }
*.size1 { font-size:small; } *.size2 { font-size:medium; }
*.size3 { font-size:large; }
*.style1 { font-style:normal; } *.style2 { font-style:italic; }
*.weight1 { font-weight:normal; } *.weight2 { font-weight:bold; }
*.variant1 { font-variant:normal; } *.variant2 { font-variant:small-caps; }
*.color1 { color:black; } *.color2 { color:gold; }
*.trans1 { text-transform:none; } *.trans2 { text-transform:lowercase; }
*.trans3 { text-transform:uppercase; } *.trans4 { text-transform:capitalize; }

CHAPTER 10 ■ STYLING TEXT200

S
T
Y

LI
N

G
T
E

X
T

http://freepdf-books.com

Font

Problem You want to style text using a font and various font attributes.

Solution What we call a “font” is actually a set of fonts designed to work together to create
normal, bold, italic, and small-cap effects. CSS calls this a “font family.” When
you set font properties, the browser and the operating system choose a font from
the font family that most closely matches your request. If your requested font is
unavailable, such as a small-cap serif font, the operating system chooses the
closest font and simulates the requested font.

A font has two other important attributes: color and case. A font can be rendered
in any color, but some fonts cannot render certain cases. For example, some
fonts have only uppercase characters, and most fonts do not have small-cap
characters, which are small uppercase characters.

CSS has seven properties that style the font in which text is rendered.

- You can use font-family to direct the browser to select a font from a comma-
delimited list of fonts. If a browser cannot find your first choice, it attempts to
find your second choice, and so forth. The last font in the list should be one of
the standard font-name constants: sans-serif, serif, or monospace. You should
place font names in quotes when it contains spaces.

- You can use font-size to size a font. You can use ems or a percentage when you
want a size relative to the font size of an element’s parent. You can use one of the
built-in constants such as xx-small, x-small, small, medium, large, x-large, or
xx-large. You can use pixels when you want a specific size, but you cannot count
on this size in your layouts because a browser increases or decreases font sizes
when zooming in or out for a user. Also be aware that Internet Explorer 6 cannot
enlarge fixed-size fonts when zooming in, which causes accessibility problems.

- You can use color to set the color of the font, which should contrast with the
background-color; otherwise, text will be hard to read or invisible. You can use
font-style:italic to make the text italic. You can use font-weight:bold to make
the text bold. You can use text-transform to change the text’s case to lowercase,
uppercase, or capitalize. You can use font-variant:smallcaps to render the text
in small caps. You can simulate small caps by shrinking the font size to 0.8em and
using text-transform:uppercase.

Pattern SELECTOR { font-family:FONT,FONT,etc;
color:COLOR;
font-size:+VALUE;
font-style:NORMAL_ITALIC;
font-weight:NORMAL_BOLD;
font-variant:NORMAL_SMALLCAPS;
font-transform:LOWERCASE_UPPERCASE_CAPITALIZE; }

Location This pattern applies to any type of element.

Tip Since font-size is inherited, you can assign font-size:small to <body> and use
percents or ems to scale the font-size as needed.

Related to Inline Decoration (Chapter 11); Vertical-aligned Content, Subscript and
Superscript, Nested Alignment (Chapter 12); Dropcap design patterns
(Chapter 18)

See also www.cssdesignpatterns.com/font

CHAPTER 10 ■ STYLING TEXT 201

S
T
Y

LIN
G

T
E

X
T

http://freepdf-books.com

Highlight

HTML

<p>You can insert a
highlight

in any inline context.
Highlights can span multiple

lines. A highlight is a
foreground color and a

background color

applied to an inline element.
Padding

around a highlight can improve its visual appeal. You can increase the
line height

to make room for extra padding.
</p>

CSS

p { margin-top:20px; letter-spacing:0.5px; line-height:1.9em; }

*.highlight { color:white; background-color:black;

padding-left:0.25em; padding-right:0.25em;

padding-top:0.05em; padding-bottom:0.13em;

background-image:none; }

*.black-on-gold { color:black; background-color:gold; }
*.white-on-firebrick { color:white; background-color:firebrick; }
*.cyan-on-royalblue { color:lightcyan; background-color:royalblue; }
*.palegreen-on-darkgreen { color:palegreen; background-color:darkgreen; }
*.textured { color:black; background-color:white;
background-image:url("paper.jpg"); }

CHAPTER 10 ■ STYLING TEXT202

S
T
Y

LI
N

G
T
E

X
T

http://freepdf-books.com

Highlight

Problem You want to highlight text with a background color and a forecolor. You
optionally want to highlight text with a background image.

Solution A highlight is colored text superimposed on a contrasting background color or
tiled image. To create a highlight, apply the following styles:

- Use color to set the foreground color of the text.

- Use background-color to set the background color of the text.

- Use padding-left:+VALUE to set the padding distance on the left side.

- Use padding-right:+VALUE to set the padding distance on the right side.

- Use padding-top:+VALUE to set the padding distance on the top.

- Use padding-bottom:+VALUE to set the padding distance on the bottom.

- Use background-image to use a tiled image as the highlight. This can be omitted
or set to none if you do not want to use a background image.

- Use background-position to set the location of the highlight. This can be
omitted if the default value of left top is what you want.

- Use background-repeat:repeat to tile the image. This can be omitted because it
is the default value.

Pattern INLINE-SELECTOR { color:COLOR; background-color:COLOR;
padding-left:+VALUE; padding-right:+VALUE;
padding-top:+VALUE; padding-bottom:+VALUE;
background-image:url("FILE.EXT"); }

BLOCK-SELECTOR { line-height:+VALUE; }

Location This pattern applies to any type of element.

Tips You can use em measurements to scale the padding to match the size of the font.
I find that 0.25em on the left and right, 0.05em on the top, and 0.13em on the
bottom creates a well-proportioned box around text of all sizes.

A browser does not expand the height of a line to fit the vertical padding of its
content. Thus, vertical padding overlaps content in neighboring lines unless you
increase the height of a line using line-height.

Use contrasting colors for color and background-color to ensure the text is
readable. When using background images, be sure to assign contrasting
background and foreground colors in case the browser cannot load the
background image.

Example In the example, I named classes descriptively to make it easier to match the code
to the screenshot. In a real document, I would name classes functionally because
it makes it easier to restyle the document later. For example, the class “highlight
white-on-firebrick” is better named “highlight-alert.” Functional classes enhance
the meaning of a document and do not require changes to the HTML markup
when you change style rules.

Related to Background (Chapter 6)

See also www.cssdesignpatterns.com/highlight

CHAPTER 10 ■ STYLING TEXT 203

S
T
Y

LIN
G

T
E

X
T

http://freepdf-books.com

Text Decoration

HTML

<h1>Text Decoration</h1>

<p>
<code>text-decoration:
underline overline
line-through</code>

<code>border</code>:
Under 4 Under 5
Under 6 Over 7
Over 8 Over 9

<code>background</code>:
Under 10 Under 11
Under 12 Over 13
Over 14 Thru 15

</p>

CSS

*.t1 { text-decoration:underline; } *.t2 { text-decoration:overline; }
*.t3 { text-decoration:line-through; }

*.t4 { border-bottom:1px solid black; } *.t5 { border-bottom:1px dotted black; }
*.t6 { border-bottom:2px dashed gray; } *.t7 { border-top:3px double red; }
*.t8 { border-top:4px groove blue; } *.t9 { border-top:6px ridge green; }

*.t10 { background:repeat-x left bottom url("tight-dot.gif"); padding-bottom:0px; }
*.t11 { background:repeat-x left bottom url("dotted.gif"); padding-bottom:0px; }
*.t12 { background:repeat-x left bottom url("wavy-green.gif"); padding-bottom:2px; }
*.t13 { background:repeat-x left top url("diamond-blue.gif"); padding-top:3px; }
*.t14 { background:repeat-x left top url("gradient3.gif"); padding-top:2px; }
*.t15 { background:repeat-x left center url("wavy-red3.gif"); padding:5px; }

CHAPTER 10 ■ STYLING TEXT204

S
T
Y

LI
N

G
T
E

X
T

http://freepdf-books.com

Text Decoration

Problem You want to use a custom style for underlines, overlines, and line-throughs.

Solution You can use text-decoration to put a line under, over, or through text. The line’s
color is the text’s color, and the browser determines its thickness.

You can also use the border property to create an underline or an overline.

- Use border to control the thickness, style, and color of the line.

You can also use the background-image property to create an unlimited variety of
underlines, overlines, and line-throughs. By tiling images, you can create any
pattern in any thickness in multiple colors.

- Use background-image to specify an image for the text decoration.

- Use background-position to set the location of the text decoration.

- Use background-repeat:repeat-x to tile the image horizontally.

- Use padding-top or padding-bottom to insert vertical space between the text
decoration and the text.

Patterns Text Decoration
INLINE-SELECTOR { text-decoration:underline; }
INLINE-SELECTOR { text-decoration:overline; }
INLINE-SELECTOR { text-decoration:line-through; }

Border Underline
INLINE-SELECTOR { border-bottom:WIDTH STYLE COLOR; }

Border Overline
INLINE-SELECTOR { border-top:WIDTH STYLE COLOR; }

Background Underline
INLINE-SELECTOR { background-repeat:repeat-x;
background-position:left bottom;
background-image:url("FILE.EXT");
padding-bottom:+VALUE; }

Background Overline
INLINE-SELECTOR { background-repeat:repeat-x;
background-position:left top;
background-image:url("FILE.EXT");
padding-top:+VALUE; }

Background Line-through
INLINE-SELECTOR { background-repeat:repeat-x;
background-position:left center;
background-image:url("FILE.EXT");
padding-bottom:+VALUE; }

Location This pattern applies to inline elements.

Tip Transparent GIFs as background images integrate well with different background
colors.

Related to Border, Background (Chapter 6)

See also www.cssdesignpatterns.com/text-decoration

CHAPTER 10 ■ STYLING TEXT 205

S
T
Y

LIN
G

T
E

X
T

http://freepdf-books.com

Text Shadow

HTML

<h1 class="shadow">Text Shadow</h1>

<p class="shadow">Text Shadow applies to all text in a block.
This design pattern does not apply to inline elements in Internet Explorer 6.
This design pattern does not work in Opera 9, Firefox 2,
and other Mozilla Browsers</p>

CSS All Browsers

*.shadow { text-shadow:#999999 5px 5px 5px; }

CSS Internet Explorer 6

*.shadow { filter:shadow(color=#999999, direction=135, strength=4); zoom:1; }

CHAPTER 10 ■ STYLING TEXT206

S
T
Y

LI
N

G
T
E

X
T

http://freepdf-books.com

Text Shadow

Problem You want to place a shadow behind text.

Solution The Safari browser supports the CSS property text-shadow. Internet Explorer 6
provides a proprietary property called filter:shadow, which will cause your CSS
not to validate. You can use these two properties to create shadows in these
browsers. Other browsers do not support text shadows.

In Safari, use text-shadow to add a shadow to text.

- COLOR is the color of the shadow.

- X-OFFSET is the horizontal offset of the shadow.

- Y-OFFSET is the vertical offset of the shadow.

- DIFFUSION is the amount of blur. Greater values make greater blur.

In Internet Explorer 6, use filter:shadow to add a shadow to text.

- COLOR is the color of the shadow.

- DIRECTION is the direction of the shadow: 0 = top, 45 = top right, 90 = right,
135 = bottom right, 180 = bottom, 225 = bottom left, 270 = left, 315 = top left.

- SIZE is the size of the shadow in pixels.

- Use zoom:1 to trigger the shadow effect in Internet Explorer. Internet Explorer 6
requires a block to have layout before it will apply filter effects to it. zoom:1
triggers layout. Layout is a proprietary feature specific to Internet Explorer.
Layout is discussed in the Atomic design pattern in Chapter 7.

Pattern SELECTOR { text-shadow:COLOR X-OFFSET Y-OFFSET DIFFUSION;
filter:shadow(color=COLOR,

direction=DIRECTION,
strength=SIZE);

zoom:1; }

Location This pattern applies to block elements. Specifically, text-shadow applies to all
elements, and filter:shadow applies only to block elements.

Limitations This pattern does not work in Firefox 2 or Opera 9. text-shadow works in
Safari 1.2.4. filter:shadow works in Internet Explorer 6.

I include this design pattern because it does not hurt to use text shadows when a
browser does not support it. The shadow effect is nonessential.

Avoid using shadows to create special effects (such as an eclipse) where color
and background-color are the same, because this makes for invisible text in
browsers that do not support shadows.

If you assign a border to the shadowed block element, Internet Explorer 6 will
put a shadow around the border and the text inside it.

Tips A shadow effect around text makes the text bolder and stand out from its
background. Shadows work best for headings and for text overlaying background
images. A subtle shadow enhances readability and a strong shadow makes text
harder to read.

Related to Font

See also www.cssdesignpatterns.com/text-shadow

CHAPTER 10 ■ STYLING TEXT 207

S
T
Y

LIN
G

T
E

X
T

http://freepdf-books.com

Text Replacement

Example shown with text replaced by an image

Example shown when browser could not display the image

HTML

<h1>Text Replacement</h1>

<h2 id="h2">Heading 2</h2>

CSS

#h2 { position:relative; width:250px; height:76px; padding:0; overflow:hidden; }

#h2 span { position:absolute; width:250px; height:76px; left:0; top:0; margin:0;
background-image:url("heading2.jpg"); background-repeat:no-repeat; }

CHAPTER 10 ■ STYLING TEXT208

S
T
Y

LI
N

G
T
E

X
T

http://freepdf-books.com

Text Replacement

Problem You want to replace text with an image, and you want the text to be read by a
screen reader. You also want the text to be visible when the image is unavailable.

Solution Insert an empty into the block element that contains the text you want to
replace with an image. Assign the image as the span’s background image.
Relatively position the block and absolutely position the span. This displays the
span in front of the block. Size both the block and the span to fit the image. Since
the block and the span are the same size and the span is in front of the block, the
span’s background image covers the text in the block. If the image is unavailable,
the browser renders the span’s background as transparent, and this lets the text
show through.

Assign a unique ID to the block containing the text you want to replace and style
it as follows:

- Use position:relative; to position the block—so the background image of the
 can be positioned on top of the text.

- Use width and height to size the block to fit the image.

- Use padding:0; to remove padding that could allow text to show through.

- Use overflow:hidden; to ensure long text does not show through, but be aware
that if the image is not displayed, long text could be truncated.

Insert an empty into the block and style it as follows:

- Use position:absolute;, left:0;, and top:0; to position the image over the
text in the block.

- Use width and height to size the to fit the image.

- Use margin:0; to remove margins that could allow text to show through.

- Use background-image:url("FILE.EXT") to load the image.

- Use background-repeat:no-repeat to ensure the image does not repeat.

Pattern HTML
<BLOCK id="UNIQUE-ID"> TEXT </BLOCK>

CSS
#UNIQUE-ID { position:relative; padding:0; overflow:hidden;
width:IMAGE_WIDTH;
height:IMAGE_HEIGHT; }

#UNIQUE-ID span { position:absolute; left:0; top:0; margin:0;
width:IMAGE_WIDTH;
height:IMAGE_HEIGHT;
background-image:url("FILE.EXT");
background-repeat:no-repeat; }

Location This pattern applies to any block, float, absolute, or fixed element.

Tip Text replacement works well with links and buttons that use rollover effects.

Related to Invisible Text, Screenreader-only; Background (Chapter 6); Marginal Graphic
Dropcap (Chapter 18)

See also www.cssdesignpatterns.com/text-replacement/

CHAPTER 10 ■ STYLING TEXT 209

S
T
Y

LIN
G

T
E

X
T

http://freepdf-books.com

Invisible Text

HTML

<h1>Invisible Text</h1>

<p class="invisible-text">Invisible Text</p>

CSS

*.invisible-text {
text-indent:-9999px;
text-align:left;
width:75px;
height:35px;
background-image:url("go.jpg");
background-repeat:no-repeat;
background-position:center center; }

CHAPTER 10 ■ STYLING TEXT210

S
T
Y

LI
N

G
T
E

X
T

http://freepdf-books.com

Invisible Text

Problem You want to hide the text in a terminal block element without hiding the element
itself. You do not want to insert any extra markup into the document. You want
the text to be read by a screen reader. You want to set the height and width so you
can display a background image instead of the text.

Solution You can use text-indent:-9999px to move the text off the screen so that it will
not be visible.

- You can use text-align:left to ensure the block does not inherit another value
for text-align. This is important because text-indent works properly only when
text is aligned to the left.

- You can use width and height to size the element to display the background
image.

- You can use text-align to move the text to the left or right side—further out of
the way of a background image.

Pattern TERMINAL_BLOCK_SELECTOR {
text-indent:-9999px;
text-align:left;
width:+VALUE;
height:+VALUE;
background-image:url("FILE.EXT");
background-repeat:VALUE;
background-position:H V; }

Location This pattern applies to any terminal block element.

Limitations This design pattern only works on terminal block elements, like the paragraph. It
does not work on inline elements. If the browser cannot display the background
image, the user does not see anything.

Tip If you can insert a tiny bit of extra markup, the Text Replacement design pattern
is much better.

Related to Text Replacement; Text Indent, Hanging Indent (Chapter 12)

See also www.cssdesignpatterns.com/invisible-text

CHAPTER 10 ■ STYLING TEXT 211

S
T
Y

LIN
G

T
E

X
T

http://freepdf-books.com

Screenreader-only

HTML

<h1>Screenreader-only</h1>

<p>Text before screenreader-only text.</p>

<p class="screenreader-only">

This text is hidden to sighted users, but is read by screen readers.</p>

You can make any type of element a screenreader-only element.

<p>Text after screenreader-only text.</p>

CSS

*.screenreader-only {
position:absolute;
left:-9999px;
top:-9999px;
width:1px;
height:1px;
overflow:hidden; }

CHAPTER 10 ■ STYLING TEXT212

S
T
Y

LI
N

G
T
E

X
T

http://freepdf-books.com

Screenreader-only

Problem You want text to be read by a screenreader program, and you do not want
sighted users to see the text. This design pattern is useful when you want to
provide instructions to nonsighted users that you do not want to give to
sighted users.

Solution Remove the element from the flow. Shrink the element to one pixel. Hide the
text when it overflows its one pixel size. Move the element offscreen.

- You can use position:absolute to remove the element from the flow.

- You can use left:-9999px to move the element off the left side of the
viewport.

- You can use top:-9999px to move the element above the top of the viewport.

- You can use width:1px to shrink the element to one pixel wide.

- You can use height:1px to shrink the element to one pixel tall.

- You can use overflow:hidden to hide any text that overflows the one pixel
height and width.

Pattern SELECTOR {
position:absolute;
left:-9999px;
top:-9999px;
width:1px;
height:1px;
overflow:hidden; }

Location This pattern applies to any element.

Tips Occasionally, you may want to give instructions to nonsighted users that you
do not want to give to sighted users. For example, when filling out a form, the
layout, graphics, and colors may make something obvious to a sighted user
that is unknowable to a nonsighted user. You can use this design pattern to
create instructions for nonsighted users without cluttering the screen seen by
sighted users. Such instructions should be brief like headings, captions, and
tooltips.

You may want to include a screenreader-only link at the beginning of the
document that skips to the main content, such as “skip to main content.”
This keeps the visual interface uncluttered and makes the document easier
to navigate for nonsighted users. On the other hand, visually impaired users,
mobile users, and others benefit from seeing such a link—so you may not
want to hide it.

Disadvantages Screenreader-only text will be visible in non-CSS browsers and browsers that
do not support absolute positioning.

Related to Text Replacement, Invisible Text; Absolute (Chapter 7); Left-aligned Sized
Absolute Element (Chapter 9); Tabs, Flyout (Chapter 17)

See also www.cssdesignpatterns.com/screenreader-only

CHAPTER 10 ■ STYLING TEXT 213

S
T
Y

LIN
G

T
E

X
T

http://freepdf-books.com

http://freepdf-books.com

Spacing Content

This chapter discusses design patterns that put horizontal and vertical space around inline
elements, which may contain text, images, objects, controls, and so on. This chapter contains
the following design patterns:

• Spacing shows how to space text and content. It simply groups together the many
properties built into CSS that put space around and between blocks, text, and content.

• Blocked shows how to render an inline element as a block element. This is a very
important design pattern that is often combined with other patterns.

• Nowrap shows how to prevent the browser from wrapping text across lines.

• Preserved shows how to render whitespace in a document instead of collapsing it.

• Code shows how to mark up computer code, render it inline, display it as a block,
preserve whitespace, and prevent it from being wrapped across lines.

• Padded Content shows how to put space around inline content to emphasize it.

• Inline Spacer shows how to insert a horizontal spacer into a line to put a precise
amount of distance between content.

• Inline Decoration shows how to insert a decoration into a line. A decoration is style—
not content. It lets you insert a colored background, a textured background, or a
background image into the flow. You can put borders around it. You can use it to push
content apart, to overlap prior content, and to underlap following content.

• Linebreak shows how to insert four different types of linebreaks into your document
that can add extra space between lines or shrink the distance between lines.

• Inline Horizontal Rule shows how to insert a horizontal rule using an inline element.
You can style the horizontal rule with images, borders, margins, and so on. This allows
you to put extra space between lines, to overlap prior lines, and to underlap following
lines. An inline horizontal rule is particularly useful because you can use an inline ele-
ment anywhere. HTML’s horizontal rule is a block element and has limited styling
options.

215

C H A P T E R 1 1

http://freepdf-books.com

Spacing

HTML

<h1>Spacing</h1>

<p>This paragraph is normal. It has no indentation, margins, padding,
letter spacing, word spacing, text justification, or line spacing.</p>

<p class="elegant">This paragraph has many forms of spacing. The first line of text
is indented. Margins indent the paragraph on all sides. Padding puts space
between the paragraph and its borders. Letters have 1 extra pixel of space between
them. Words have 2 extra pixels of space between them. Text is justified, which
adds extra space between words to align text to the left and right edges. And
lines have extra spacing between them.</p>

CSS

*.elegant { margin-left:40px; margin-right:80px;
margin-top:30px; margin-bottom:30px;
padding-top:25px; padding-bottom:25px;
letter-spacing:1px;
word-spacing:2px;
line-height:1.7em;
text-indent:40px;
text-align:justify;
border-top:1px solid black; border-bottom:1px solid black; }

CHAPTER 11 ■ SPACING CONTENT216

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Spacing

Problem You want to control the spacing around content.

Solution HTML
Tag a terminal block element with a class or ID of your choosing.

CSS
Apply styles to your chosen class or ID as follows:

- Use margin-left to indent the left side of any element.
- Use margin-right to indent the right side of any element.
- Use margin-top to indent the top of a block element.
- Use margin-bottom to indent the bottom of a block element.
- Use padding-left to pad the left side of any element.
- Use padding-right to pad the right side of any element.
- Use padding-top to pad the top of any element.
- Use padding-bottom to pad the bottom of any element.
- Use letter-spacing to add space between letters.
- Use word-spacing to add space between words.
- Use line-height to increase the spacing between lines.
- Use text-indent to indent the first line of a terminal block element.
- Use text-align:justify to justify text, which adds space between words.

Pattern HTML
<TERMINAL-BLOCK class="elegant">text</TERMINAL-BLOCK>

CSS
*.elegant {
margin-left:±VALUE; margin-right:±VALUE;
margin-top:±VALUE; margin-bottom:±VALUE;
padding-left:±VALUE; padding-right:±VALUE;
padding-top:±VALUE; padding-bottom:±VALUE;
letter-spacing:±VALUE;
word-spacing:±VALUE;
line-height:±VALUE;
text-indent:±VALUE;
text-align:justify; }

Location This pattern works on all elements, with the exception that margin-top,
margin-bottom, text-indent, and text-align work only on block elements.
It is most common to apply spacing to terminal block elements.

Limitations text-indent works only on terminal block elements. It does not work on inline
elements. You can assign text-indent to structural block elements, and it will be
inherited by descendant terminal block elements.

Tips You can use negative values in margin, letter-spacing, and word-spacing to
shrink spacing. You can assign a value smaller than 1em to line-height to shrink
spacing between lines. You can assign an em measurement to text-indent to
indent by an approximate number of letters. Since a letter is typically twice the
height of its width, 2em equals four letters.

Related to Code, Inline Spacer; Invisible Text (Chapter 10); Text Indent, Hanging Indent
(Chapter 12); First-letter Dropcap, Hanging Dropcap (Chapter 18); Hanging
Alert (Chapter 20)

See also www.cssdesignpatterns.com/spacing

CHAPTER 11 ■ SPACING CONTENT 217

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Blocked

HTML

<h1>Blocked</h1>

<p>The Blocked design pattern displays an inline element as a block element
that can be styled in every way as a block element
This is an inline element displayed as a block.
Its first line is indented and it has collapsing vertical margins.</p>

<address>
Name
Street

City,
State
Zip
Country

email

</address>

CSS

*.blocked { display:block; text-indent:2em; margin-top:5px; }

address { border:4px groove green; padding:10px; }
address *.name { display:block; }
address *.address { display:block; }
address *.area { display:block; }
address *.emails { display:block; }

CHAPTER 11 ■ SPACING CONTENT218

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Blocked

Problem You want to style text as a block. For example, you want to move an inline
element to the next line, give it vertical margins, and indent its first line. Or, you
want to use an element in your markup, such as <code>, <samp>, or <address>,
that can only contain inline elements, and you want to display some or all of
these inline elements as blocks.

Solution You can display any inline element as a block. This moves the element to a new
line and makes it possible for block properties to work properly. This means
text-indent, text-align, margin, border, padding, width, and height work like
they do on block elements. If an inline element were not displayed as a block,
these properties would have no effect, or they would work differently. This
design pattern is the converse of Inlined, which displays block elements as
inline elements.

HTML
Wrap the text that you want to be indented in a span or other inline element and
assign it to a class or ID of your choosing.

CSS
Apply styles to your chosen class or ID as follows:

- Use display:block to display the inline element as a block.

- Optionally apply text-indent, text-align, margin, border, padding, width, and
height to format the inline element as if it were a block element.

Pattern HTML
<INLINE class="indent"></INLINE>

CSS
*.indent { display:block;
text-indent:±VALUE;
text-align: LEFT_CENTER_RIGHT;
margin: ±VALUE;
border: WIDTH STYLE COLOR;
padding: +VALUE;
width: +VALUE;
height: +VALUE; }

Location This pattern works anywhere you can use an inline element.

Tip In spite of its simplicity, this is one of the most powerful design patterns. It allows
you to combine the semantic meaning of inline elements with the styling
features of block elements. In other words, you can feel free to tag elements
based on their semantic meaning without sacrificing style.

Related to Code, Padded Content, Linebreak, Inline Horizontal Rule; Block Box, Display
(Chapter 4); Inlined (Chapter 13); Image, Image Map, Content Over Image
(Chapter 14); Tabled, Rowed, and Celled (Chapter 15); Outside-In Box, Opposing
Floats, Tab Menu, Layout Links (Chapter 17); Center Callout, Block Quote, Inline
Block Quote (Chapter 19)

See also www.cssdesignpatterns.com/blocked

CHAPTER 11 ■ SPACING CONTENT 219

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Nowrap

HTML

<h1>Nowrap</h1>
<div>
<p>You can keep a phrase together using <code>nowrap</code>, such as
DO NOT BREAK THIS ACROSS TWO LINES!</p>

<p>You can use nowrap to keep some browsers from breaking a hyphenated word
across two lines, such as the following word:
super-cali-fragilistic-expi-ali-docious!</p>

<p>You can keep together a small code snippet containing a space, such as
<code class="nowrap">
</code>.</p>

<p>Notice how it breaks across two lines when <code>nowrap</code>
is not applied to it: <code>
</code>.</p>

<p class="nowrap">Be aware that nowrapped text can overflow its container. This
does not affect the width of other elements, but it may cause a browser to
display a horizontal scrollbar requiring users to scroll to see the text.</p>

</div>

CSS

*.nowrap { white-space:nowrap; background-color:gold; }

CHAPTER 11 ■ SPACING CONTENT220

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Nowrap

Problem You want to prevent the browser from wrapping text to a new line. For
example, you want to keep together a phrase, a hyphenated word, or a
small code snippet containing a whitespace, such as
.

Solution The rule white-space:nowrap prevents text from wrapping. You can apply
white-space:nowrap to any inline element that you do not want wrapped.

Pattern SELECTOR { white-space:nowrap; }

Location This pattern applies to any inline element. If you assign white-space:nowrap;
to a block element, it will be inherited by its child inline elements.

Disadvantages When the browser viewport is smaller than the nonwrapped text, the browser
viewport overflows, and the browser creates a horizontal scrollbar so the user
can scroll to see all the unwrapped text. Even though it looks like the viewport
has been resized, it has not. It is still the same width and height. All static,
absolute, fixed, and floated elements are aligned and positioned as if the
unwrapped text had never overflowed. Since users do not like to scroll
horizontally, it is best to keep nowrapped text as short as possible.

Example The example prevents the text in four elements from wrapping. The first
unwrapped element contains a phrase that I wanted to stay in one line. The
second unwrapped element contains a hyphenated word that I did not want
broken across two lines. Most major browsers do not break at hyphens,
but Opera 9 does. The third unwrapped element is a code fragment that
contains whitespace that I did not want to break across two lines. The
fourth unwrapped element contains a large amount of unwrapped text
that overflows the browser’s viewport. This causes the browser to display
horizontal scrollbars so the user can scroll to read the unwrapped text.

Related to Preserved, Code; Overflow (Chapter 6); Flyout Menu, Layout Links
(Chapter 17); Inline Alert (Chapter 20)

See also www.cssdesignpatterns.com/nowrap

CHAPTER 11 ■ SPACING CONTENT 221

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Preserved

HTML

<h1>Preserved</h1>

<pre>You can preserve whitespace using <code><pre></code>.</pre>

<p>You can use <code>white-space:pre</code> to insert linebreaks and spaces.

Preserved moves this sentence to a new line and indents it five spaces.

 A better approach is to insert
<code>
</code> and <code>&nbsp;</code></p>

<p class="preserved">You can preserve
whitespace in blocks.</p>

<p>You can preserve

whitespace in inline elements.</p>

<p class="preserved">You can turn <code>white-space:pre</code>
on and off

at any time.</p>

CSS

*.preserved { white-space:pre; }

*.not-preserved { white-space:normal; }

CHAPTER 11 ■ SPACING CONTENT222

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Preserved

Problem You want to selectively preserve whitespace around text and objects that
you insert into the HTML document. For example, you want to preserve
whitespace in code. You also may want to insert specific amounts of
whitespace into your document without having to track the number of

elements and entities you need to insert to achieve the desired effect.

Solution When whitespace is an intrinsic part of the content, you can mark up the
content with <pre> to preserve the whitespace. This identifies whitespace as
part of the content and preserves it. <pre> also works in non-CSS browsers.

When whitespace is decorative or when you cannot use <pre>, you can use
white-space:pre to prevent whitespace from being collapsed.

You can assign white-space:pre to a span containing nothing but whitespace
to direct the browser to render that whitespace—although this is probably not
a good idea, as explained under “Disadvantages.”

Pattern HTML
<pre> CONTENT </pre>

CSS
SELECTOR { white-space:pre; }
SELECTOR { white-space:normal; }

Location white-space:pre applies equally well to any type of element.

Advantages white-space:pre has several advantages over <pre>. It can preserve
whitespace in existing markup that you cannot modify to include <pre>. It
allows preserved whitespace to intermingle with images, objects, and any
other type of element. (The HTML specification prevents <pre> from
containing , <object>, <sub>, <sup>, <big>, and <small>.) It does not
automatically style the content with a monospace font like <pre>. It can
preserve whitespace in an inline element. (Since <pre> is a block element,
<pre> cannot be embedded in paragraphs, headings, and other terminal
block elements.) Lastly, it can turn whitespace on and off selectively.

Disadvantages Since it is unusual for whitespace to be preserved in HTML markup, it is easy
to accidentally change the layout of the document just by rearranging a little
whitespace in a preserved element.

Most HTML authoring software and utilities automatically rearrange
whitespace to make code more readable or to remove whitespace to reduce
document size. These programs break preserved whitespace in elements
styled with white-space:pre, but most retain whitespace in <pre>.

Tip You can use white-space:normal to override a rule that applies
white-space:pre to an element. white-space:normal is the default.

Related to Nowrap, Code; Inline Elements (Chapter 2)

See also www.cssdesignpatterns.com/preserved

CHAPTER 11 ■ SPACING CONTENT 223

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Code

HTML

<h1>Code</h1>

<p>The following code is blocked and preserved:

<code class="blocked preserved">

*.blocked { display:block; }
*.preserved { white-space:pre; }
*.code { font-family:monospace; }

</code>
</p>

<p>The following inline code uses the Nowrap design pattern:
<code class="nowrap preserved">a = x(y² + z³) + 1</code>.
This prevents it from being wrapped across lines.</p>

CSS

*.blocked { display:block; }

*.preserved { white-space:pre; }

*.nowrap { white-space:nowrap; }

CHAPTER 11 ■ SPACING CONTENT224

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Code

Problem You want to identify an element as containing code, and you want to control
when it preserves whitespace, when it breaks across lines, and when it is
displayed as a block.

Solution You can use <code> to identify text as computer code. The meaning of this
element is well understood by search engines and document processors. By
default, <code> is displayed inline, does not preserve whitespace, and can be
wrapped across lines. When you want to display a block of code, add the Blocked
design pattern. When you want to preserve whitespace in <code>, add the
Preserved design pattern. When you do not want code to wrap across lines, add
the Nowrap design pattern. Note that you cannot use Preserved and Nowrap at
the same time.

HTML
Use the <code> element to tag text as code.
Assign blocked, preserved, or nowrap classes to <code>, or assign classes or IDs
with names of your choosing.

CSS
Apply styles to your chosen class or ID as follows:

- Use white-space:preserve to preserve whitespace in <code>.

- Use white-space:nowrap to prevent text in the <code> from wrapping.

- Use display:block to display <code> as a block.

Pattern HTML
<code class="BLOCKED PRESERVED NOWRAP"> CODE </code>

CSS
*.blocked { display:block; }
*.preserved { white-space:pre; }
*.nowrap { white-space:nowrap; }

Location This pattern works everywhere inline elements can be used.

Variations HTML provides three additional inline elements that are similar to <code>. They
are <var>, <samp>, and <kbd>. <var> identifies its contents as a computer variable.
<samp> identifies its contents as sample output from a computer program. <kbd>
identifies its contents as keypresses that a user should type on a keyboard to
accomplish a specific task. This design pattern can easily be applied to these
elements to fine-tune how they are rendered.

Related to Blocked, Nowrap, Preserved; Inline Elements (Chapter 2)

See also www.cssdesignpatterns.com/code

CHAPTER 11 ■ SPACING CONTENT 225

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Padded Content

HTML

<h1>Padded Content</h1>

<p>Padding sets apart text to emphasize it.
Left and right padding inserts horizontal space before and after content.
Padded content can be

a letter...→

a word...→

a phrase...→

a paragraph...→ etc.
This multi-line text is padded as an
entire block rather than padded on each line.

</p>

CSS

*.padded-mild { padding-left:1em; padding-right:1em; line-height:1em; }
*.padded-emphasized { padding-left:2em; padding-right:2em; line-height:2em; }
*.padded-strong { padding-left:3em; padding-right:3em; line-height:3em; }
*.padded-extreme { padding-left:4em; padding-right:4em; line-height:4em; }

*.padded-strong-BA { display:block; padding:2em 5em; }

CHAPTER 11 ■ SPACING CONTENT226

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Padded Content

Problem You want to put extra space around content to emphasize it and set it apart.

Solutions Inline Padded Content
You can use padding-left and padding-right to pad the left and right of an
inline element. This pads the beginning and end of the element—not each line
spanned by the element. Padding the top and bottom does not affect the height
of an inline element, but you can use line-height to change the height of each
line spanned by the element. You cannot add space above just the first line and
below just the last line spanned by the element.

Blocked Padded Content
You can use display:block to display an inline element as a block. This lets you
use padding-left and padding-right to indent the left and right sides of all
lines—not just the beginning of the first line and the end of the last. This lets you
use padding-top and padding-bottom to add space above the top of the element
and below the bottom of the element. You can also use line-height to change
the height of each line in the element.

Patterns Inline Padded Content
INLINE-SELECTOR { padding-left:+VALUE;
padding-right:+VALUE;
line-height:+VALUE; }

Blocked Padded Content
INLINE-SELECTOR { display:block;
padding-left:+VALUE;
padding-right:+VALUE;
padding-top:+VALUE;
padding-bottom:+VALUE;
line-height:+VALUE; }

Location This pattern applies to any inline element.

Limitations line-height is used to pad the height of lines because padding-top and
padding-bottom have no effect on the height of a line.

Tips Padding is colored using the background-color or background-image. If you want
transparent space around the element, use margin instead. If you want a different
color or pattern than the background, use border instead.

Related to Inline Spacer

See also www.cssdesignpatterns.com/padded-content

CHAPTER 11 ■ SPACING CONTENT 227

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Inline Spacer

HTML

<h1>Inline Spacer</h1>

<p>Just like you can use <code>
</code> to insert vertical space
into content,
 you can use an inline spacer to insert and control
horizontal space.
 The inline spacer is a marker element
that emphasizes the space in between content.
 You use it when you do not want to
mark up content, but you still want to control the amount of space
in between content.</p>

<p>For example, if your page design requires extra space before sentences,
it is not a good idea to mark up sentences, because that would prevent you from
cutting across sentence boundaries with additional markup.
 Marking up the first word of a sentence would not
be semantically accurate because the extra space separates sentences not words.
 The inline spacer solves this problem
because it does not interfere with other markup.
 It is also semantically correct
because its purpose is to mark up and emphasize space.</p>

CSS

*.space { margin-left:0.5em; }

CHAPTER 11 ■ SPACING CONTENT228

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Inline Spacer

Problem You want to insert a precise amount of horizontal space into inline content.

Solution To create an inline spacer, you can insert a span with a class or ID of your
choosing and set the amount of space using margin-left. A negative value in
margin-left causes neighboring elements to overlap. Because you are styling
space, it is a good idea to put whitespace in between the span’s start and end
tags; although this is not required for this design pattern to work.

Pattern HTML

CSS
*.space { margin-left:±VALUE; }

Location This pattern works anywhere you can use an inline element.

Usage In general, the best way to space content is to embed it within an element and
style the element with margin. This begs the question, Why would you ever need
to use an inline spacer?

Because the inline spacer is an empty element, it can be placed anywhere
without interfering with the nesting of other elements. In those rare cases when
the current markup does not align with where you need to control space, you can
insert an inline spacer without compromising or complicating the nesting. This
is why
 and <hr /> are empty marker elements.

The inline spacer has the same purpose as
 and <hr />. It inserts space
without marking up content. In other words, it marks and emphasizes the
presence of space. It has semantic meaning: it indicates that the following
content is set apart from the previous content—because that is what space
does. The larger the space, the stronger the meaning.
 and <hr /> insert
vertical space, and an inline spacer inserts horizontal space.

If emphasizing or deemphasizing space is the point, it is semantically correct to
mark up space, because marking up content would emphasize the content—not
the space in between.

In the past, spacer GIFs were improperly used for this purpose. Images are
content—not spacing. Screen readers announce the presence of these images,
and the latency involved in downloading them slows the rendering of the
document. The inline spacer has none of these problems.

Variations You can use pixels or a fixed measurement to size the space. You can use a
percentage to scale the size proportional to the width of the containing block.

Tips This design pattern also works with an empty span, , or an XML-
style empty span, . Like
, works in all major browsers,
and validates as valid XHTML, but not as valid HTML.

Related to Inline Decoration, Linebreak; Block Spacer (Chapter 13)

See also www.cssdesignpatterns.com/inline-spacer

CHAPTER 11 ■ SPACING CONTENT 229

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Inline Decoration

HTML

<h1>Inline Decoration</h1>

<div>You can use Inline Decoration to do the following:

Insert colored decoration.
Insert patterned decoration.
Insert imaged decoration.

</div>

CSS

div { font-size:18px; }

*.deco-solid { padding-left:40px;
font-size:0.4em; vertical-align:middle; line-height:24px;
margin-left:3px; margin-right:-15px;
background-color:gold; }

*.deco-groove { padding-left:10px;
font-size:0.4em; vertical-align:middle; line-height:24px;
border-left:20px groove black; border-right:20px ridge black;
margin-left:3px; margin-right:3px;
background-color:lightgray; }

*.deco-spear { padding-left:100px;
font-size:1em; vertical-align:-3px; line-height:24px;
margin-left:3px; margin-right:3px;
background-image:url("spear.jpg"); background-position:top right; }

CHAPTER 11 ■ SPACING CONTENT230

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Inline Decoration

Problem You want to insert a decoration into the content, such as a block of color, a styled
border, or a background image. You want to move the decoration closer or
further away from previous and following content. You do not want to insert an
image because you want pure decoration—not content.

Solution HTML
Insert a span containing nonbreaking space into the content. Assign to it a class
or ID of your choosing.

CSS
Apply styles to your chosen class or ID as follows:

- Use padding-left to set the width of the decoration.

- Use font-size to set the height of the decoration.

- Use vertical-align to move the decoration up or down.

- Use line-height to size the height of the line to fit the decoration.

- Use a positive value in margin-left to move the decoration to the right.

- Use a negative value in margin-left to move the decoration to the left. A large
enough value will cause the decoration to overlap previous content.

- Use a positive value in margin-right to move the following content to the right
and farther away from the decoration.

- Use a negative value in margin-right to move the following content to the left
and closer to the decoration. A large enough value will cause the content to
overlap the decoration.

- Use border to insert a border on the left, right, top, or bottom.

- Use background-color to display a background color in the padding area.

- Use background-image to display an image in the padding area.

- Use background-position to position the background image.

Pattern HTML

CSS
*.decoration { padding-left:+VALUE;
font-size:+VALUE;
vertical-align:±VALUE;
line-height:+VALUE;
margin-left:±VALUE; margin-right:±VALUE;
border-left:+W S C; border-right:+W S C;
background-color:COLOR;
background-image:url("FILE.EXT"); }

Location This pattern works anywhere you can use an inline element.

Trade-offs Unlike the Inline Spacer, the Inline Decoration requires the span to contain a
nonbreaking space and to have a closing tag. Without the closing tag, a browser
renders the background color or image underneath the following text. Without a
nonbreaking space, a browser ignores padding and borders.

Related to Inline Spacer; Hanging Alert, Run-in Alert, Floating Alert, Left Marginal Alert,
Right Marginal Alert (Chapter 20)

See also www.cssdesignpatterns.com/inline-decoration

CHAPTER 11 ■ SPACING CONTENT 231

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Linebreak

HTML

<h1>Linebreak</h1>

<p>You can insert a linebreak anywhere.
↑ One-half linebreak.
↑ Normal linebreak.

<br class="br10px" /> ↑ Linebreak plus 10 pixels.
↑ One-and-a-half linebreak.
↑ Double linebreak.

<br class="br3" /> ↑ Triple linebreak.
↑ Quadruple linebreak.

</p>

CSS

*.lb-half { display:block; margin-top:-0.5em; }
*.lb-single { display:block; margin-top:0; }
*.lb-one-and-a-half { display:block; margin-top:1.5em; }
*.lb-double { display:block; margin-top:2em; }
*.lb-quad { display:block; margin-top:4em; }

*.br10px { line-height:10px; }
*.br3 { line-height:3em; }

CHAPTER 11 ■ SPACING CONTENT232

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Linebreak

Problem You want to insert a linebreak. You also want to add or reduce the amount of
vertical space between the lines.

Solutions Break
You can use HTML’s break element,
, to move content to a new line. The
height of the line following the break is determined by the line’s content.

Double Break
You can move content to a new line and add extra space between the lines by
inserting two
 elements in a row with nothing in between them. You can
use line-height to style the second
 to control the amount of extra space
inserted.

Linebreak
You can move content to a new line and add extra space between lines or even
shrink the space between the lines by inserting an empty and using
display:block to display it as a block. You can use margin-top:+VALUE to insert
additional space between the lines. You can use margin-top:-VALUE to shrink the
space between the lines.

Blocked
You can apply the Blocked design pattern to an existing inline element to move
the element onto a new line.

Patterns Break

Double Break

<br class="br" />
*.br { line-height:+VALUE; }

Linebreak

*.lb { display:block; margin-top:±VALUE; }

Blocked
<ELEMENT class="lb"></ELEMENT>
*.lb { display:block; margin-top:±VALUE; }

Location This pattern can be used in any inline context.

Trade-offs Two
 elements can add extra space between lines, but they cannot reduce
space between lines. A displayed as a block can insert or reduce space
between lines and requires only a single element.

Example In the example, I named classes descriptively to make it easier to match the code
to the screenshot. In a real document, I would name classes functionally because
it makes it easier to restyle the document later.

Related to Inline Horizontal Rule; Block Horizontal Rule, Block Spacer, Block Space
Remover (Chapter 13)

See also www.cssdesignpatterns.com/linebreak

CHAPTER 11 ■ SPACING CONTENT 233

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Inline Horizontal Rule

HTML

<h1>Inline Horizontal Rule</h1>

<p>You can insert an inline horizontal rule anywhere.
↑ Invisible inline horizontal rule — a line-break.
↑ Double-border inline horizontal rule.
↑ Background inline horizontal rule.
↑ Combination Inline horizontal rule.

</p>

CSS

*.hr { display:block; margin:0; }

*.border { padding-top:1px; margin-top:25px; margin-bottom:0;
width:auto; margin-left:0; margin-right:0;
border-top:4px ridge blue; border-bottom:4px groove blue;
background:none; background-color:yellow; }

*.background { padding-top:5px; margin-top:25px; margin-bottom:0;
width:auto; margin-left:76px; margin-right:76px; border:none;
background:repeat-x left center url("diamond-blue.gif");
background-color:transparent; }

*.combo { padding-top:5px; margin-top:25px; margin-bottom:0;
width:400px; margin-left:auto; margin-right:auto;
border-top:4px ridge blue; border-bottom:4px groove blue;
background:repeat-x left center url("diamond-blue.gif");
background-color:white; }

CHAPTER 11 ■ SPACING CONTENT234

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Inline Horizontal Rule

Problem You want to insert a styled linebreak in between inline elements. You cannot use
the horizontal rule because that works only between block elements.

Solution Apply styles to your chosen class or ID as follows:

- Use display:block to display the inline element as a block element. This puts
the horizontal rule on its own line and stretches it across the width of its
containing block.

- Use padding-top to make space for the background color and image.

- Use margin-top:+VALUE to insert space above the horizontal rule.

- Use margin-top:-VALUE to overlap the rule with the previous line.

- Use margin-bottom:+VALUE to insert space below the rule.

- Use margin-bottom:-VALUE to overlap the rule with the next line.

- Use width:auto, margin-left:0, and margin-right:0 to stretch the rule to the
left and right sides of the containing block.

- Use width:auto, margin-left:±VALUE, and margin-right:±VALUE to stretch the
rule to the left and right margins of the containing block.

- Use width:+VALUE, margin-left:auto, and margin-right:auto to size and center
the rule.

- Use border-top to display a border above the rule.

- Use border-bottom to display a border below the rule.

- Use background-image to display a background image in the rule.

- Use background-repeat:repeat-x to tile an image across the rule.

- Use background-position:left center to position the background image in the
vertical middle of the rule.

- Use background-color to display a background color in the rule.

Pattern HTML

CSS
*.hr { display:block;
padding-top:+VALUE; width:+VALUE;
margin-top:±VALUE; margin-bottom:±VALUE;
margin-left:±VALUE; margin-right:±VALUE;
border-top:WIDTH STYLE COLOR;
border-bottom:WIDTH STYLE COLOR;
background-image:url("FILE.EXT");
background-position:left center;
background-repeat:repeat-x;
background-color:COLOR; }

Location This pattern applies to inline elements.

Tip display:block; is the only required rule. The rest are optional and can be used in
any combination. This design pattern is much more versatile than the line break,
which cannot be styled.

Related to Linebreak; Block Horizontal Rule, Block Spacer, Block Space Remover
(Chapter 13)

See also www.cssdesignpatterns.com/inline-horizontal-rule

CHAPTER 11 ■ SPACING CONTENT 235

S
P
A

C
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

http://freepdf-books.com

Aligning Content

This chapter discusses design patterns that align text and content horizontally and vertically
to their containing blocks. These alignment patterns work in the normal flow without using
absolute or relative positioning.

The first three design patterns align content horizontally. The next three design patterns
align content vertically. The last design pattern and the example at the end of the chapter are
quite esoteric and have little practical application. I have included them to demonstrate the
powerful capabilities built into the inline formatting context.

• Text Indent shows how to indent the first line of text.

• Hanging Indent shows how to create a hanging indent.

• Horizontal-aligned Content shows how to align text and inline content to the left,
right, or center. It also shows how to justify text and inline content.

• Vertical-aligned Content shows how to vertically align an inline element to its parent’s
fontlines. These fontlines define an alignment context.

• Vertical-offset Content shows how to vertically offset an inline element from its
parent’s baseline.

• Subscript and Superscript shows how to create subscript and superscript text, and how
to make it look consistent across all browsers.

• Nested Alignment shows how to nest alignment contexts.

• Advanced Alignment Example is not a design pattern, but a fun example showing off
how alignment and relative positioning can create sophisticated inline layouts.

237

C H A P T E R 1 2

http://freepdf-books.com

Text Indent

HTML

<h1>Text Indent</h1>

<table><tr><td class="text-indent"><code>text-indent</code>
indents the first line of a terminal block element, such as a paragraph,
division, heading, list item, or this table cell.

</td></tr></table>

<p><code>text-indent</code> does
not work on inline elements, such as this span.</p>

CSS

*.text-indent { text-indent:60px; }

/* Nonessential rules are not shown. */

CHAPTER 12 ■ ALIGNING CONTENT238

A
LI

G
N

IN
G

C
O

N
T
E

N
T

http://freepdf-books.com

Text Indent

Problem You want to indent the first line of a terminal block element, such as a
paragraph.

Solution You can use a positive value in text-indent to indent the first line of text.

Pattern HTML
<TERMINAL-BLOCK class="text-indent"> content </TERMINAL-BLOCK>

CSS
*.text-indent { text-indent:+VALUE; }

Location text-indent works only on terminal block elements. It does not work on
structural block elements or inline elements. By default, text-indent is inherited
by child elements. This means you can assign text-indent to a structural block
element, and all descendant terminal block elements will inherit the value you
assigned to text-indent.

Furthermore, this design pattern only works on content. If an element contains
no content, there is nothing to indent, and this property will have no visual
impact. Even though the name of the property is text-indent, it indents all
content, regardless of whether or not it is text.

Tip Normally you want indentation and margins to be consistent. All major browsers
set the indents of their list items at 40 pixels.

Variation You could create a first-line indent using first-letter to select the first letter of
a terminal block element and then style it with a positive margin-left. This is
more work and is less reliable than text-indent.

Related to Hanging Indent; Invisible Text (Chapter 10); Blocked, Spacing (Chapter 11);
First-letter Dropcap, Hanging Dropcap (Chapter 18); Hanging Alert (Chapter 20)

See also www.cssdesignpatterns.com/text-indent

CHAPTER 12 ■ ALIGNING CONTENT 239

A
LIG

N
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Hanging Indent

HTML

<h1>Hanging Indent</h1>

<p class="hanging-indent">A hanging indent uses a negative value for
<code>text-indent</code> and a positive value for <code>padding-left</code>.
Hanging indents only work in terminal block elements like this paragraph.</p>

<p class="hanging-indent2">If you do not want the hanging indent to
go all the way to the left, make the positive value in <code>padding-left</code>
larger than the absolute value of <code>text-indent</code>.</p>

CSS

*.hanging-indent { text-indent:-50px; padding-left:50px; }

*.hanging-indent2 { text-indent:-50px; padding-left:70px; }

/* Nonessential rules are not shown. */

CHAPTER 12 ■ ALIGNING CONTENT240

A
LI

G
N

IN
G

C
O

N
T
E

N
T

http://freepdf-books.com

Hanging Indent

Problem You want to insert a hanging indent on the first line in a terminal block
element, such as a paragraph.

Solution You can use a negative value in text-indent to extend the first line of text into
the left padding area of a terminal block element so that it hangs over the left
side of the element. You can use a positive value in padding-left to make
room for the hanging indent.

Pattern HTML
<TERMINAL-BLOCK class="hanging-indent">content</TERMINAL-BLOCK>

CSS
*.hanging-indent { text-indent:-VALUE; padding-left:+VALUE; }

Location text-indent works only on terminal block elements that contain content.
It does not work on structural block elements or inline elements. By default,
text-indent is inherited by child elements. You will only notice the hanging
indent if the element contains more than one line.

Advantages Because this design pattern uses padding-left to indent the block, the border
surrounds the entire block. If you use margin-left to indent the block, the
negative indent will stick outside of the border.

Disadvantages This design pattern does not apply to inline elements. You can use the Padded
Content or Inline Spacer design patterns to achieve this same effect using
inline elements.

Tips A hanging indent is normally used to create list items. HTML provides the
unordered list and the ordered list for this purpose.

Normally, you want indentation and margins to be consistent. The default
indentation for a list item is 40 pixels. You may also want to use –40 pixels for
text-indent and 40 pixels for padding-left.

Variation You could create a first-line indent using first-letter to select the first letter
of a terminal block element and then style it with a negative margin-left. This
is more work and is less reliable than text-indent.

Related to Text Indent; Blocked, Spacing (Chapter 11); Hanging Dropcap (Chapter 18);
Hanging Alert (Chapter 20)

See also www.cssdesignpatterns.com/hanging-indent

CHAPTER 12 ■ ALIGNING CONTENT 241

A
LIG

N
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Horizontal-aligned Content

HTML

<h1>Horizontal-aligned Content</h1>

<p class="align-left"><code>text-align:left</code></p>
<p class="align-center"><code>text-align:center</code></p>
<p class="align-right"><code>text-align:right</code></p>
<p class="align-justify"><code>text-align:justify</code> justifies the content so
that it is aligned to the left side and the right side. Most browsers adjust
the space between the words and objects to justify the text.</p>

CSS

*.align-left { text-align:left; }

*.align-center { text-align:center; }

*.align-right { text-align:right; }

*.align-justify { text-align:justify; }

/* Nonessential rules are not shown. */

CHAPTER 12 ■ ALIGNING CONTENT242

A
LI

G
N

IN
G

C
O

N
T
E

N
T

http://freepdf-books.com

Horizontal-aligned Content

Problem You want to left-align, center-align, right-align, or justify the content in a
terminal block element, such as a paragraph. For example, you may want to
center-align text in a heading, right-align a label assigned to a control, or left-
align data in one table column and right-align data in another.

Solution You can use text-align to align the text within its terminal block.

- Use text-align:left to align the text to the left of the block.

- Use text-align:center to align the text to the center of the block.

- Use text-align:right to align the text to the right of the block.

- Use text-align:justify to justify the text to both sides of the block. Browsers
typically justify text by increasing space between words to stretch the text to the
sides of the block.

Patterns HTML
<TERMINAL-BLOCK class="align-left">content</TERMINAL-BLOCK>
<TERMINAL-BLOCK class="align-center">content</TERMINAL-BLOCK>
<TERMINAL-BLOCK class="align-right">content</TERMINAL-BLOCK>
<TERMINAL-BLOCK class="align-justify">content</TERMINAL-BLOCK>

CSS
*.align-left { text-align:left; }
*.align-center { text-align:center; }
*.align-right { text-align:right; }
*.align-justify { text-align:justify; }

Location This design pattern works only on terminal block elements containing content.
Without content, there is nothing to align. It does not work on inline elements.
It does not work directly on structural block elements, but you can assign
text-align to a structural block element, and it can be inherited by child
elements.

Tips When justifying text, it is important to size the block large enough to prevent a
browser from putting unpleasant amounts of extra whitespace between words.
The justification algorithm is not sophisticated. It only adds space between
words. It does not automatically hyphenate words, and it does not put extra
space between letters.

In spite of the name, text-align aligns all types of content including text,
images, objects, controls, and so on.

Related to Aligned Static Inline (Chapter 8); Left Aligned, Left Offset, Right Aligned, Right
Offset, Center Aligned, Center Offset (Chapter 9); Spacing (Chapter 11);
Opposing Floats, Tab Menu, Tabs, Layout Links (Chapter 17); Center Callout
(Chapter 19)

See also www.cssdesignpatterns.com/horizontal-aligned-content

CHAPTER 12 ■ ALIGNING CONTENT 243

A
LIG

N
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Vertical-aligned Content

HTML

<h1>Vertical-aligned Content</h1>

<div>ÁMjx
<img class="text-top" src="bar.gif" alt="bar"

/> text-top
<img class="middle" src="bar.gif" alt="bar"

/> middle
<img class="baseline" src="bar.gif" alt="bar"

/> baseline
<img class="text-bottom" src="bar.gif" alt="bar"

/> text-bottom</div>

<p class="text">
baseline →
text-top →
middle →
text-bottom → </p>

CSS

div { font-size:60px; line-height:normal; border:1px solid black; }
*.main { background-color:gold; padding:0 10px; }

*.text { font-size:18px; }

*.text-top { vertical-align:text-top; }
*.middle { vertical-align:middle; }
*.baseline { vertical-align:baseline; }
*.text-bottom { vertical-align:text-bottom; }

CHAPTER 12 ■ ALIGNING CONTENT244

A
LI

G
N

IN
G

C
O

N
T
E

N
T

http://freepdf-books.com

Vertical-aligned Content

Problem You have different sizes of inline elements that you want to align to a common
set of reference points. For example, when you have images and text on the same
line, you want to align the images to the top, middle, baseline, or bottom of text.

Solution You can use vertical-align to align an inline element to one of its parent’s four
fontlines: text-top, middle, baseline, and text-bottom. By default, inline content
is aligned to the baseline.

Fontlines provide four reference points to which you can align inline content.
They define what I call an alignment context. Notice how the star image in the
example is aligned to each of the four fontlines established by its paragraph, and
its neighboring text is aligned to the paragraph’s baseline. This is a key point. The
star and text are not aligned to each other. They are aligned to the fontlines
established by their parent, the paragraph.

A terminal block establishes the initial alignment context for its inline children
and text. The font and font-size of a block defines the location of the four font
lines. The text-top is located at the top of characters with accents, like the
letter “Á.” The baseline is located at the bottom of characters that do not have
descenders, like the letter “M.” The text-bottom is located at the bottom of
characters that have descenders, like the letter “j.” The middle is located in the
middle of the ex height, which is the middle of the letter “x.”

You can use vertical-align:top or bottom to align an inline element to the top
or bottom of a line. top and bottom are typically the same as text-top and
text-bottom—unless the height of a line is taller than its content. A line can be
taller than its content when it contains images, objects, different font sizes,
different vertical alignment, or a larger line-height.

If a parent and child share the same font and font-size, their fontlines are
located in the same vertical positions. Aligning to the same fontlines produces
no change in alignment. To see changes, elements need to have different font
sizes, or in the case of images and objects, their height needs to be larger or
smaller than the font-size of the alignment context.

Pattern HTML
<TERMINAL_BLOCK> <INLINE> content </INLINE> </TERMINAL_BLOCK>

CSS
TERMINAL_BLOCK_SELECTOR { font-size:+em; }
INLINE_SELECTOR { vertical-align:FONTLINE; }

Example The division in the example defines an alignment context with a font-size of
60 pixels. The letters “ÁMjx” show the font size rendered at its full height from the
accent on top of the “Á” to the bottom of the “j.” The height of the letter “M” is
the em height. The height of the letter “x” is the ex height. The images and spans
inside the division are aligned to each of the division’s fontlines.

Notice how the closing /> of each element is placed on the next line
with no spaces between it and the following . This prevents the whitespace
from collapsing out of the span into the division. Since the division has a
font-size of 60 pixels and the span has a font-size of 18 pixels, whitespace
in the division is much wider than whitespace in the spans.

Related to Vertical-offset Content, Subscript and Superscript, Nested Alignment; HTML
Whitespace (Chapter 2); Table, Vertical-aligned Data (Chapter 15); Layout Links
(Chapter 17)

See also www.cssdesignpatterns.com/vertical-aligned-content

CHAPTER 12 ■ ALIGNING CONTENT 245

A
LIG

N
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Vertical-offset Content

HTML

<h1>Vertical-offset Content</h1>

<div>
_baseline__

raised 1em

__baseline__

lowered 1em

__baseline_
</div>

CSS

div { border:1px solid black; }

*.baseline { vertical-align:baseline; }
*.raised { vertical-align:1em; }
*.lowered { vertical-align:-1em; }

CHAPTER 12 ■ ALIGNING CONTENT246

A
LI

G
N

IN
G

C
O

N
T
E

N
T

http://freepdf-books.com

Vertical-offset Content

Problem You want to vertically offset two or more inline elements that are on the same
line. For example, you want to vertically position an image in relation to
neighboring text, or you want to position two or more images in relation to
each other, or you want to position a drop cap in relation to the following text,
or you want to offset text to create a subscript or superscript effect.

Solution You can use vertical-align to offset a child inline element from the baseline
of its parent. Positive values raise an element above the baseline, and negative
values lower it below the baseline. A line automatically expands to accommodate
the offset element.

You can use ems in vertical-align. One em is equal to the element’s font-size.
For example, 1em raises text above where its top is normally located, and -1em
lowers text below where its bottom is normally located. Ems have the advantage
of scaling along with the text. Thus, if a browser zooms in or out, ems scale
proportionally.

You can use pixels in vertical-align. Pixels do not change when a browser
zooms in or out, and the offset does not change. This is usually not desirable
when offsetting text, but it may be exactly what you want when you are
offsetting images.

vertical-align:0 is the same as aligning to the baseline.

Pattern HTML
<INLINE> content </INLINE>

CSS
INLINE_SELECTOR { vertical-align:±VALUE; }

Location This pattern works on inline text elements.

Limitations Vertical offsets are for contrasting the position of two or more inline elements
that are on the same line. Since a browser always centers content in a line, if you
vertically offset only one element on a line, you will not see the offset because it
is centered away.

Tip I do not recommend using percentages to vertically offset inline elements
because the results are hard to predict. The percentage is a proportion of the
element’s line-height. This would be useful if percentages offset an element
from the bottom of a line, but they offset it from the baseline. Since a browser
centers content within a line, the location of the baseline within a line is not
easy to predict.

Example The division in the example defines an alignment context with a font-size of
60 pixels. The letters “ÁMjx” show the rendered font size. The images and spans
inside the division are offset from the baseline of the division’s alignment
context.

Related to Vertical-aligned Content, Subscript and Superscript, Nested Alignment; Inline
Decoration (Chapter 11); Button (Chapter 17); Aligned Dropcap, First-letter
Dropcap, Padded Dropcap (Chapter 18)

See also www.cssdesignpatterns.com/vertical-offset-content

CHAPTER 12 ■ ALIGNING CONTENT 247

A
LIG

N
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Subscript and Superscript

HTML

<h1>Subscript and Superscript</h1>
<p class="large">sub₁ super² M^{lle}</p>

CSS

sub { vertical-align:-0.5em; font-size:0.75em; }

sup { vertical-align:0.5em; font-size:0.75em; }

*.large { font-size:32px; }

CSS Internet Explorer

sub { font-size:0.9em; }

sup { font-size:0.9em; }

CHAPTER 12 ■ ALIGNING CONTENT248

A
LI

G
N

IN
G

C
O

N
T
E

N
T

http://freepdf-books.com

Subscript and Superscript

Problems You want to use subscripts and superscripts.

Since each browser uses different vertical offsets and font sizes for subscripts
and superscripts, you may also want to standardize their styles to fit your tastes.
For example, Firefox 2 lowers subscripts just a little, and Opera 9 uses a larger
font size for subscripts and superscripts. The first three screenshots in the
example show how subscripts and superscripts look in Firefox 2, Internet
Explorer 7, and Opera 9. The fourth screenshot shows subscripts and
superscripts styled to look the same in all browsers.

Solutions You can mark up inline content with <sub> for subscripts and <sup> for
superscripts. Subscripts and superscripts are semantic elements. In foreign
languages, such as French, certain characters must be superscripts to be correct,
such as the “lle” in the abbreviation for “mademoiselle.” In math, subscripts and
superscripts change the meaning of a number.

If you want to ensure all browsers render subscripts and superscripts the same,
you can assign vertical-align and font-size to <sub> and <sup>. You can use em
values so the location and size of the subscript always remains proportional to
the font size.

- You can assign a negative em to vertical-align to lower a subscript. For
example, -0.5em lowers the text by half its font-size.

- You can assign a positive em to vertical-align to raise a superscript. For
example, 0.5em raises the text by half its font-size.

- You can assign a positive em to font-size to size the subscript or superscript to
be proportional to the font size of its parent. For example, 0.75em shrinks the
subscript or superscript to 75% of its parent’s size.

- Since Internet Explorer 7 and earlier versions have a “feature” that sizes
subscripts and superscripts 75% smaller than the value you specify with
font-size, you can compensate by assigning a positive value to font-size that
is 120% larger than the em value you assign to other browsers. You can use the
Conditional Stylesheet design pattern to load a stylesheet specific to Internet
Explorer to assign these values. For example, if you assign 0.75em to all browsers,
you can assign 0.9em to Internet Explorer.

Patterns HTML
_{text}
^{text}

CSS
sub { vertical-align:-em; font-size:+em; }
sup { vertical-align:+em; font-size:+em; }

Location This pattern works only on inline text elements.

Related to Vertical-offset Content; Inline Elements, Conditional Stylesheet (Chapter 2)

See also www.cssdesignpatterns.com/subscript
www.cssdesignpatterns.com/superscript

CHAPTER 12 ■ ALIGNING CONTENT 249

A
LIG

N
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Nested Alignment

HTML

<h1>Nested Alignment</h1>

<div class="ac1">

ÁMjx
 -20px
+35px
text-top
middle
baseline
text-bottom
-20px

</div>

CSS

*.ac1 { font-size:60px; }

*.ac2 { font-size:30px; }

*.ac3 { font-size:12px; }

*.raise35px { vertical-align:35px; }
*.lower20px { vertical-align:-20px; }
*.text-top { vertical-align:text-top; }
*.middle { vertical-align:middle; }
*.baseline { vertical-align:baseline; }
*.text-bottom { vertical-align:text-bottom; }

/* Nonessential rules are not shown. */

CHAPTER 12 ■ ALIGNING CONTENT250

A
LI

G
N

IN
G

C
O

N
T
E

N
T

http://freepdf-books.com

Nested Alignment

Problem You want to nest alignment contexts. Nested alignment contexts is a unique
layout feature built into CSS. You will probably never need to use it. I have
included this design pattern mainly for completeness.

Solution You can nest alignment contexts by nesting inline elements and assigning them
to different font-size values. Each nested inline element defines its own,
independent alignment context based on the size of the font assigned to the
element.

Fontlines define two alignment contexts for each element: the alignment context
in which an element is rendered, and the alignment context an element supplies
for its children.

Pattern HTML
<INLINE class="ac1"> content
<INLINE class="ac2"> content </INLINE>

</INLINE>

CSS
*.CLASS { font-size:±em;
white-space:nowrap;
vertical-align:±em;
left:±em;
position:relative; }

Location This pattern works only on inline elements.

Limitations Nested alignment contexts work well as long as they stay on the same line.
When a nested alignment context is wrapped to another line, the results vary
depending on the browser. Internet Explorer 7 retains the alignment context.
Opera 9 shrinkwraps the alignment context on each line to fit the content on the
line. Firefox 2 works like Internet Explorer when borders are displayed and works
like Opera 9 when no borders are displayed. You can use white-space:nowrap to
prevent alignment contexts from breaking across lines.

Tip You can nest inline elements indefinitely to create as many alignment contexts
as you want.

Example In the example, I have three alignment contexts: <div class="ac1">, , and . Each is set to three different font sizes:
60px, 30px, and 12px, respectively. Each font-size defines a different set of
fontlines to which child elements can align. There are six elements using the
third alignment context, , and each one is aligned to a
fontline or offset from the baseline of .
is offset from the baseline of <div class="ac1">.

Notice how ac2’s alignment context is preserved internally while it is aligned to
ac1’s alignment context externally. Internally, each inline element defines its own
alignment context to which its children can be aligned. Externally, each inline
element is aligned to the alignment context of its parent.

Related to Vertical-aligned Content, Vertical-offset Content, Advanced Alignment Example;
Positioned, Relative (Chapter 7); Offset Relative (Chapter 8); Nowrap
(Chapter 11)

See also www.cssdesignpatterns.com/nested-alignment

CHAPTER 12 ■ ALIGNING CONTENT 251

A
LIG

N
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

Advanced Alignment Example

HTML

<h1>Advanced Alignment Example</h1>

<p class="large">

ƒ(x) =
∑
n=0
∞
a_nx

(n-12
)

</p>

CSS

sub { vertical-align:-0.3em; font-size:0.75em; }

*.ac1 {font-size:4em; font-family:"Times New Roman" serif; white-space:nowrap; }
*.ac1-func{vertical-align:0.6em; font-size:0.3em; font-style:italic; }
*.ac1-sum {vertical-align:0.2em; font-size:0.6em; position:relative; left:-0.1em; }
*.ac1-max {vertical-align:3em; font-size:0.2em; position:relative; left:-6em; }
*.ac1-min {vertical-align:-1em; font-size:0.2em; position:relative; left:-3.3em; }
*.ac1-formula { vertical-align:0.6em; font-size:0.3em; font-style:italic;
position:relative; left:-4em; letter-spacing:0.1em; }

*.ac2 {vertical-align:0.4em; font-size:1.5em; position:relative; left:-0.3em; }
*.ac2-num {vertical-align:0.7em; font-size:0.4em; border-bottom:1px solid black; }
*.ac2-dnm {vertical-align:-0.4em; font-size:0.4em; position:relative; left:-1.4em; }
*.ac2-close { position:relative; left:-0.65em; }

CHAPTER 12 ■ ALIGNING CONTENT252

A
LI

G
N

IN
G

C
O

N
T
E

N
T

http://freepdf-books.com

Advanced Alignment Example

Example I have included this example for fun. It uses advanced alignment techniques and
relative offsets. This is not an actual design pattern. Something this complex is
probably better rendered as an image or as MathML. This is simply an example
of how powerful CSS can be.

This example is sizable. You can use the zoom feature in your browser to enlarge
or shrink it. Everything remains aligned properly as it changes size.

This example works the same in all major browsers, which shows how
consistently browsers have implemented alignment contexts.

The example uses font-size to set the size of each alignment context. The two
alignment contexts in the example are defined by the elements assigned to the
classes ac1 and ac2. I assigned a large enough font-size to ac1 to make room for
all its vertically aligned children. The second alignment context is the (n-1)/2
part of the formula. Notice how all its children are aligned relative to the second
alignment context.

I used white-space:nowrap to prevent the example from wrapping to another
line. I used vertical-align to align elements to various parts of the example.
I used position:relative and left to move elements into horizontal position.
I used em measurements for vertical-align and left so they would scale
proportionally to the font-size. This allows them to grow or shrink as the
font-size grows and shrinks. You can assign different font sizes to the
paragraph in the example to see this in action.

Features HTML
<INLINE class="ac1"> content
<INLINE class="ac2"> content </INLINE>

</INLINE>

CSS
*.CLASS { font-size:±em;
white-space:nowrap;
vertical-align:±em;
position:relative;
left:±em; }

Location These features work only on inline elements.

Related to Vertical-aligned Content, Vertical-offset Content, Nested Alignment; Positioned,
Relative (Chapter 7); Offset Relative (Chapter 8); Nowrap (Chapter 11)

See also www.cssdesignpatterns.com/advanced-alignment-example

CHAPTER 12 ■ ALIGNING CONTENT 253

A
LIG

N
IN

G
C

O
N

T
E

N
T

http://freepdf-books.com

http://freepdf-books.com

Blocks

The main purpose of this chapter is to show various ways you can emphasize document
structure by styling blocks. Many design patterns in other chapters apply to blocks, but this
chapter contains patterns specific to styling block elements to reveal document structure.

Chapter Outline

• Structural Meaning shows how blocks create hierarchical and sequential structure.

• Visual Structure shows how to style blocks to bring out the document structure.

• Section shows how to organize your document into sections for easy styling and for
better structural meaning for search engines and document processors.

• Lists shows many ways to create lists and list markers.

• Background Bulleted shows how to add bullets to a list using background images.

• Inlined shows how to render a block element as if it were an inline element. This allows
blocks to be rendered from left to right and to wrap across lines.

• Collapsed Margins shows how to collapse and uncollapse vertical margins between
block elements.

• Run-in shows how to run a block into the following sibling block as if it were an inline
element within the following block. Run-in headings save space and are very attractive.

• Horizontal Rule shows how to use and style a horizontal rule in spite of the problems
caused by Internet Explorer 7, which refuses to remove its built-in styles from <hr />.

• Block Spacer shows how to insert a precise amount of vertical space between selective
blocks without having to adjust margins individually.

• Block Space Remover shows how to remove a precise amount of vertical space between
selective blocks without having to adjust margins individually.

• Left Marginal shows how to extract headings, notes, alerts, and images from the
normal flow and move them into a wide left margin.

• Right Marginal works like Left Marginal except items are moved to the right.

255

C H A P T E R 1 3

http://freepdf-books.com

Structural Meaning

HTML

<body>
<h1>Structural Meaning</h1>

<p>Everything in a document is related. The block structure identifies the
order and intensity of the relationships. The more elements you wrap around
content, the more tightly connected it becomes to ancestors and siblings.</p>

<div>
<h2>This heading identifies the topic of its division</h2>
<p>This paragraph introduces the topic of the heading.</p>
<p>This paragraph continues the topic of the heading.</p></div>

This is an unordered list.
List items are more closely related than items in divisions.
There is no significance to the sequence of unordered list items.

<div>
<h2>Tables have the most closely related content</h2>
<table><tr><th>Element</th><th>Intensity</th><th>Ordered</th></tr>
<tr><td>div</td><td>weak</td><td>Yes</td></tr>
<tr><td>ul</td><td>medium</td><td>No</td></tr>
<tr><td>table</td><td>strong</td><td>Yes</td></tr></table></div>

</body>

CHAPTER 13 ■ BLOCKS256

B
LO

C
K

S

http://freepdf-books.com

Structural Meaning

Problem You want to identify the structure of a document using blocks.

Solution Blocks define the structure of a document, and the structure of a document
helps readers and computers understand the meaning of a document.
Everything in a document is related. The block structure identifies the order and
intensity of the relationships. The more elements you wrap around content, the
more closely it relates to ancestors and siblings.

HTML makes four assumptions about the meaning of document structure:

1) A parent element defines the topic of its children.

2) Siblings are ordered unless the parent element specifies otherwise.

3) As the hierarchy deepens, meaning becomes more focused and connected.

4) All content in the document body is related. Content in a division or a form is
more closely related. Content in lists is even more closely related. Content in
tables is the most closely related.

Two types of structures exist in HTML: hierarchies and sets. You create
hierarchies by nesting elements. You create sets by placing multiple elements
inside a parent. There are two types of sets: ordered and unordered.

Each structure in HTML starts out as a hierarchy and ends in a set.

For example, a table creates a hierarchy of nested rows and cells. Within that
hierarchy, a table contains an ordered set of rows, and each row contains an
ordered set of cells. Cells in the same column are related, and cells in the same
row are related. Because a cell is the intersection of a row and a column, it ties
together the meaning of both. As a result, content in tables is most strongly
related (that is why it is called relational data).

Take another example: a list starts out as a hierarchy where a parent list element
contains a set of list items. An ordered list contains an ordered set of related
list items. An unordered list contains an unordered set of related list items. A
dictionary list is an associative entity containing an unordered set of related
terms and definitions. Lists can be nested within each other to create a hierarchy
of lists. You can put content in lists when you want it to be more strongly related
than content in the document body, a division, or a form.

As a final example, a division organizes headings and paragraphs into a series
of related topics where each heading introduces an ordered series of related
paragraphs. Divisions can be nested to create a hierarchy of subtopics.

Pattern HTML
<PARENT_BLOCK>
<CHILD_BLOCK_1> related content </CHILD_BLOCK_1>
<CHILD_BLOCK_2> related content </CHILD_BLOCK_2>
...
<CHILD_BLOCK_N> related content </CHILD_BLOCK_N>

</PARENT_BLOCK>

Location This pattern applies to block elements.

Related to Visual Structure; HTML Structure, Structural Block Elements, Terminal Block
Elements, Multi-purpose Block Elements (Chapter 2)

See also www.cssdesignpatterns.com/structural-meaning

CHAPTER 13 ■ BLOCKS 257

B
LO

C
K

S

http://freepdf-books.com

Visual Structure
See the Structural Meaning design pattern for the example.

CSS (for the Structural Meaning Design Pattern)

h1 { margin:0; font-size:1.9em; }
h2 { margin:0; margin-top:3px; font-size:1.2em; }

ul,div,td,th { border:1px solid black; background-color:gold; margin-top:20px; }
div { padding:0 10px; }
table { border-collapse:collapse; margin:5px 0; }
td,th { background-color:white; width:20%; text-align:center; padding:2px; }
ul { margin-left:0; padding:0 40px; }
p,li { margin:0; padding:2px 0; }

STYLING EXCEPTIONS

A stylesheet works well when you style classes of items, but it quickly becomes cumbersome when you style

exceptions. To style one element, you typically add an ID to it and style the ID in the stylesheet. This is a

minor inconvenience in a single document, but this inconvenience turns into a maintenance problem over

time as documents change, styles change, and hundreds of documents share common stylesheets. For

example, since an ID used for exceptional styling is part of an element, when the element moves, the excep-

tional styling moves with it. This will likely cause unexpected results when you modify a document and will

send you on a wild goose chase looking for the cause of the problem.

The Horizontal Rule, Block Spacer, or Block Space Remover design patterns are good solutions for

styling exceptional cases because they insert an element into the document. The element has structural

meaning, is self-documenting, and is easy to reposition. You can style these spacer elements using standard

classes so you are no longer styling exceptions. Spacer elements are only for exceptional cases.

POSITIONAL STYLING

At times you may want to style an element because it is in a certain position. For example, you may want to

change the amount of margin before the first child and after the last child of a block because collapsed mar-

gins work differently for the first and last child elements. If you apply an exceptional margin directly to the

first child element, and then you move the first child so that it becomes a middle child, its exceptional margin

moves with it. This is not the result you want because you want to style the position—not the element.

One way to style a position is to use the Horizontal Rule, Block Spacer, or Block Space Remover design

patterns. This works because it is easy to keep a spacer element in the right position—especially if you

name its class intuitively, such as "first-child" and "last-child". The ultimate solution is positional

selectors, but positional selectors in CSS 2.1 have limited functionality and do not work in Internet Explorer 6

(although they work in Internet Explorer 7). CSS 3 positional selectors are powerful enough for positional

styling, but are not yet available.

CHAPTER 13 ■ BLOCKS258

B
LO

C
K

S

http://freepdf-books.com

Visual Structure

Problem You want to reveal the structure of a document visually.

Solution CSS provides a number of ways you can style blocks to reveal document
structure. You can put vertical margins between blocks or use first-line indents to
visually separate content into blocks. You can put bullets or numbers in a block’s
margin to enumerate blocks. You can use margins, borders, and padding to put
boxes around blocks to reveal how they are nested inside each other. You can
also assign font sizes to heading levels so that headings with a larger scope have
a larger font size—this can reveal the nesting of blocks without having to put
them inside boxes.

You can help the user see the structural meaning of a document by visually
styling the structure. To emphasize a close structural relationship, you can
position elements closer together and give them a similar look. For example,
elements inside lists and tables have a similar look to show they belong together.
To set elements apart, you can position them further apart and style them
differently. For example, lists, tables, and blocks have different default styles to
emphasize the different meanings of their structures. Also, unordered lists use
bullets to point out that their items are unordered.

To create a consistent look and feel, it is a common practice to apply a standard
set of styles to all blocks of the same type. For example, you may want all
paragraphs and list items to have a 2-pixel vertical padding. In your stylesheet,
you can select all elements of a certain type or all elements of a certain class
and style them as desired. I demonstrate this in the example.

Occasionally, you may want to change the space between two specific blocks. You
can bring them closer together to emphasize the closeness of their relationship
or push them further apart to emphasize their differences. Structurally, you are
styling the space between the blocks. Since the relationship is not part of either
block, but is between the blocks, it is more structurally accurate and simpler to
insert a spacer block than it is to style the margin of one of the two blocks as an
exception to its normal styling.

HTML provides the <hr /> element for the purpose of inserting a structural
break between blocks (and
 to insert a line break between inlines). The
Horizontal Rule design pattern shows how to use and style <hr />.

When you want to insert a structural break that is not as strong as a horizontal
rule or you want to bring two blocks closer together, you can use the Block
Spacer and Block Space Remover design patterns.

Using a horizontal rule, a block spacer, or a block space remover should be the
exception, not the norm. The structural meaning of breaks and links between
elements is not as strong as nested structures.

You may want to merge two blocks to emphasize a very close relationship
between them. This is explored in the Inlined and Run-in design patterns.

Related to Structural Meaning, Horizontal Rule, Block Spacer, Block Space Remover

See also www.cssdesignpatterns.com/visual-structure

CHAPTER 13 ■ BLOCKS 259

B
LO

C
K

S

http://freepdf-books.com

Section

HTML

<h1>Section</h1>

<div class="section introduction">
<h2>Introduction</h2>
<p>This paragraph is about the introduction.</p>

</div>

<div class="section content">
<h2>Content</h2>
<p>This paragraph is about the content.</p>

<div class="section example">
<h3>Subsection Example</h3>
This list item relates to the subsection example.
This list item relates to the subsection example.

</div>
</div>

CSS

*.section { padding:10px; margin:10px 0; background-color:gold;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

*.section p { margin:0; margin-top:5px; }
*.section h2 { margin:0; margin-bottom:10px; }
*.section h3 { margin:0; margin-bottom:10px; }
*.section.example { background-color:white; }
*.section *.section { margin-bottom:0; }

CHAPTER 13 ■ BLOCKS260

B
LO

C
K

S

http://freepdf-books.com

Section

Problem You want to organize your document into sections, and you want to style various
sections differently.

Solution HTML provides the division element to identify divisions of a document. A
division is generic and has no meaning by itself. One way you can use a division
is to create a section. A section is a part of a document that contains content
relating to a specific theme or purpose. To identify the purpose, a section
contains a heading followed by blocks of supporting statements. Subsections
are often nested within sections to identify subthemes relating to the theme of
the parent section.

A division identifies the section’s beginning and end, and the section’s heading
identifies its theme. The heading should be the first content-containing child of
the division. The heading is what turns a division into a section. Any heading
element can be used, such as <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>. The heading
level identifies the relative importance of the section. <h1> is the most important
heading in a document. Following the heading are blocks of content and
subsections.

This design pattern imposes no constraints on the structure of sections and
subsections, other than each section should contain a heading as its first
content-containing child element. I use the phrase “content-containing child
element” because a section may contain any number of decorative child
elements, such as divisions and spans, prior to the heading. Such decorative
child elements could be used to layer background images behind the section,
for example.

Pattern HTML
<div class="section TYPE">
<HEADING> content </HEADING>
<BLOCK> content </BLOCK>
...

</div>

CSS
*.section { STYLES }
*.section.TYPE { STYLES }
*.section.TYPE HEADING { STYLES }
*.section.TYPE BLOCK { STYLES }
*.section *.section { STYLES }

Location This pattern applies to block elements.

Tips The concept of a section is not part of any current HTML specification, but the
XHTML 2.0 working draft includes a <section> element.

There are no limits to the names you can use to classify your sections. Here are
a few examples: callout, caution, content, example, figure, introduction, listing,
note, quote, summary, table, tip, and warning. For 200 more examples, see the
file Common Section Names.txt in the example folder.

Related to Structural Meaning, Run-in; Floating Section (Chapter 17)

See also www.cssdesignpatterns.com/section

CHAPTER 13 ■ BLOCKS 261

B
LO

C
K

S

http://freepdf-books.com

Lists

HTML

<h1>Lists</h1>
<div id="section1"><h2>Normal Lists</h2>
<li class="custom">List item with custom bullet
<li class="circle">List item with circle bullet
<li class="decimal">List item with numbered bullet
<li class="inside">List item with disc bullet displayed inside the margin
<li class="none">-faux marker
<li class="none">–&ndash;
<li class="none">—&mdash;</div>

<div id="section2"><h2>Faux Lists</h2>
display:list-item
<p class="list">1:8-5faux marker</p>
<p class="list">·&middot;</p>
<p class="list">•&bull;</p>
<p class="list">◊&loz;</p>
<p class="list">›&rsaquo;</p>
<p class="list">»&raquo;</p></div>

CSS

ul { margin-left:0; padding-left:0; } /* Normalized list */
ul li { margin-left:60px; }

*.listed { margin-left:60px; display:list-item; list-style:square; }

*.list { margin-left:60px; }
*.marker { float:left; margin-left:-60px; width:60px; text-align:center; }

*.custom { list-style-image:url("check.gif"); }
*.circle { list-style-type:circle; }
*.decimal { list-style-type:decimal; }
*.inside { list-style-position:inside; }
*.none { list-style-type:none; }

/* Nonessential rules are not shown. */

CHAPTER 13 ■ BLOCKS262

B
LO

C
K

S

http://freepdf-books.com

Lists

Problem You want to lay out a block as a bulleted or numbered list.

Solution You can embed content in list items (). You can embed list items in
unordered (bulleted) lists () or ordered (numbered) lists ().

You can use the list-style-type property to assign the type of marker displayed
to the left of a list item. The bullet markers include disc (the default), circle, and
square. The numbered markers that work in all major browsers include decimal
(the default), lower-alpha, upper-alpha, lower-roman, and upper-roman. Using
list-style-type, you can even force numbered list items to display bullets and
vice versa! You can hide the marker using list-style-type:none.

You can use list-style-image to display an image in place of the marker.
In the example, the marker-custom class uses the rule list-style-
image:url("check.gif") to display a check-mark image as the marker.

You can use list-style-position:inside to place the marker inside the list’s
margin, which allows subsequent lines to wrap under the marker.

You can use display:list-item to render any block or inline element as a list
item, and a browser will display a marker in its left margin. You can apply any
list-style rule to the element to style the marker. This can be useful when
you have inline elements in MicroFormats that you want to style as lists (see
http://microformats.org for more information on using MicroFormats).

All major browsers indent lists by 40 pixels, but they differ in how they do it.
Some set margins to 40 pixels, and others set padding. For consistent results, you
can assign margin-left:0; and padding-left:0; to and , and you can
assign margin-left:WIDTH to list items (). You can increase the left margin to
make more room for markers, as I did in the example.

You can create a faux marker by wrapping any content you want in a span. This
allows you to use any text as a marker, and you can style it in any way! You can
use float:left to float the span to the left. You can use margin-left:-WIDTH to
move it into the left margin the same distance as its width and its parent’s left
margin. You can also align its content to center.

Patterns HTML
 CONTENT

or CONTENT
or MARKER
or <ELEMENT class="listed"> CONTENT </ELEMENT>
or <PARENT class="list">

<CHILD class="marker"> MARKER </CHILD> CONTENT </PARENT>

CSS
ul { margin-left:0; padding-left:0; }
ul li { margin-left:WIDTH; }
*.listed { margin-left:WIDTH; display:list-item; list-style:disc; }
*.list { margin-left:WIDTH; }
*.marker { float:left; margin-left:-WIDTH; width:WIDTH; }

Related to Structural Meaning, Visual Structure, Background Bulleted, Inlined; Structural
Block Elements, Multi-purpose Block Elements (Chapter 2); Display, Block Box
(Chapter 4); Margin, Padding (Chapter 6); Float and Clear, Relative Float
(Chapter 7); Offset Float (Chapter 8); Rollup, Tab Menu, Tabs, Flyout Menu,
Layout Links (Chapter 17)

See also www.cssdesignpatterns.com/lists

CHAPTER 13 ■ BLOCKS 263

B
LO

C
K

S

http://freepdf-books.com

Background Bulleted

HTML

<h1>Background Bulleted</h1>

<ul class="bb-list">
<li class="bb1">Unordered list item with a background bullet

<ol class="bb-list">
<li class="bb2">Ordered list item with a background bullet

<dl class="bb-list">
<dt class="bb1">Definition term with a background bullet</dt>
<dd class="bb2">Definition data with a background bullet</dd></dl>

<div class="bb-list">
<p class="bb1">Faux list with a background bullet</p>
<p class="bb2">Faux list with a background bullet</p></div>

CSS

*.bb-list { padding-left:40px; margin-left:0; margin-top:20px; }
*.bb-list li,

*.bb-list dt,

*.bb-list dd,

*.bb-list p { padding-left:40px; margin-left:-40px; list-style-type:none;

margin-top:0; margin-bottom:0; }

*.bb1 { background:url("check.gif") no-repeat 10px 1px; }
*.bb2 { background:url("star.gif") no-repeat 10px 1px; }

CHAPTER 13 ■ BLOCKS264

B
LO

C
K

S

http://freepdf-books.com

Background Bulleted

Problem You want to control the precise placement of a list item’s bullet.

Solution Since CSS does not provide properties for controlling the position of a bullet,
you can use a background image as the bullet of each list item, and you can use
background-position to position it precisely.

You can assign a positive left padding to a list element (, , or <dl>) to
make room for bullets on its list items. You should also remove the default
left margin that some browsers add to lists. In the example, I assigned
padding-left:40px and margin-left:0 to each list.

You can assign a negative left margin to each list item to move it into the padding
area of its parent list. The negative left margin should be the exact inverse of the
amount assigned to the left padding of its parent. In the example, I assigned
margin-left:-40px to each list item.

You can assign the exact amount of left padding to each list item that you
assigned to its parent list. This moves a list item’s content away from the bullet.
In the example, I assigned padding-left:40px to each list item. You should also
hide each list item’s built-in marker using list-style-type:none.

You can assign a nonrepeating background image to each list item and use
background-position to offset its position. In the example, I used a left offset of
10 pixels and a top offset of 1 pixel. You can use different classes as needed to
assign and position different background images to individual list items.

You can assign the bb-list class to each list. This distinguishes between normal
lists and background-bulleted lists, which is important because they each have
different values for margin and padding. You can combine *.bb-list with the
descendant operator and a list-item element to select background-bulleted list
items. Since there are three different types of list-item elements, you can use the
grouping operator to assign multiple selectors to this pattern’s rules.

Since a list item is a block element, this pattern applies to all block elements.
Nonetheless, it is better to mark up items as a list when they function as a list.
In the example, I applied this pattern to a division and its child paragraphs, but
only to show how it can be done—not to recommend that you do it.

Pattern HTML
<LIST class="bb-list">
<LIST_ITEM class="BULLET_STYLE"> list content </LIST_ITEM>

</LIST>

CSS
*.bb-list { padding-left:+INDENT; margin-left:0; }

*.bb-list li, *.bb-list dt, *.bb-list dd,*.bb-list p
{ padding-left:+INDENT; margin-left:-INDENT; list-style-type:none; }

*.BULLET_STYLE { background:url("FILE.EXT") LEFT_OFFSET
TOP_OFFSET no-repeat; }

Related to Lists; Block Box (Chapter 4); Margin, Padding, Background (Chapter 6)

See also www.cssdesignpatterns.com/background-bulleted

CHAPTER 13 ■ BLOCKS 265

B
LO

C
K

S

http://freepdf-books.com

Inlined

HTML

<h1>Inlined</h1>
<div>
<p>Normal Paragraph</p>
<table><tr><td>Normal Table</td><td>r1c2</td><td>r1c3</td></tr>
<tr><td>row2</td><td>r2c2</td><td>r2c3</td></tr></table>

Normal ListNormal List</div>

<div>
<p class="inlined">Inlined Paragraph</p>
<table class="inlined">

<tr><td>Inlined Table</td><td>r1c2</td><td>r1c3</td></tr>
<tr><td>row2</td><td>r2c2</td><td>r2c3</td></tr></table>

<ul class="inlined"><li class="inlined">Inlined List
<li class="inlined">Inlined List</div>

CSS

div { padding:10px; margin-bottom:15px; border:2px solid black; }
table, p, td, ul, li { margin-top:0px; margin-bottom:10px; padding-right:5px; }
p, td, ul, li { background-color:gold; padding-top:5px; padding-bottom:5px;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

*.inlined { display:inline; line-height:normal; padding:5px; margin:5px; }

CHAPTER 13 ■ BLOCKS266

B
LO

C
K

S

http://freepdf-books.com

Inlined

Problem You want the browser to render a block element as if it were an inline element.
In other words, you want a block element to be displayed inline.

Solution CSS provides display:inline for this purpose. You can assign this rule to any
element to display it inline. Since margin and padding work differently inline, you
often need to adjust the margin and padding to work inline. This is particularly
true for lists displayed inline. Since height does not work inline, you can use
line-height in its place.

Pattern SELECTOR { display:inline; line-height:+VALUE;
margin:±VALUE; padding:+VALUE; }

Location This pattern applies to any type of element.

Limitations Firefox 2 and Opera 9 do not properly format the border and background of a
table displayed inline, but they do properly format the border and background
of table cells.

Internet Explorer 6 and 7 do the best job of rendering an entire table inline, but
they cannot break down a table and render its rows and cells inline.

List items lose their bullets and numbers when inlined.

Advantages Inlining a block element allows it to be rendered from left to right (or right to left
in some languages) and wrapped to additional lines as needed. This is the most
compact way to display elements.

Tips Rendering a table inline can be useful when you have a few rows of tabular data
that you want to flow along with other inline content. The table retains its
internal structure of rows and columns, but is located in the inline formatting
context. A table rendered inline is very similar to an inline block: both are
rendered as blocks within an inline formatting context.

Since Firefox 2 does not support display:inline-block, which displays an inline
element as a block with inline formatting context, you can instead assign
display:inline to a table, which creates the same visual effect. This is not quite
as useful as display:inline-block because it requires you to insert a table in
your markup.

When a parent block is inlined, its child blocks must be inlined too, or they will
break out of the inline formatting context and create new block formatting
contexts. For example, list elements need to be inlined along with their list
container. (This does not apply to rows and cells of inlined tables.)

Example The first division in the example contains a paragraph, a table containing two
rows of cells, and a list containing two list items. The second division contains
the same elements, but each element is inlined.

Related to Run-in; Display, Inline Box, Inline-block Box (Chapter 4); Blocked (Chapter 11);
Tabled, Rowed, and Celled (Chapter 15); Flyout Menu (Chapter 17); Hanging
Alert, Run-in Alert (Chapter 20)

See also www.cssdesignpatterns.com/inlined

CHAPTER 13 ■ BLOCKS 267

B
LO

C
K

S

http://freepdf-books.com

Collapsed Margins

HTML

<h1>Collapsed Margins</h1>
<div><p class="collapsed">Margins collapsed into parent's ↑↓</p></div>
<div class="border">
<p class="collapsed">Margins not collapsed into parent's ↑↓</p></div>

<div class="border">
<p class="collapsed">Collapsed sibling margins ↓</p>
<p class="collapsed">Collapsed sibling margins ↑</p>
<p class="uncollapsed1">Uncollapsed (transparent padding) ↑↓</p>
<p class="uncollapsed2">Uncollapsed (transparent border) ↑</p></div>

CSS

div { margin:10px; padding-left:30px; background-color:gold;
background-image: url("ruler.gif"); background-repeat:repeat-y; }

*.border { border:2px solid black; }

*.collapsed { margin-top:20px; margin-bottom:20px; }

*.uncollapsed1 { margin-top:0; margin-bottom:0;
padding-top:20px; padding-bottom:20px;
background-color:transparent; }

*.uncollapsed2 { margin-top:0; margin-bottom:0;
border-top:20px solid transparent;
border-bottom:20px solid transparent; }

CHAPTER 13 ■ BLOCKS268

B
LO

C
K

S

http://freepdf-books.com

Collapsed Margins

Problem You want to collapse or uncollapse vertical margins between blocks.

Solution Browsers collapse vertical margins into the larger of the bottom and top
margins between sibling blocks. For example, if the bottom margin of one
block is 15 pixels and the top margin of the next sibling block is 10 pixels, the
collapsed margin is 15 pixels (the uncollapsed margin is 25 pixels).

You can literally prevent the collapsing of the first child’s top margin into its
parent’s top margin by assigning a top padding or a top border to the parent.
Likewise, you can prevent the collapsing of the last child’s bottom margin into
its parent’s bottom margin by assigning bottom padding or a bottom border
to the parent. You can hide the padding or border by making it transparent
and as small as one pixel. In the example, the vertical margins of the second
paragraph do not collapse into its parent because its parent has top and
bottom borders.

You cannot prevent vertical margins from collapsing between sibling blocks. If
you want to avoid the collapsing effect between siblings, you can set margins
to zero and use transparent borders or transparent padding instead. Borders
and padding do not collapse.

When a parent block does not have a border, the top margin of its first child
collapses into its top margin. Likewise, the bottom margin of the last child
collapses into the parent’s bottom margin.

Patterns Uncollapsed Margins Between Parent and Child Blocks
PARENT_SELECTOR { border-top: WIDTH STYLE COLOR;
border-bottom: WIDTH STYLE COLOR;
padding-top:+VALUE; padding-bottom:+VALUE; }

Uncollapsed Margins Between Sibling Blocks
SIBLING_SELECTOR { padding-top:+VALUE; margin-top:0;
padding-bottom:+VALUE; margin-bottom:0;
background-color:transparent; }

or
SIBLING_SELECTOR { margin-top:0; margin-bottom:0;
border-top:+VALUE solid transparent;
border-bottom:+VALUE solid transparent;
background-color:transparent; }

Location This pattern applies to block elements and elements displayed as blocks.

Limitations Internet Explorer 6 supports transparent padding, but it does not support
transparent borders. If you need to use borders to create uncollapsed
margins, you have to match the color of the border to the background color,
which does not work if the background is an image. Internet Explorer 7 does
not have this limitation.

Disadvantage Using padding or borders to prevent collapsing margins prevents you from
using padding and borders for what they were intended.

Related to Horizontal Rule, Block Spacer, Block Space Remover; Margin, Border, Padding
(Chapter 6); Spacing, Blocked (Chapter 11), Collapsed Borders (Chapter 15)

See also www.cssdesignpatterns.com/collapsed-margins

CHAPTER 13 ■ BLOCKS 269

B
LO

C
K

S

http://freepdf-books.com

Run-in

HTML

<h1>Run-in</h1>
<div class="section">
<h2>Normal Heading</h2>
<p class="indent">This is a paragraph following the heading. Notice
how the previous heading and this paragraph are separate blocks.</p>

<p>This is another paragraph following the first paragraph.</p></div>

<div class="section">
<div class="run-in-container indent">
<h2 class="run-in">Run-in Heading</h2>
<p class="run-in">This is a paragraph following the heading. Notice how
the heading runs into the first line of this paragraph, and notice how
its styles are transferred to the run-in container.</p>

</div>
<p>This is another paragraph following the first paragraph.</p></div>

CSS

*.section { padding:10px; margin-bottom:20px; background-color:gold;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

*.indent { margin-left:20px; border-left:4px solid black; padding-left:20px; }

*.run-in { display:inline; }
*.run-in-container h2 { padding-right:20px; }
*.run-in-container p { font-style:italic; }

CHAPTER 13 ■ BLOCKS270

B
LO

C
K

S

http://freepdf-books.com

Run-in

Problem You want to run a block into the following sibling block as if it were an inline
element within the following block. For example, you may want to run a heading
into the following paragraph for a more compact presentation. You may also
want to run a series of blocks into another block.

Solution CSS provides the rule display:run-in for this purpose, but only Opera, Safari,
and Konquerer support it. You can implement a run-in by wrapping the run-in
block and the destination block inside a container block. You can then assign
display:inline to these two blocks to render them inline. Displaying them inline
causes the run-in block to merge into the first line of the destination block. By
wrapping both blocks in a container block, you can transfer any block styles to
the container block that you would have applied to the destination block, such
as margins, borders, padding, or a background.

If you want to run multiple blocks into a final block, you can assign the entire
series of blocks to display:inline and wrap them all in one block.

Of course, it would be much better if Internet Explorer and Firefox simply
implemented run-ins.

Pattern HTML
<RUN_IN_CONTAINER_BLOCK>
<RUN_IN_BLOCK> content </RUN_IN_BLOCK>
<DESTINATION_BLOCK> content </DESTINATION_BLOCK>

</RUN_IN_CONTAINER_BLOCK>

CSS
RUN_IN_BLOCK_SELECTOR { display:inline; }
DESTINATION_BLOCK_SELECTOR { display:inline; }

Location This pattern applies to block elements.

Tips Because the run-in container encloses the run-in and destination blocks, you
can take advantage of descendant selectors to apply additional styles to the
run-in block and the destination block.

This design pattern works even if you do not wrap the run-in and destination
blocks in a container block. Since the run-in and destination blocks are
displayed inline, the browser creates an anonymous block box to hold them. The
problem with the anonymous block box is that you cannot transfer any block
styles from the destination block to the anonymous block box. This is only a
problem if you have block styles you need to transfer, such as margins, borders,
padding, or a background.

Example In the example, I transferred the indent class from the destination paragraph to
the run-in container. I also used a descendant selector to insert extra padding
between the run-in heading and the destination paragraph. Using another
descendant selector, I styled the destination paragraph as italic.

Related to Section, Inlined; Run-in Alert (Chapter 20)

See also www.cssdesignpatterns.com/run-in

CHAPTER 13 ■ BLOCKS 271

B
LO

C
K

S

http://freepdf-books.com

Horizontal Rule

HTML

<h1>Horizontal Rule</h1>

<p>This paragraph is followed by a standard horizontal rule.</p>

<hr />

<p>This paragraph is followed by an embedded and styled horizontal rule.</p>

<div class="hr"><hr /></div>

<p>This paragraph is preceded by an embedded and styled horizontal rule.</p>

CSS

*.hr { height:40px; width:200px;
margin:0 auto 0 auto;
border:0;
background:url("hr.gif") repeat-x left center;
line-height:1px; font-size:1px; }

*.hr hr { display:none; }

/* Nonessential rules are not shown. */

CHAPTER 13 ■ BLOCKS272

B
LO

C
K

S

http://freepdf-books.com

Horizontal Rule

Problem You want to insert a horizontal rule between block elements to indicate the
beginning of a new section. You want the horizontal rule to insert styled vertical
space between blocks in the normal flow. You want to style the horizontal rule
with margins, borders, background colors, and tiled images.

Solution HTML provides the <hr /> element for this purpose. Browsers render it as a gray,
2-pixel tall, 3D stretched line. Each browser uses a different shade of gray and a
slightly different amount for the vertical margins.

You can style its margins, borders, padding, and background color just like you
would style any block. If you give it a nonzero height, you can even assign it a
background image. Unfortunately, Internet Explorer 7 and earlier versions do
not properly apply box model rules to the horizontal rule, such as padding. And
worse, Internet Explorer adds extra vertical margins and interior borders that
you cannot remove. This makes styling the horizontal rule the same in all major
browsers impossible.

If you want to style a horizontal rule and have it work in Internet Explorer, it is
best to embed the horizontal rule within a division, hide the rule, and style the
division instead. You can use display:none to hide the embedded horizontal rule.
Because the horizontal rule is still present, a browser that does not use CSS will
still display a horizontal rule, and the semantic meaning of the horizontal rule is
preserved.

You can use width and horizontal margins to align, indent, and offset the parent
division. You can use height to set its height. You can use margin-top and
margin-bottom to insert transparent space above and below the division. You
can render a styled line across the width of the division using border-top and
border-bottom. You can also use the background properties to show or tile an
image across the division.

Patterns HTML
<hr />
or
<div class="hr"><hr /></div>

CSS
*.hr { width:+VALUE;
height:+VALUE;
margin:±VALUE; border: WIDTH STYLE COLOR;
background:COLOR IMAGE REPEAT H_POSITION V_POSITION; }

*.hr hr { display:none; }

Location This pattern applies to horizontal rules.

Related to Block Spacer; Linebreak, Inline Horizontal Rule (Chapter 11)

See also www.cssdesignpatterns.com/horizontal-rule

CHAPTER 13 ■ BLOCKS 273

B
LO

C
K

S

http://freepdf-books.com

Block Spacer

HTML

<h1>Block Spacer</h1>

<p>This paragraph is not followed by a block spacer.</p>
<p>This paragraph is followed by a block spacer.</p>

<div class="spacer-large"></div>

<p>This paragraph is preceded by the same block spacer.</p>
<p>This paragraph is not preceded by a block spacer.</p>

CSS

p { margin:0; padding:5px; background-color:gold;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

*.spacer-large { padding-bottom:32px; }

CHAPTER 13 ■ BLOCKS274

B
LO

C
K

S

http://freepdf-books.com

Block Spacer

Problem You want to put space between two blocks to show that they do not belong
together. You want the separation to imply that a new series of thoughts
follows, but unlike the horizontal rule, you do not want to imply that a whole
new section follows. You want the structure of the markup to mirror the
structure of the content, which has a slight separation of thought. You also
want to control the amount of vertical space inserted—the more space, the
stronger the structural separation of content.

Solution You can insert an empty division between the blocks. You can assign a specific
amount of bottom or top padding to the division to insert the desired amount
of space.

Since the purpose of this design pattern is to separate two blocks, the class
name you assign to the block spacer element should reflect this purpose.

Pattern HTML
<div class="CLASS"></div>

CSS
*.CLASS { padding-bottom:+VALUE; }

Location This pattern applies to block elements.

Advantages The block spacer is best used when you want the markup to communicate a
separation between blocks because this reflects the meaning of the content.
It is a simple, reliable, and semantic way to insert extra vertical space between
any two blocks.

Disadvantages This design pattern requires an extra element to be inserted into the markup.
You may be tempted to use this for visual effects rather than for its structural
purpose. In that case, you should assign a margin to one of the blocks.

Tips Because a block spacer is inserted between two elements, it has the side effect
of stopping the previous block’s bottom margin from collapsing into the
following block’s top margin. Thus, you can insert a 1-pixel block spacer
between blocks to uncollapse their margins (and add one extra pixel of
space). Note that a zero-pixel block spacer does not uncollapse margins.

You could insert the padding-bottom rule directly inside the style attribute
of the spacer division. I recommend against this because you will likely need
to change this value as margins in the stylesheet change. I find it speeds
software development to keep all style rules in stylesheets. I also avoid using
class names that imply specific measurements, such as spacer32px, because
the amount of space removed is likely to change.

Related to Visual Structure, Block Space Remover, Horizontal Rule; Padding (Chapter 6);
Spacing, Inline Spacer, Linebreak, Inline Horizontal Rule (Chapter 11)

See also www.cssdesignpatterns.com/block-spacer

CHAPTER 13 ■ BLOCKS 275

B
LO

C
K

S

http://freepdf-books.com

Block Space Remover

HTML

<h1>Block Space Remover</h1>
<div class="section">
<p>This paragraph has 32-pixel top and bottom margins.</p>
<p>This paragraph has 32-pixel top and bottom margins.</p>

</div>

<div class="section">
<div class="space-remover-large"></div>

<p>This paragraph has 32-pixel top and bottom margins,
but it is preceded and followed by a block space remover.</p>

<div class="space-remover-large"></div>

<p>This paragraph has 32-pixel top and bottom margins,
but it is preceded and followed by a block space remover.</p>

<div class="space-remover-large"></div>

</div>

CSS

*.section { border:2px solid black; margin-bottom:32px; }
p { margin-top:32px; margin-bottom:32px; padding:5px; background-color:gold;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

*.space-remover-large { margin-top:-32px; }

CHAPTER 13 ■ BLOCKS276

B
LO

C
K

S

http://freepdf-books.com

Block Space Remover

Problem You want to bring two blocks closer together because they are closely related.
You also want to remove a precise amount of space between blocks based on
their location in the markup. For example, you want to remove some or all
of the top margin before the first child element in a block; or you want to
remove some or all of the bottom margin after the last child element in a
block; or you want to remove some or all of the margin between two
specific blocks.

Solution To remove vertical space between any two blocks, you can insert an empty
division between the blocks. You can assign a negative top margin to the
division to remove the desired amount of space. For example, if you want
to remove 32 pixels of space, you can insert a division assigned to the rule
margin-top:-32px.

Pattern HTML
<div class="CLASS"></div>

CSS
*.CLASS { margin-top:-VALUE; }

Location This pattern applies to block elements.

Explanation This pattern is the opposite of the Block Spacer design pattern and has the
exact opposite structural meaning. By drawing two blocks closer together, the
markup indicates they are more closely related. The class name you assign to
the block space remover element should reflect this purpose.

Furthermore, the structural relationship created by a block space remover or
block spacer element does not belong to either block. It belongs in between
the blocks because it links or separates them. It is best to use structural
markup to create structural meaning because it is easiest to maintain—you
can see it and manipulate it directly in the HTML.

Advantages Unlike the block spacer, the block space remover does not uncollapse
margins. This makes using the block spacer remover simpler and more
predictable.

Disadvantages This design pattern requires an extra element to be inserted into the markup
for each space you want to remove. If you remove too much space, you can
cause blocks to overlap.

Example In the example, each paragraph has been assigned to top and bottom margins
of 32 pixels. The two paragraphs in the second section are preceded and
followed by block space removers, which remove the space before, between,
and after these paragraphs.

Related to Visual Structure, Collapsed Margins, Block Spacer; Margin (Chapter 6)

See also www.cssdesignpatterns.com/block-space-remover

CHAPTER 13 ■ BLOCKS 277

B
LO

C
K

S

http://freepdf-books.com

Left Marginal

HTML

<h1>Left Marginal</h1>
<p class="left-marginal">ProblemYou want to
excerpt an element and move it into the left margin.
You want to put images and notes in the margin. You want it to align
vertically with where it would have been placed in the flow.</p>

<p class="left-marginal">SolutionYou can
create a large left margin and use absolute positioning to move content
into it.

 Disadvantages
Nothing prevents marginal elements from vertically overlapping each other.
OVERLAP!
However, you can prevent marginal elements from overlapping with content on
the right by creating a wide enough left margin.

Advantages<img class="marginal-flag"
src="star.gif" alt="star"/>You can render inline markup like tables.</p>

CSS

*.left-marginal { position:relative; width:480px;

margin-left:230px; margin-right:auto; }

*.marginal-header { position:absolute; left:-220px; width:160px; font-weight:bold; }
*.marginal-note { position:absolute; left:-180px; width:150px;
font-style:italic; font-size:14px; font-weight:normal; }

*.marginal-alert { position:absolute; left:-180px; font-style:italic; }
*.marginal-flag { position:absolute; left:-40px; margin-top:-5px; }

CHAPTER 13 ■ BLOCKS278

B
LO

C
K

S

http://freepdf-books.com

Left Marginal

Problem You want to excerpt elements out of the normal flow and move them into the left
margin. These elements could contain headers, notes, tips, alerts, comments,
images, and so on. You want elements in the margin to be positioned vertically
where they would have been in the flow. You do not mind using fixed widths.

Solution You can indent a block to create a margin on the left and then use absolute
positioning to remove elements from the normal flow into the margin.

You can mark up a block element with the left-marginal class to make it easy to
select. You can indent it using margin-left. You can set it to position:relative,
position:absolute, or position:fixed so its children can be positioned relative
to its margin. You can use margin-right:auto and width to fix the width of the
block so that content does not reflow when the viewport resizes. Reflow may
change the vertical location of marginal elements, which could cause them to
overlap.

You can mark up a marginal element with a class that describes its purpose, such
as marginal-header, marginal-note, and so forth. You can use position:absolute
to remove the element from the flow, and you can use a negative value in left to
move it into the left margin. You can use margin-top to move the element up or
down. You can use width to size the element to fit into the width of the margin.

Pattern HTML
<TERMINAL-BLOCK class="left-marginal">
<INLINE-TEXT class="marginal-TYPE"> text </INLINE-TEXT>

</TERMINAL-BLOCK>

CSS
*.left-marginal { position:relative; width:+VALUE;
margin-left:+VALUE; margin-right:auto; }

*.marginal-TYPE { position: absolute;
left: -VALUE;
width: +VALUE;
margin-top: ±VALUE; }

Location This pattern works on any element.

Caution The layout created by this pattern does not protect elements from overlapping in
the margin. It is easy to move an element into the margin and have it overlap
other elements in the margin. Also, a browser that does not support absolute
positioning renders marginal text inline where it occurs.

Tips You can combine this pattern with Right Marginal.

This pattern is visually similar to HTML tables, but the markup is more flexible.
You can pull out any element and move it into the margin.

Related to Right Marginal; Box Model (Chapter 4); Margin (Chapter 6); Positioning Models,
Positioned, Closest Positioned Ancestor, Absolute, Relative (Chapter 7); Offset
Absolute and Offset Fixed (Chapter 8); Marginal Dropcap, Marginal Graphic
Dropcap (Chapter 18); Left Marginal Callout (Chapter 19); Left Marginal Alert
(Chapter 20)

See also www.cssdesignpatterns.com/left-marginal

CHAPTER 13 ■ BLOCKS 279

B
LO

C
K

S

http://freepdf-books.com

Right Marginal

HTML

<h1>Right Marginal</h1>
<p class="right-marginal">ProblemYou want to
excerpt an element and move it to the right margin.
You want to put images and notes in the margin. You want it to align
vertically with where it would have been placed in the normal flow.</p>

<p class="right-marginal">SolutionYou can
create a large right margin and use absolute positioning to move content
into it.

 Disadvantages
Nothing prevents marginal elements from vertically overlapping each other.
OVERLAP!
However, you can prevent marginal elements from overlapping with content on
the left by creating a wide enough right margin.

Advantages<img class="marginal-flag"
src="star.gif" alt="star"/>You can render inline markup like tables.</p>

CSS

body { width:702px; }

*.right-marginal { position:relative; width:480px;

margin-right:210px; margin-left:auto; }

*.marginal-header {position:absolute; right:-230px; width:170px; font-weight:bold; }
*.marginal-note { position:absolute; right:-230px; width:150px;
font-style:italic; font-size:14px; font-weight:normal; }

*.marginal-alert {position:absolute; right:-230px; width:150px; font-style:italic; }
*.marginal-flag { position:absolute; right:-30px; margin-top:-5px; }

CHAPTER 13 ■ BLOCKS280

B
LO

C
K

S

http://freepdf-books.com

Right Marginal

Problem You want to excerpt elements out of the normal flow and move them into
the right margin. These elements could contain headers, notes, tips, alerts,
comments, images, and so on. You want elements in the margin to be positioned
vertically where they would have been in the flow. You do not mind using fixed
widths.

Solution You can indent a block to create a margin on the right and then use absolute
positioning to remove elements from the normal flow into the margin.

You can mark up a terminal block element with the right-marginal class to
make it easy to select. You can indent it using margin-right. You can set it to
position:relative, position:absolute, or position:fixed so its inline children
can be positioned relative to its margin. You can use margin-left:auto and width
to fix the width of the terminal block so that the content does not reflow when
the viewport resizes. Reflow may change the vertical location of marginal
elements, which could cause them to overlap. You can set the width of <body> or
the width of one of the terminal block’s ancestors to a fixed measurement to
prevent the block from moving to the right as the viewport grows larger.

You can mark up a marginal element with a class that describes its purpose, such
as marginal-header, marginal-note, and so forth. You can use position:absolute
to remove the inline element from the flow, and you can use a negative value in
right to move it into the right margin. You can use margin-top to move the inline
element up or down. You can use width to size the inline element to fit into the
width of the margin.

Pattern HTML
<TERMINAL-BLOCK class="right-marginal">
<INLINE-TEXT class="marginal-TYPE"> text </INLINE-TEXT>

</TERMINAL-BLOCK>

CSS
*.right-marginal { position:relative; width:+VALUE;
margin-right:+VALUE; margin-left:auto; }

*.marginal-TYPE { position: absolute;
right: -VALUE;
width: +VALUE;
margin-top: ±VALUE; }

Location This pattern works on any element.

Caution The layout created by this pattern does not protect elements from vertically
overlapping in the margin. You need to plan carefully to avoid this problem.

Tips You can combine this pattern with Left Marginal.

This pattern is visually similar to HTML tables, but the markup is more flexible.
You can pull out any element and move it into the margin.

Related to Left Marginal; Box Model (Chapter 4); Margin (Chapter 6); Positioning Models,
Positioned, Closest Positioned Ancestor, Absolute, Relative (Chapter 7); Offset
Absolute and Offset Fixed (Chapter 8); Marginal Dropcap, Marginal Graphic
Dropcap (Chapter 18); Right Marginal Callout (Chapter 19); Right Marginal Alert
(Chapter 20)

See also www.cssdesignpatterns.com/right-marginal

CHAPTER 13 ■ BLOCKS 281

B
LO

C
K

S

http://freepdf-books.com

http://freepdf-books.com

Images

This chapter shows how to use images to create beautiful and functional documents that
remain accessible and download quickly.

Chapter Outline

• Image shows how to use the element. It also contrasts the advantages and
disadvantages of the GIF, JPG, and PNG image formats.

• Image Map shows how to overlay an image with clickable areas that link to other pages.

• Fade-out shows how to use gradient images to add subtle shading behind content. It
also shows how to create chameleon gradients that adapt to the current background.

• Semi-transparent shows how to put a partially transparent background behind an
element so that it stands out from the background below it without obscuring it.

• Replaced Text shows how to replace text with an image while remaining accessible to
nonsighted users. This technique also shows the text when the image is unavailable.

• Content over Image shows how to overlay text and other images on top of an image.

• Content over Background Image shows how to overlay text and other images on top of
a background image.

• CSS Sprite shows how to embed multiple images into one file and display them inde-
pendently as the background of different elements of a document.

• Basic Shadowed Image shows how to create and apply a simple shadow to an image
without modifying the image itself.

• Shadowed Image shows a generic way of applying a shadow to an image of any size.

• Rounded Corners shows how to round the corners of an element’s borders and how to
create custom borders of any style imaginable.

• Image Example showcases these patterns in one document.

283

C H A P T E R 1 4

http://freepdf-books.com

Image

HTML

<!-- Nonessential markup is not shown. -->

CSS

img { display:block; width:auto; height:auto; }

/* Nonessential rules are not shown. */

Example

The example contains eight different versions of a picture that I took of Crater Lake on August 4,
2003. The source image is 742✕556 pixels with a file size of 1,238,822 bytes. I processed the
image to create eight separate files—each with a different image type and quality.

The first image is a JPG image at maximum quality, which reduces the file size to
275,798 bytes. This is a reduction of 5 times. At a JPG’s highest quality, it is difficult to see
any loss of quality. The second image is a JPG at 90% quality, which reduces the file size to
81,248 bytes. This is a reduction of 15 times. At 90% quality, you can barely see a difference
with a magnifying glass. You can see a difference in the third and fourth images, which are
JPGs at 75% and 50% quality and 41,290 and 14,841 bytes. This is a reduction of 30 and
84 times.

The fifth and sixth images are GIFs. These images have less quality and larger sizes than
the JPG images. This is not a fair test of GIFs because they are not designed for real-world
images containing thousands of colors. GIFs produce smaller files and have better quality
when used for computer-generated images containing 256 or less colors.

The seventh and eight images are PNGs. These images have the best quality with slightly
smaller file sizes than the best-quality JPG, but there is no way to increase the compression to
shrink the file size.

CHAPTER 14 ■ IMAGES284

IM
A

G
E

S

http://freepdf-books.com

Image

Problem You want to insert an image into the document because it is part of the content.

Solution You can insert an image into your document using . You can use the src
attribute to specify the URL containing the image.

You should put a brief description of the image in the alt attribute. This
alternative description should be written specifically for screen readers to read
and for displaying when the image fails to download. Decorative images are best
displayed as background images, but if you must use a decorative element,
include the alt attribute, but leave it empty.

Because a browser downloads each image separately, it needs to know the
image’s height and width so it can create a placeholder for the image while the
image downloads. Otherwise, after each image is downloaded and its real size
becomes known, a browser has to reflow the page. This slows the rendering
and annoys the user. To set an image’s size, you can use the width and height
attributes of or the width and height CSS properties. There is no need to
use both. CSS properties override HTML attributes.

Pattern HTML
<img src="FILE.EXT" width="IMAGE_WIDTH" height="IMAGE_HEIGHT"
alt="BRIEF_IMAGE_DESCRIPTION" />

Location This pattern applies to images.

Tips An image is an inline element. It vertically aligns to the baseline of the line in
which it occurs. You can use vertical-align to adjust the alignment.

When you want to treat an image as a block, you should use display:block to
display it as a block. This removes a small amount of extra space that a browser
places below an image when it is inline, and it preserves the image’s size when it
fails to download.

JPG, GIF, and PNG are the most common types of images on the Internet.

JPG is the best image format for photographs. JPG supports up to 16 million
colors and lossy compression. You control the amount of lossy compression from
none to extreme. More compression produces smaller files and poorer quality.
JPG does not support transparency.

GIF is the best image format for line art and computer-generated images. GIF
supports a transparent background, but it does not support an alpha channel.
GIF supports up to 256 colors in the palette. To get more colors, a graphics
program may use dithering to simulate them. GIF uses lossless compression.
You cannot control the amount of compression. The main problem with GIF is
its limit of 256 colors and its lack of an alpha channel.

PNG is an improvement over GIF. It supports alpha channel transparency,
16 million colors, grayscale, and palette-based colors. PNG uses lossless
compression, which you cannot control. Internet Explorer 7 and other major
browsers support PNG transparency. Internet Explorer 6 does not.

Related to Image Map; Inline-block Box (Chapter 4); Width, Height, Sized, Shrinkwrapped,
Stretched (Chapter 5); Margin, Border, Padding (Chapter 6); Vertical-aligned
Content, Vertical-offset Content (Chapter 12); Left Marginal, Right Marginal
(Chapter 13); Flyout Menu (Chapter 17); JavaScript Alert, Tooltip Alert, Popup
Alert (Chapter 20)

See also www.cssdesignpatterns.com/image

CHAPTER 14 ■ IMAGES 285

IM
A

G
E

S

http://freepdf-books.com

Image Map

HTML

<h1>Image Map</h1>

<h2>Northwest USA</h2>

<map id="nw-map" name="nw-map">

<area href="washington.html" alt="Washington"
shape="poly" coords="176,8, 164,89, 75,89, 40,72, 45,8" />

<area href="oregon.html" alt="Oregon"
shape="rect" coords="9,90, 155,180" />

<area href="idaho.html" alt="Idaho"
shape="circle" coords="212, 134,55" />

</map>

CSS

/* There are no CSS properties for styling image maps. */

CHAPTER 14 ■ IMAGES286

IM
A

G
E

S

http://freepdf-books.com

Image Map

Problem You want to overlay an image with clickable areas that link to other pages.

Solution You can link an image to a map element that defines clickable areas and
associates each area with a URL. When a user clicks an area, a browser jumps to
its associated link. You can add a usemap attribute to an image to link the image
to the map element with the same value in its name attribute. Multiple images
can be linked to the same map element. For easy access to the element through
JavaScript, it is a good practice for map elements to have an id attribute with the
same value as its name attribute.

A map element contains one or more area elements. Each area defines a region
of an image that can be clicked. Areas should not overlap, but if they do, the
document order of area elements determines the stacking order.

Each area has four required attributes: href, alt, shape, and coords. href is the
URL of the link that a browser jumps to when a user clicks the area. alt is read
by screen readers to describe the link—it is not visible. shape is the shape of the
area, which is one of three shapes: rect, circle, and poly. coords define the
location and extent of the shape.

The number and meaning of coordinates in coords varies with each type of
shape. Rectangles require four comma-delimited numbers. The first two are x, y
coordinates of the upper-left corner of the rectangle, and the second two are x, y
coordinates of the lower-right corner. Circles require three comma-delimited
numbers. The first two are x, y coordinates of the circle’s center, and the third is
its radius. Polygons require a series of comma-delimited numbers in pairs of x, y
coordinates that define the points of the polygon.

This design pattern does not use any CSS styles.

Pattern HTML
<img usemap="MAP_NAME" src="FILE.EXT"
width="WIDTH" height="HEIGHT" alt="DESCRIPTION" />

<map name="MAP_NAME" id="MAP_NAME">
<area href="URL" shape="RECT_CIRCLE_POLY" coords="x,y..."
alt="SCREENREADER_DESCRIPTION" />

</map>

Location This pattern applies to images and image maps.

Tip Image maps work well when you want a user to explore something visual, such
as a real-world map. The problem is that image maps are invisible. Other than
the mouse pointer changing shape when it is over a clickable area, a user cannot
tell where areas are located, how many areas there are, and which areas have
already been visited. For this reason, image maps are often paired with
redundant links that are absolutely positioned over the image. These links
make it clear what is clickable and what has already been visited. The example
at the end of the chapter shows how this works.

Related to Image, Content over Image, Content over Background Image

See also www.cssdesignpatterns.com/image-map

CHAPTER 14 ■ IMAGES 287

IM
A

G
E

S

http://freepdf-books.com

Fade-out

HTML

<h1>Fade-out</h1>

<h2 class="g1">g1 Horizontal Fade-out of GIF image to gold background color.</h2>
<h2 class="g2">g2 Horizontal Fade-out of any background color to PNG image.</h2>

<h2 class="g3">g3 Vertical Fade-out of GIF image to white background color.</h2>
<h2 class="g4">g4 Vertical Fade-out of JPG image to white background color.</h2>
<h2 class="g5">g5 Vertical Fade-out of any background color to PNG image.</h2>
<h2 class="g6">g6 Vertical Fade-out of PNG image to any background color.</h2>

CSS

*.g1 { background:url("h-white2gold.gif") repeat-y left top gold; }
*.g2 { background:url("h-trans2white.png") repeat-y right top royalblue; }

*.g3 { background:url("v-gold2white.gif") repeat-x left top white; }
*.g4 { background:url("v-lightning.jpg") repeat-x left top white; }
*.g5 { background:url("v-trans2white.png") repeat-x left bottom red; }
*.g6 { background:url("v-white2trans.png") repeat-x left top green; }

/* Nonessential rules are not shown. */

CHAPTER 14 ■ IMAGES288

IM
A

G
E

S

http://freepdf-books.com

Fade-out

Problem You want to create a gradient background behind an element. You want the
gradient to work well regardless of how wide or tall the element grows.

Solution There are two keys to creating a scalable background gradient: (1) fading the
gradient into the background color, and (2) tiling it in the opposite direction of
the gradient. For example, when the gradient is horizontal, you can tile the image
vertically, and vice versa. This allows the element to grow in any direction while
preserving the gradient effect. As an element grows, the background color fills
in where the background image ends, and the image tiles to fill in the opposite
direction.

Using a graphics program, you can create a gradient image, such as a JPG, GIF,
or PNG, that transitions from the forecolor and backcolor of your choosing.
For example, if your document’s background color is white and you want your
forecolor to be gold, you could create a gradient image that transitions from
white to gold or vice versa.

Using a graphics program, you can use a gradient mask to fade any image,
illustration, or graphical text into the background color. In the example, the
fourth heading has a background image created from a texture that fades out
to the white background color.

You can also create a generic PNG image that fades from a predefined forecolor
to whatever background color is currently assigned to the element. In the
example, the second, fifth, and sixth headings use PNG images that fade from
white to transparent. You can change the background color, and the image fades
from white to that color. It just takes one of these chameleon PNG gradients to
transition to any background color!

The following design patterns show how to align and tile gradients in all four
directions.

Patterns Horizontal Left-to-Right Fade-out
SELECT { background:url("FILE.EXT") repeat-y left top COLOR; }

Horizontal Right-to-Left Fade-out
SELECT { background:url("FILE.EXT") repeat-y right top COLOR; }

Horizontal Top-to-Bottom Fade-out
SELECT { background:url("FILE.EXT") repeat-x left top COLOR; }

Horizontal Bottom-to-Top Fade-out
SELECT { background:url("FILE.EXT") repeat-x left bottom COLOR; }

Location This pattern applies to all elements.

Limitations Internet Explorer 6 does not support PNG transparency, but Internet Explorer 7
and the other major browsers do. In the example, the PNG images show up in
Internet Explorer 6 as gray gradients, which is not a bad effect in and of itself.

Related to Semi-transparent; Background (Chapter 6)

See also www.cssdesignpatterns.com/image

CHAPTER 14 ■ IMAGES 289

IM
A

G
E

S

http://freepdf-books.com

Semi-transparent

HTML

<h1>Semi-transparent</h1>

<div id="nw">

Washington
Oregon
Idaho

<p id="note1">
Semi-transparent backgrounds are gray in Internet Explorer 6, but they are
semi-transparent in Internet Explorer 7 and all other major browsers.</p>

</div>

CSS

*.overlay { background:url("semi-transparent.png") repeat; }

#note1 { background:url("trans2white.png") bottom left repeat-x; }

/* Nonessential rules are not shown. */

CHAPTER 14 ■ IMAGES290

IM
A

G
E

S

http://freepdf-books.com

Semi-transparent

Alias Translucent

Problem You want an element to have a partially transparent background so that it stands
out from the background below it without obscuring it.

Solution You can use a graphics program to create a semi-transparent PNG image. You
can set the transparency of its background to some value less than 100% to
make it partially transparent. You can also use a gradient mask to fade into
transparency. The color or colors you use in this image are important. Semi-
transparent grayscale colors are color-neutral when they overlay a background.
Nongrayscale semi-transparent colors colorize.

If the image has the same transparency throughout, it only needs to have a
height and width of about 10 pixels so a browser can efficiently tile it to fill the
background of its container. For example, the semi-trnsparent.png image in the
example is 10 pixels square, and I use background:repeat to tile it throughout the
background. If the image contains a vertical transparent gradient, it needs to be
about 10 pixels wide and as tall as the gradient. For example, the trans2white.png
in the example is 10 pixels wide and 100 pixels tall to fit the gradient. I use
background:repeat-x to tile it horizontally across the background. If the image
contains a horizontal gradient, it needs to be about 10 pixels tall and as wide as
the gradient, and you can tile it vertically down the background.

Pattern CSS
SELECT { background:url("SEMI_TRANSPARENT_FILE.png") repeat; }

Location This pattern applies to all elements.

Limitations Internet Explorer 6 does not support PNG transparency, but Internet Explorer 7
and the other major browsers do. In the example, the PNG images show up in
Internet Explorer 6 as gray gradients, which is a nice way for the effect to
degrade.

Advantages Semi-transparency is practical and looks great as long as the color of the text
contrasts well with the background. I expect to see more demand for this
technique now that Windows Vista has joined the other major operating systems
in building transparency effects into the desktop.

Example In the example, the four spans positioned over the image have semi-transparent
gray backgrounds. I created this effect by tiling semi-trnsparent.png across their
background. Since this image is semi-transparent, you can partially see the
image of the map behind them.

In the example, paragraph #note1 has a semi-transparent gradient that starts out
transparent at the top and transitions to white at the bottom. This allows the
background image to show through at the top of its background and gradually
fade out to white at the bottom. This is the same trans2white.png image that I
used in the Fade-out design pattern.

Related to Fade-out; Background (Chapter 6)

See also www.cssdesignpatterns.com/semi-transparent

CHAPTER 14 ■ IMAGES 291

IM
A

G
E

S

http://freepdf-books.com

Replaced Text

HTML

<h1>Replaced Text</h1>

<h2 id="h2">Heading 2</h2>

CSS

#h2 { position:relative; width:250px; height:76px;

padding:0; overflow:hidden; }

#h2 span { position:absolute; width:250px; height:76px;

left:0; top:0; margin:0;
background:url("heading2.jpg") no-repeat; }

CHAPTER 14 ■ IMAGES292

IM
A

G
E

S

http://freepdf-books.com

Replaced Text

Problem You want to replace text with an image. You also want the text to be read by a
screen reader. You also want the text to be visible if the image is unavailable.

Solution You can insert an empty into the block element that contains text that
you want to replace with an image. You can assign the image to be the span’s
background image. You can relatively position the block element and absolutely
position the span at the top left of the block. This displays the span in front of the
block. You can size both the block and the span to fit the image exactly. Since
the block and the span are the same size and the span is in front of the block, the
background image of the span covers the text in the block. If the span’s image is
unavailable, the text behind it is visible because the span’s background is
transparent.

You can assign a unique ID to the block containing the text you want to replace.
Using a unique ID is important when text you are replacing with the image is
unique in the document. If you repeatedly replace the same text with the same
image, you may want to use a class instead.

It is important that the block has no padding and the span has no margin.
Otherwise, the hidden text might be visible. In addition, you can use
overflow:hidden to ensure text does not overflow from behind the image. Also
make sure the text fits within the area of the image so that if a user turns off
images, the text does not overflow and get cut off.

Pattern HTML
<BLOCK id="UNIQUE-ID"> TEXT </BLOCK>

CSS
#UNIQUE-ID { position:relative; padding:0; overflow:hidden;
width:IMAGE_WIDTH;
height:IMAGE_HEIGHT; }

#UNIQUE-ID span { position:absolute; margin:0;
left:0; top:0;
width:IMAGE_WIDTH;
height:IMAGE_HEIGHT;
background:url("FILE.EXT") no-repeat; }

Location This pattern applies to any block element.

Limitations When a user zooms in on a document in Firefox 2 and Internet Explorer 6,
images do not enlarge along with the text. This does not apply to Internet
Explorer 7 and Opera 9, which properly zoom images and text. Users typically
zoom in because they need to see everything larger. When replaced images
do not enlarge, the document is less accessible. This is usually not an issue
because replaced text is typically a heading, and the text in the image is large
to begin with.

Tips Text replacement works well with links and buttons that use rollover effects.

Related to Width, Height, Sized (Chapter 5); Background (Chapter 6); Positioning Models,
Positioned, Closest Positioned Ancestor, Absolute (Chapter 7); Left Aligned, Top
Aligned (Chapter 9)

See also www.cssdesignpatterns.com/replaced-text

CHAPTER 14 ■ IMAGES 293

IM
A

G
E

S

http://freepdf-books.com

Content over Image

HTML

<h1>Content over Image</h1>

<div class="figure">
<h3 class="caption">Crater Lake North Rim</h3>
<p id="crater-date"> August 4, 2003
</p>

<img class="framed" width="518" height="389"
src="crater-lake.jpg" alt="Crater Lake North Rim August 4, 2003" /></div>

CSS

*.figure { float:left; position:relative;

color:white; background-color:black; }

*.figure *.caption { position:absolute; margin:15px; left:0; top:0;
font-size:1.05em; }

*.framed { display:block;

border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

#crater-date { position:absolute; left:0; bottom:10px; width:518px;
text-align:center; color:white; font-size:0.8em; }

CHAPTER 14 ■ IMAGES294

IM
A

G
E

S

http://freepdf-books.com

Content over Image

Problem You want to place text on top of an image. You want to position the text relative
to the image. You want the text to be visible if the image does not load. You want
search engines to give the text a high priority and to index the image because it is
part of the content.

Solution You can embed a heading, an image, and any other type of object in a block
element. You can shrinkwrap the block around the image by floating it or
absolutely positioning it. This makes this design pattern work with any size
of image. You can relatively position the block so it is the closest positioned
ancestor of the image. This allows you to position text elements at any location
over the image.

You can absolutely position the heading and use the alignment design patterns
in Chapter 9 to position it within the image. Aligning the heading to the block is
the same as aligning to the image because the block is shrinkwrapped to the
image and is the closest positioned ancestor.

Pattern HTML
<BLOCK class="figure">
<HEADING class="caption"> TEXT_OVER_TEXT </HEADING>

<p id="UNIQUE_ID"> TEXT_OVER_TEXT </p>

<img src="FILE.EXT" alt="IMAGE_DESCRIPTION"
width="IMAGE_WIDTH" height="IMAGE_HEIGHT" />

</BLOCK>

CSS
*.figure { float:LEFT_OR_RIGHT; position:relative;
color:COLOR; background-color:COLOR; }

*.figure *.caption { position:absolute; POSITIONING_STYLES; }
*.framed { display:block; border:WIDTH STYLE COLOR; }

#UNIQUE_ID { position:absolute; POSITIONING_STYLES; }

Location This pattern can be used anywhere a block element can be used.

Tips You can use any type of element for text-over effects. I use a heading because
search engines prioritize headings, and speech readers use headings to create
an aural table of contents for the page.

You can include any number and type of child elements in the figure. You can
assign each to a unique ID so that you can position it within the image.

In case a down-level browser does not shrinkwrap the block around the image,
you should put borders around the image instead of the block.

Example The example assigns text in the block to a white color over a black background.
This ensures the text is visible if the image does not load. Also, the alt text is
purposefully omitted from the two star images because they are meant to be
decorative—the Inline Decoration design pattern is a better choice for displaying
decorative images, but I wanted to keep the example simple.

Related to Content over Background Image; Display, Block Box (Chapter 4); Border,
Background (Chapter 6); Positioning Models, Positioned, Closest Positioned
Ancestor, Absolute, Float and Clear, Relative Float (Chapter 7); Aligned and
Offset Absolute (Chapter 8); Inline Decoration (Chapter 11)

See also www.cssdesignpatterns.com/content-over-image

CHAPTER 14 ■ IMAGES 295

IM
A

G
E

S

http://freepdf-books.com

Content over Background Image

HTML

<h1>Content over Background Image</h1>

<div id="crater-lake">
<h3 class="caption">Crater Lake North Rim</h3>
<p id="crater-date"> August 4, 2003
</p></div>

CSS

#crater-lake { position:relative; padding:0; width:700px; height:500px;

background:black url("crater-lake.jpg") no-repeat center center; }

#crater-lake *.caption { position:absolute; margin:15px; left:0; top:0;
font-size:1.05em; color:white; }

#crater-date { position:absolute; left:0; bottom:10px; width:700px;
text-align:center; color:white; font-size:0.8em; }

/* Nonessential rules are not shown. */

CHAPTER 14 ■ IMAGES296

IM
A

G
E

S

http://freepdf-books.com

Content over Background Image

Problem Like the Content over Image design pattern, you want to place text and objects
on top of an image, but you do not want the image to be part of the document’s
content, and you do not want search engines to index the image. You want to
position the text relative to the image. You want the text to be visible when the
image does not load. You want search engines to give the text priority.

Solution You can assign a background image to a sized block element. Unique IDs work
well for linking unique background images to these blocks. If you use the same
image multiple times, you may want to use a class instead.

You can use background to center a nontiled background image in the block. You
can size the block to the exact size of the image or to an arbitrary size. If you size
it larger than the image, the background color of the block becomes visible and
creates a picture-frame effect around the image. The same thing happens if you
apply padding to the block. If you size the block smaller than the image, it crops
the image.

You can relatively position the block so you can absolutely position its child
elements relative to it. You can use the alignment design patterns in Chapter 9
to position child elements within the image.

Pattern HTML
<BLOCK id="IMAGE-NAME">
<HEADING class="caption"> TEXT_OVER_TEXT </HEADING>
<p id="UNIQUE_ID"> TEXT_OVER_TEXT </p>

</BLOCK>

CSS
#IMAGE-NAME {
position:relative;
width:IMAGE-WIDTH; height:IMAGE-HEIGHT;
padding:VALUE;
background:url("FILE.EXT") COLOR center center no-repeat; }

#IMAGE-NAME *.caption { position:absolute; POSITIONING_STYLES; }
#UNIQUE_ID { position:absolute; POSITIONING_STYLES; }

Location This pattern can be used anywhere a block element can be used.

Advantages There is less HTML markup than the Content over Image pattern because there
is no image element. There is no need for alt text because a text-over caption
serves the same purpose. This works better when the image fails to download
because a browser does not try to display alt text in its place, which might get in
the way of the content rendered on top of the image.

Tip GIF and PNG images with transparent backgrounds overlay background images
nicely. PNGs can even blend their edges into the background.

Example In the example, I increase the height and width of the block to create a picture
frame around the image.

Related to Content over Image; Width, Height (Chapter 5); Padding, Background
(Chapter 6); Positioning Models, Positioned, Closest Positioned Ancestor,
Absolute (Chapter 7); Aligned and Offset Absolute (Chapter 8); Inline
Decoration (Chapter 11)

See also www.cssdesignpatterns.com/content-over-background-image

CHAPTER 14 ■ IMAGES 297

IM
A

G
E

S

http://freepdf-books.com

CSS Sprite

HTML

<h1>CSS Sprite</h1>

<div id="nw">

Olympia

Salem

Boise

</div>

CSS

*.bang-bg { background:url("bt.gif") -48px -16px; width:16px; height:16px; }
*.flag-bg { background:url("bt.gif") -64px -16px; width:16px; height:16px; }
*.star-bg { background:url("bt.gif") -64px -32px; width:16px; height:16px; }

*.star-bg:hover { background-image:url("wt.gif"); background-color:black; }
*.flag-bg:hover { background-image:url("wt.gif"); background-color:black; }
*.bang-bg:hover { background-image:url("wt.gif"); background-color:black; }

*.screenreader-only { position:absolute; left:-9999px; top:-9999px;
width:1px; height:1px; overflow:hidden; }

/* Nonessential rules are not shown. */

CHAPTER 14 ■ IMAGES298

IM
A

G
E

S

http://freepdf-books.com

CSS Sprite

Problem You want to use many images on a page, but you do not want the performance
penalty caused by downloading multiple image files. Even on a broadband
connection, it is not unusual for latency alone to slow the rendering of a page
by 100 milliseconds per image. In other words, the latency of downloading
ten images will likely delay the rendering of a page by 1 second—no matter how
small the image files. Of course, delays caused by latency vary depending on
web server proximity and how busy it is.

Solution You can combine multiple background images into one image file. This file is
called a CSS sprite. For example, you could include most, if not all, of a page’s
background images in one file. You could also embed a library of list bullets,
icons, and text decorations in a CSS sprite that is shared across your web site.

The key to using a sprite is to display it as the background image of a sized
element and to position the background image at the exact horizontal and
vertical offset of the embedded image. The element must be the exact width and
height of the desired embedded image; otherwise, parts of several embedded
images may be visible in its background. The element must be set to the proper
horizontal and vertical offset, or the background will show the wrong embedded
image or will show parts of several embedded images. The measurements used
in width, height, and background-position must all be in pixels because
embedded images are measured in pixels. The values in background-position
are negative because they move the composite background image up and to the
left to position it.

You can replace elements with CSS sprites by displaying them as
background images within sized spans or divisions, but unless content images
cause performance problems, it is more natural to use elements. When
replacing an image with a CSS sprite, you can use the Screenreader-only design
pattern to embed hidden alternate text that will be read only by screen readers.
This makes the CSS sprite accessible.

Pattern HTML
<ELEMENT>
 ALTERNATE_TEXT

</ELEMENT>

CSS
SELECTOR { width:SPRITE_WIDTH; height:SPRITE_HEIGHT;
background-image:url("SPRITE_FILE.EXT");
background-position:-HORIZONTAL_OFFSETpx -VERTICAL_OFFSETpx; }

SELECTOR:hover { background-image:url("HOVER_SPRITE_FILE.EXT");
background-color:COLOR; }

Location This pattern applies to any type of element.

Limitations Background images using CSS sprites cannot be tiled because the entire
composite image would be tiled rather than just the embedded image.

(Continued)

CHAPTER 14 ■ IMAGES 299

IM
A

G
E

S

http://freepdf-books.com

CSS Sprite (Continued)

Figure 14-1. Offsets for 16✕16 sprites as used in bt.gif

Example

I use two CSS sprite files in the example: bt.gif (see Figure 14-1) and wt.gif. These file names
stand for a black image on a transparent background and a white image on a transparent
background. When the user mouses over the image, the hover selector switches out the bt.gif
and replaces it with wt.gif, which inverts the color from black to white. The background is
also changed to black, which shows through the transparent parts of the image.

I include two other sprite files in the example directory that are not used in the example.
They are named tb.gif and tw.gif. These file names stand for transparent images in black
boxes and transparent images in white boxes. These embedded images are little black and
white boxes with transparent images in the center, which change color to match the back-
ground.

I created these four CSS sprites from an icon set called bitcons. I made all the embedded
images exactly 16✕16 pixels, like the originals. These icons are freely licensed and are available
at http://somerandomdude.net/srd-projects/bitcons. Likewise, you are free to use these four
CSS sprite files in your projects.

When making your own CSS sprite images, you can embed any image of any size into the
sprite. Embedded images do not need to be the same size. All you need to know is the offset
and size of each embedded image.

CHAPTER 14 ■ IMAGES300

IM
A

G
E

S

http://freepdf-books.com

CSS Sprite (Continued)

Advantages By reducing the number of files that are downloaded, you can dramatically
speed the loading of a page. Embedding multiple images in a single file
typically results in a smaller overall file size than the combined file sizes
of separate images.

Disadvantages Combining images to create sprites and tracking their offsets can be time
consuming and error prone. This makes managing images harder. It works
best when you create a sprite containing a library of images that work
together to skin a document. Whenever you want to change the look and
feel of a document, you change the sprite.

Tip Managing sprite offsets is easier if all embedded images are the same size.

Latency Over a broadband connection to the Internet, downloading data in a small
file is very quick, but the communication latency involved in requesting a
small file can often take several times longer than actually downloading
the file! HTTP and TCP/IP communications protocols require handshake
messages to be sent back and forth before content can be downloaded,
messages traveling across the Internet compete for bandwidth, and servers
queue requests until they can get to them. My measurements show latency
delays the rendering of a page by approximately 100 milliseconds plus the
time it takes to download the data.

Using Google Load Time Analyzer for Firefox, I tracked web page download
times on my high-speed broadband connection. For example, the home page
of MSN.com took 5 seconds to download 41 files: 1 HTML document, 3 CSS
stylesheets, 4 JavaScript files, 15 GIFs, 10 JPGs, and 8 ad callbacks. The total
download size was 136K, which took 1742 ms to download. The time it took to
send messages to the server and to wait for replies was 15,960 ms! In other
words, for each millisecond that data was downloaded, 9 milliseconds were
spent waiting: 3 milliseconds were lost waiting for messages to travel back
and forth across the Internet, and 6 milliseconds were lost due to server
latency. I have documented the results in an Excel spreadsheet included in
this design pattern’s example directory.

If all 25 images in the MSN homepage were merged into one composite file,
latency would be reduced from 9000 ms to 500 ms. This would save 8500 ms!
Since a browser downloads using three connections simultaneously, the
actual savings are one-third of 8500 ms, or 2800 ms. This one change alone
would reduce the download time of the MSN homepage from 5.2 seconds to
2.4 seconds—more than doubling its download speed!

Sprite history A sprite gets its name from a technique used in two-dimensional video games
of compositing multiple images into one file where each image is a frame of
animation. You can animate a sprite simply by rotating the display through
offsets in the composite image. Animated GIFs use this technique, and you
can use this technique to create rollover effects.

Related to Image; Width, Height (Chapter 5); Background (Chapter 6)

See also www.cssdesignpatterns.com/css-sprite

CHAPTER 14 ■ IMAGES 301

IM
A

G
E

S

http://freepdf-books.com

Basic Shadowed Image

HTML

<h1>Basic Shadowed Image</h1>

<img class="shadowed"
src="crater-lake.jpg"
alt="Crater Lake"
width="518"
height="389" />

CSS

img.shadowed { padding-right:20px;
padding-bottom:20px;
background-image:url("shadow.jpg");
background-position:right bottom;
background-repeat:no-repeat; }

CHAPTER 14 ■ IMAGES302

IM
A

G
E

S

http://freepdf-books.com

Basic Shadowed Image

Problem You want to place a shadow behind an image without having to modify the
original image. You also want to control the distance the shadow is offset from
behind the image.

Solution You can create a shadow image that is the same size as the image it is
shadowing. You can assign the shadow as the nontiled background of the
image. You can use background-position to move the background shadow to
the bottom right of the padding area. You can use padding-right:+VALUE and
padding-bottom:+VALUE to control how much the shadow extends below the
bottom right of the image.

Shadows are traditionally displayed in the bottom-right corner, but if you
want to display them in a different corner, you can extend the padding into
that corner and position the shadow there.

Pattern HTML
<img class="shadowed"
src="FILE.EXT" alt="DESCRIPTION"
width="WIDTH" height="HEIGHT" />

CSS
*.shadowed { padding-right:+VALUE;
padding-bottom:+VALUE;
background-image:url("FILE.EXT");
background-position:right bottom;
background-repeat:no-repeat; }

Location This pattern applies to images.

Advantages Because the shadow is an image, there is no limit to what you can do with
the shadow. You can use any color, blur, and texture to fit the style of your
document.

This pattern is simple and does not require you to process images to embed
shadows in them. You can also change the look and feel of all shadows on a
web site by simply changing the shadow image.

Disadvantages This pattern requires you to create a shadow image for each size of image.
If all your images are the same size or have a limited number of sizes, this
pattern works well. If your images come in unpredictable sizes, you may want
to use the more complicated, yet more versatile, Shadowed Image pattern.

The latency caused by a browser checking to see whether the shadowed image
has already been downloaded slows the rendering of a page—even on
broadband connections.

Related to Image, Shadowed Image; Padding, Background (Chapter 6)

See also www.cssdesignpatterns.com/basic-shadowed-image

CHAPTER 14 ■ IMAGES 303

IM
A

G
E

S

http://freepdf-books.com

Shadowed Image

Figure 14-2. shadow.jpg

Figure 14-3. shadow-rt.jpg and shadow-lb.jpg are created by extracting them from shadow.jpg.

Figure 14-4. shadow-rt.jpg indents and closes off the top-right edge of the shadow.

Figure 14-5. shadow-lb.jpg indents and closes off the left-bottom edge of the shadow.

CHAPTER 14 ■ IMAGES304

IM
A

G
E

S

http://freepdf-books.com

Shadowed Image

Problem You want to place a shadow behind an image without having to modify the
original image. You also want to control how much the shadow is offset from the
image. You also want the shadow to work automatically with any size of image.

Solution You can use three image files to create a shadow that will automatically fit any
image. This can be a great timesaver because you do not need to embed shadows
within images, and it makes it easy to change the style of the shadows on the fly.

Like the Basic Shadowed Image pattern, the first step is to create a shadowed
image, as shown in Figure 14-2, or reuse one previously created like the one in
the example. I name this file shadow.jpg. Unlike the Basic Shadowed Image
pattern, shadow.jpg should be as large as the largest image it will shadow.

In addition, you need to create two additional images by extracting them from
the shadowed image (see Figure 14-3). One indents and closes off the right-top
edge of the shadow (see Figure 14-4), and one indents and closes off the left-
bottom edge of the shadow (see Figure 14-5). These images are the key to
creating an automatically sized shadow because they create the illusion that the
shadow is indented on the right-top and the left-bottom, as shown in Figure 14-6.
I call these the indentor images.

In the example, I created the two indentor images as follows. I extracted the
right-top corner of the shadow image and saved it as shadow-rt.jpg (see
Figure 14-4). I also extracted the left-bottom corner of the shadow image and
saved it as shadow-lb.jpg (see Figure 14-5). I made shadow-rt.jpg 100 pixels wide
and only as tall as needed to capture the shadow’s blur. I made shadow-lb.jpg
100 pixels tall and only as wide as needed to capture the shadow’s blur. I then
expanded the canvas of each of these two images to make them 100 pixels
square. I put the background color in the expanded part of these images. This
allows the indentors to indent up to 100 pixels of the shadow by covering it with
the background color (see Figure 14-6).

You need to stack the images in the following order from bottom to top:
shadow.jpg, shadow-rt.jpg, and shadow-lb.jpg. The image receiving the shadow
gets stacked on top of them all, as shown in Figure 14-6. You can stack these
three background images by assigning them to three nested block elements. I
typically use divisions. The order is important. You can assign shadow.jpg to the
outermost block element. You can assign shadow-rt.jpg to the second nested
element. You can assign shadow-lb.jpg to the third nested element. You can
place the element inside the third nested block.

To shrinkwrap these three elements to the size of the image, you need to float
them or absolutely position them.

(Continued)

CHAPTER 14 ■ IMAGES 305

IM
A

G
E

S

http://freepdf-books.com

Shadowed Image (Continued)

Figure 14-6. Composite view of the shadowed image

CHAPTER 14 ■ IMAGES306

IM
A

G
E

S

http://freepdf-books.com

Shadowed Image (Continued)

Apply styles to your chosen class or ID as follows:

-You can use background-image to load the shadow images into the backgrounds
of their respective elements.

-You can use background-position:right bottom; to position the shadow image
in the right-bottom corner of the image.

-You can use background-position:right TOP_OFFSET; to position shadow-rt.jpg
at an offset from the right-top corner of the image. You can calculate the value
of TOP_OFFSET by adding BOTTOM_OFFSET to the negative of the height of
shadow-rt.jpg. For example, if the height of shadow-rt.jpg is 100 pixels and
BOTTOM_OFFSET is 20 pixels, you would add 20 to –100 to get a TOP_OFFSET of
-80px. By offsetting shadow-rt.jpg by the inverse of its height, you are aligning
its bottom to the top of the background. By adding back in the BOTTOM_OFFSET,
you move it down the same amount that you move down the shadow.

-You can use background-position:LEFT_OFFSET bottom; to position shadow-lb.
jpg at an offset from the left-bottom corner of the image. You can calculate the
value of LEFT_OFFSET by adding RIGHT_OFFSET to the negative of the width of
shadow-lb.jpg. For example, if the width of shadow-lb.jpg is 100 pixels and
RIGHT_OFFSET is 20 pixels, you would add 20 to –100 to get a LEFT_OFFSET of -80px.
By offsetting shadow-lb.jpg by the inverse of its width, you are aligning its right
side to the left side of the background. By adding back in the LEFT_OFFSET, you
move it to the right by the same amount that you move the shadow to the right.

-You can use background-repeat:no-repeat to prevent each background image
from being tiled.

-You can use padding-right:RIGHT_OFFSET to move the shadow image past the
right side of the image.

-You can use padding-bottom:BOTTOM_OFFSET to move the shadow image below
the bottom of the image.

(Continued)

CHAPTER 14 ■ IMAGES 307

IM
A

G
E

S

http://freepdf-books.com

Shadowed Image (Continued)

HTML

<h1>Shadowed Image</h1>

<div class="shrinkwrapped">
<div class="shadowed">
<div class="shadowed-rt">
<div class="shadowed-lb">

</div></div></div></div>

CSS

*.shrinkwrapped { float:left; }

*.shadowed { background-image:url("shadow.jpg");
background-position:right bottom; background-repeat:no-repeat; }

*.shadowed-rt { background-image:url("shadow-rt.jpg");
background-position:right -80px; background-repeat:no-repeat; }

*.shadowed-lb { padding-right:20px; padding-bottom:20px;
background-image:url("shadow-lb.jpg");
background-position:-80px bottom; background-repeat:no-repeat; }

CHAPTER 14 ■ IMAGES308

IM
A

G
E

S

http://freepdf-books.com

Shadowed Image (Continued)

Pattern HTML
<div class="shrinkwrapped">
<div class="shadowed">
<div class="shadowed-rt">
<div class="shadowed-lb">

</div></div></div></div>

CSS
*.shrinkwrapped { float:LEFT_OR_RIGHT; }

*.shadowed { background-image:url("FILE.EXT");
background-position:right bottom;
background-repeat:no-repeat; }

*.shadowed-rt { background-image:url("FILE-rt.EXT");
background-position:right TOP_OFFSET;
background-repeat:no-repeat; }

*.shadowed-lb {
padding-right:RIGHT_OFFSET;
padding-bottom:BOTTOM_OFFSET;
background-image:url("FILE-lb.EXT");
background-position:LEFT_OFFSET bottom;
background-repeat:no-repeat; }

Location This pattern applies to images. Because this pattern wraps the image in block
elements, it cannot be used inline.

Advantages Because the shadow is an image, there is no limit to what you can do with the
shadow. You can use any color, amount of blur, and texture to fit the style of
your document. Because this pattern automatically fits the shadow to the size
of the image, you only need to create three images to put a shadow behind
any image of any size. The browser only has to download three image files to
create an unlimited number of shadows.

Disadvantages This pattern requires you to insert extra divisions into the markup to create
this shadow effect.

This pattern requires you to shrinkwrap the parent division to the image.
Otherwise, it will be stretched to the width of its container, and the nested
background images will extend beyond the image to fill the width of the
container. This breaks the shadow effect. In the pattern, I floated the element
to shrinkwrap it. You could also position it to shrinkwrap it. The only block
element that shrinkwraps naturally is the table.

Related to Image, Basic Shadowed Image, Rounded-corners; Padding, Background
(Chapter 6); Float and Clear (Chapter 7)

See also www.cssdesignpatterns.com/shadowed-image

CHAPTER 14 ■ IMAGES 309

IM
A

G
E

S

http://freepdf-books.com

Rounded Corners

HTML

<div class="bg"><div class="tl"><div class="br pad">
You can nest two divisions to create two opposite rounded corners.

</div></div></div>

<div class="bg"><div class="tr"><div class="bl pad">
You can nest two divisions to create two opposite rounded corners.

</div></div></div>

<div class="bg">
<div class="tl"><div class="br"><div class="trc"><div class="blc pad">
You can nest four divisions to create four rounded corners.

</div></div></div></div></div>

CSS

*.bg { background:url("bg.gif") bottom left repeat-x white; margin-top:20px; }

*.tl { background:url("rc.gif") top left no-repeat; }
*.br { background:url("rc.gif") bottom right no-repeat; }
*.tr { background:url("rc.gif") top right no-repeat; }
*.bl { background:url("rc.gif") bottom left no-repeat; }

*.trc { background:url("rc-trc.gif") top right no-repeat; }
*.blc { background:url("rc-blc.gif") bottom left no-repeat; }

*.pad { padding:10px; }

CHAPTER 14 ■ IMAGES310

IM
A

G
E

S

http://freepdf-books.com

Rounded Corners

Problem You want to round the corners of an element’s box. You want the corners to
expand and shrink with the box so it will work with any amount of content.

Solution You can create rounded corners by embedding background images of rounded
corners inside an element. These images also include the borders that connect
the rounded corners to each other. Because these are images, you can create any
style of corner and border you can imagine.

Since CSS only allows one background image per element, you can insert extra
divisions inside the element you want to have rounded corners—one division
for each rounded corner. Embedded divisions with no margins and padding are
located in exactly the same position as their parent. This allows you to layer
background images on top of each other. Note that when a parent element has
a fixed height, its child divisions must also have the same fixed height.

The first two boxes in the example have two rounded corners and two nested
divisions. The third box has four rounded corners and four nested divisions.
A detailed explanation follows on the next page.

Patterns HTML
<div class="bg"><div class="tl"><div class="br">
CONTENT

</div></div></div>

or

<div class="bg"><div class="tr"><div class="bl">
CONTENT

</div></div></div>

or

<div class="bg"><div class="tl"><div class="br">
<div class="trc"><div class="blc">
CONTENT

</div></div></div></div></div>

CSS
*.bg { background:BACKGROUND_STYLES; margin-top:20px; }

*.tl { background:url("RC_FILE.EXT") top left no-repeat; }
*.tr { background:url("RC_FILE.EXT") top right no-repeat; }
*.br { background:url("RC_FILE.EXT") bottom right no-repeat; }
*.bl { background:url("RC_FILE.EXT") bottom left no-repeat; }

*.trc { background:url("TRC_FILE.EXT") top right no-repeat; }
*.blc { background:url("BLC_FILE.EXT") bottom left no-repeat; }

Location This pattern applies to block elements and inline elements that are positioned,
floated, or displayed as blocks.

(Continued)

CHAPTER 14 ■ IMAGES 311

IM
A

G
E

S

http://freepdf-books.com

Rounded Corners (Continued)

Figure 14-7. Creating rounded corners from rounded rectangle images

Creating the Three Rounded Rectangle Images

In the example, I started with a 1600✕1600 transparent canvas. I added a rounded rectangle
that hugged the edges of the canvas. The rounded rectangle had a transparent interior. I filled
in the exterior pixels of each rounded corner with the external background color, which is
white in my example. This makes them opaque so the outside of each corner overlays the
interior background with the background color. Notice in Figure 14-7 how the outside of the
top-left corner of the first rounded rectangle and the outside of the bottom-right corner of
the second rounded rectangle would display the internal background if they were not opaque.
Lastly, I saved the image as rc.gif.

To create the cutout images, I cut out the bottom-left corner and the top-right corner of
the rounded rectangle image and saved them as separate GIF images named tr.gif and
bl.gif. I made sure the exterior part of the corner remained opaque and the interior remained
transparent. Otherwise, they would not do their job of hiding the external square borders on
the outside and letting the background show through on the inside. I sized each cutout just
large enough to cover the square corner with a rounded corner.

Creating the three rounded rectangle images is simple: create a transparent rounded
rectangle; fill in the exterior of its rounded corners; and save the bottom-left and top-right
corners as separate images.

CHAPTER 14 ■ IMAGES312

IM
A

G
E

S

http://freepdf-books.com

Rounded Corners (Continued)

Detailed Solution You can assign a background image to each nested division. I use six
classes for that purpose: tl, br, tr, trc, bl, and blc, which stand for top
left, bottom right, top right, top-right corner, bottom left, and bottom-left
corner.

To create two opposite rounded corners, you can apply the same
background image to two child divisions. The image should be a large
rounded rectangle with a transparent interior so the background image
or color will show through. The exterior of its rounded corners should be
opaque and should be the same color as the exterior background color.

The key is to position the same rounded rectangle image in the top-left
corner and in the bottom-right corner (see Figure 14-7). This creates two
overlapping rounded rectangles. As the element expands or contracts, so
do the rounded rectangles. The content of the element can grow as large as
the size of the rounded rectangle before the illusion breaks. This is not a
problem because you can make this rectangle as large as you want. In the
example, I made the rounded rectangle image 1600✕1600 pixels, and yet it
has a file size of only 8,278 bytes because most of it is transparent.

To create four rounded corners, you can position the same rounded
rectangle image in the top-left corner and in the bottom-right corner. You
then assign two additional background images to two additional nested
divisions: one is positioned in the top-right corner, and the other in the
bottom-left. These new images are tiny rounded corners that cover up the
square intersections of the two overlapping rounded rectangles, as shown
in Figure 14-7. It is important that these two corner divisions are placed
after the first two rounded rectangle divisions. This allows the corner
divisions to be stacked on top of the others.

You can set the interior background by assigning a background color or
image to the parent of the rounded corner box. In the example and the
pattern, I use the bg class to assign this background. Likewise, the best
place to set the margin is the parent. The best place to set the padding is the
last embedded division. In the example, I assign the pad class to the last
embedded division to set the padding for the interior of the rounded
corner box. You should not apply a border to any of these elements
because it would conflict with the rounded corners.

Limitations The exterior of the cutout corner images must not be transparent. When
they are transparent, they show the intersection of the rounded rectangle
borders. This breaks the illusion. Since the exterior of the cutout corner
images must be opaque, the opaque exterior needs to match the
background color that surrounds the outside of the rounded rectangle.
This requires that you create a different set of cutout corner images for
each different external background color you intend to use.

There is a bug in Internet Explorer 6 that sometimes causes the
background to leak out from behind the element. You can assign zoom:1
to the parent element to give it “layout,” which prevents the background
from leaking out. See the Atomic pattern in Chapter 7 for more details on
“layout.”

Related to Image, Basic Shadowed Image, Shadowed Image; Margin, Background
(Chapter 6)

See also www.cssdesignpatterns.com/rounded-corners

CHAPTER 14 ■ IMAGES 313

IM
A

G
E

S

http://freepdf-books.com

Image Example

Representative Excerpts from the HTML

<h1>Northwest USA</h1>

<div id="states">
<img src="nw.gif" width="437" height="328"
alt="Northwest" usemap="#nw-map" class="shadowed" />

Washington
Oregon
Idaho

Olympia

Salem

<div id="info" class="bg">
<div class="tl"><div class="br"><div class="trc"><div class="blc pad">
<p>Click on a state to load information about that state.</p>
<p>Click on a symbol to load information about that location.</p>
</div></div></div></div></div>

</div>

CHAPTER 14 ■ IMAGES314

IM
A

G
E

S

http://freepdf-books.com

Image Example

Example This is not a design pattern but an example that illustrates how the design
patterns in the chapter can work together.

Explanation The main image in the example is a map of the Pacific Northwest. I used the
Basic Shadowed Image design pattern to put a shadow behind it. The image is
linked to the nw-map element to make areas on the map clickable. I used the
Content over Image design pattern to put links on top of the map. When the user
hovers over these links, the background displays a semi-transparent PNG image,
which partially hides the content under the image. I also use the CSS Sprite
design pattern to put clickable rollover images on top of the map. I also use the
Rounded Corners and Fade-out design patterns to style the message below
the map.

See also www.cssdesignpatterns.com/image-example

Representative Excerpts from the CSS

*.shadowed { padding-right:12px; padding-bottom:12px;
background:url("shadow.jpg") right bottom no-repeat; }

*.screenreader-only { position:absolute; left:-9999px; top:-9999px;
width:1px; height:1px; overflow:hidden; }

a { text-decoration:none; color:black; }
a:hover { border-left:1px solid silver; border-right:1px solid gray; color:white;
border-top:1px solid silver; border-bottom:1px solid gray;
background-image:url("semi-transparent.png"); background-repeat:repeat-x; }

*.overlay { padding:2px 4px; }

*.bg { background:url("white2trans.png") top left repeat-x yellow;
margin-top:20px; }

*.tl { background:url("rc.gif") top left no-repeat; }
*.br { background:url("rc.gif") bottom right no-repeat; }
*.trc { background:url("rc-trc.gif") top right no-repeat; }
*.blc { background:url("rc-blc.gif") bottom left no-repeat; }
*.pad { padding:10px; }

*.bang-bg { background:url("bt.gif") -48px -16px; width:16px; height:16px; }
*.flag-bg { background:url("bt.gif") -64px -16px; width:16px; height:16px; }
*.star-bg { background:url("bt.gif") -64px -32px; width:16px; height:16px; }

*.bang-bg:hover { background-image:url("wt.gif"); background-color:black; }
*.star-bg:hover { background-image:url("wt.gif"); background-color:black; }
*.flag-bg:hover { background-image:url("wt.gif"); background-color:black; }

#states { position:relative; float:left; }
#washington { position:absolute; top:35px; left:80px; }
#oregon { position:absolute; top:135px; left:85px; }
#idaho { position:absolute; top:150px; left:210px; }

CHAPTER 14 ■ IMAGES 315

IM
A

G
E

S

http://freepdf-books.com

http://freepdf-books.com

Tables

Tables are one of the most useful and complex structures in HTML. This is the first of two
chapters on tables. This chapter explores the HTML structure of tables and how you can style
them. The next chapter explores the many ways you can automatically lay out columns in
tables. The purpose of tables is to identify and style tabular data.

Chapter Outline

• Table shows how to create and style the fundamental structure of a table.

• Row and Column Groups shows how to create and style row headers, row footers, row
groups, column groups, and columns.

• Table Selectors shows how to select cells from columns, rows, and row groups.

• Separated Borders shows how to separate table borders from cell borders.

• Collapsed Borders shows how to combine table and cell borders.

• Styled Collapsed Borders shows how to style collapsed borders.

• Hidden and Removed Cells shows how to hide or remove cells.

• Removed and Hidden Rows and Columns shows how to remove or hide rows, row
groups, and columns of cells.

• Vertical-aligned Data shows how to vertically align data to the top, middle, bottom, or
baseline of a cell.

• Striped Tables shows how to assign alternating backgrounds to rows.

• Accessible Tables shows how to create a table that is friendly to nonsighted users.

• Tabled, Rowed, and Celled shows how to turn any element into a table, row, or cell.

• Table Layout shows how to create the four types of tables: shrinkwrapped, sized,

stretched, and fixed.

317

C H A P T E R 1 5

http://freepdf-books.com

Table

HTML

<h1>Table</h1>

<h2>Simple Table</h2>
<table>

<tr> <th>1</th> <th>2</th> <th>3</th> <th>4 </th> <th>5 </th> <th>6 </th> </tr>
<tr> <th>7</th> <td>8</td> <td>9</td> <td>10</td> <td>11</td> <td>12</td> </tr>

</table>

<h2>Table with Spanned Rows and Cells</h2>
<table>

<tr> <td rowspan="2">1</td> <td colspan="2">2-3</td> </tr>
<tr> <td>8</td> <td>9</td> <td> </td> <td> </td> <td>12</td> </tr>

</table>

CSS

table { width:auto; height:1px; table-layout:auto; border-collapse:collapse;
margin-left:20px; border:1px solid black; }

td, th { width:50px; height:1px; overflow:hidden; visibility:visible;
border:1px solid black; padding:5px; background:gold;
text-align:center; vertical-align:middle; text-indent:5px; }

CHAPTER 15 ■ TABLES318

TA
B

LE
S

http://freepdf-books.com

Table

Problem You want to create a table to present data in rows and columns.

Solution At its simplest, a table consists of a <table> element containing one or more row
<tr> elements, which contain one or more cells. Cells can be header cells, <th>,
or data cells, <td>.

Header cells contain text describing the purpose of the columns and rows that
they head. You may have zero or more rows of header cells to describe each
column. You may have zero or more columns of header cells in each row to
describe each row. Header cells and data cells may contain any content
including nested tables, blocks, text, and objects. It is a common practice to
restrict data cells to tabular data and header cells to text.

You can add the colspan and rowspan attributes to a cell to have it span one or
more columns and/or one or more rows. To prevent missing cells, you need to
use the same number of cells in each row or to use colspan to span cells across
multiple columns. In the second table of the example, the first cell spans two
rows, the second cell spans two columns, and the first row is missing three cells.

The major browsers apply box model properties in limited ways to tables, cells,
rows, row groups, columns, and column groups. background is the only property
that applies to all these elements. margin applies only to tables. border applies
only to tables and cells. padding, overflow, and vertical-align apply to cells.
text-indent, text-align, and other text-styling properties apply only to cells
but can be inherited from row, row group, and table elements. width applies to
tables, cells, and columns. width is important enough for the next chapter to be
devoted to showing how it creates column layouts.

height applies to tables, rows, and cells, and specifies the minimum height of a
table, row, or cell. It is a minimum height because content can always expand the
height of a cell, row, or table. Contrast this with block elements where content
overflows a fixed-height block instead of expanding it. A percentage-height
block assigned to a table is a percentage of the height of the table’s container.
A percentage-height block is ignored when assigned to rows and cells. In the
example, height:1px is applied to cells, but is overridden by the height of cell
content and padding.

There are several unique table properties including border-collapse and
table-layout. border-collapse is discussed in this chapter. table-layout is
discussed in the next chapter. Additional unique table properties exist, but
are implemented inconsistently by the major browsers: table-layout,
border-collapse, border-spacing, caption-side, and empty-cells.

Pattern HTML
<table>
<tr>
<td colspan="NUMBER" rowspan="NUMBER"> CONTENT </td>

</tr>
</table>

Location Tables can be used anywhere blocks can be used.

Related to Structural Block Elements, Terminal Block Elements (Chapter 2); Display, Table
Box (Chapter 4); Width, Height, Sized, Shrinkwrapped, Stretched (Chapter 5);
Margin, Border, Padding (Chapter 6); Atomic (Chapter 7); Offset or Indented
Static Table, Aligned and Offset Static Table (Chapter 8); Structural Meaning,
Visual Structure, Inlined (Chapter 13); all design patterns in Chapters 15 and 16

See also www.cssdesignpatterns.com/table

CHAPTER 15 ■ TABLES 319

TA
B

LE
S

http://freepdf-books.com

Row and Column Groups

HTML

<h1>Row and Column Groups</h1>

<h2>Row Groups</h2>
<table class="example1">
<thead> <tr> <th>thead</th> <th>2 </th> <th>3 </th> <th>4 </th> </tr> </thead>
<tfoot> <tr> <th>tfoot</th> <td>10</td> <td>11</td> <td>12</td> </tr> </tfoot>
<tbody> <tr> <th>tbody</th> <td>6 </td> <td>7 </td> <td>8 </td> </tr> </tbody>

</table>

<h2>Columns</h2>
<table class="example2">
<colgroup><col class="col1" /><col class="col2" /><col class="col3" />

<col class="col4" /><col class="col5" /><col class="col6" /></colgroup>

<tr> <td rowspan="2">1</td> <td colspan="2">2-3</td> </tr>
<tr> <td>8</td> <td>9</td> <td> </td> <td> </td> <td>12</td> </tr>

</table>

CSS

table.example1 thead { background:orange; color:black; }
table.example1 tbody { background:gold; color:black; }
table.example1 tfoot { background:firebrick; color:white; }
*.col1 { background:wheat; }
*.col2 { background:gold; }
*.col3 { background:orange; }
*.col4 { background:tomato; }
*.col5 { background:firebrick; }
*.col6 { background:black; color:white; }

/* Nonessential styles are not shown */

CHAPTER 15 ■ TABLES320

TA
B

LE
S

http://freepdf-books.com

Row and Column Groups

Problem You want to group together rows and columns to make it easy to style groups of
rows and columns.

Solution You can optionally use the following elements to group together rows and
columns: <thead> (table header row group), <tfoot> (table footer row group),
<tbody> (table body row group), <colgroup> (column group), and <col>
(column).

Row groups are useful for styling groups of rows and cells with background,
visibility, display:none, and text properties. You can also use descendant
selectors to select rows and cells in row groups. On the other hand, column
groups and columns are limited to styling with background and width.

Row groups may surround any number of rows. You can use data cells or header
cells in any row of any row group. You may include any number of <tbody>
elements in a table, but you should only include at most one <thead> and one
<tfoot>. This is because a browser renders table header and footer groups once
per table. Table header groups are placed at the beginning of the table, and the
footer groups are placed at the end (even though footer rows are placed before
body rows in HTML code). When a document is printed, table headers and
footers are supposed to be repeated at the top and bottom of each page, but
only Firefox 2 does this. Because of this, <tfoot> is unsuitable for containing
summary data.

Because of inheritance, cells inherit text styles assigned to tables, row groups,
and rows. Cells cannot inherit from column groups and columns. visibility:
hidden and display:none apply to tables, rows, row groups, and cells, but not to
column groups and columns. background applies to all.

Table backgrounds are layered from back to front as follows: table, column
groups, columns, row groups, rows, and cells. Since there is no padding between
these elements, you can only see the background of an element when its
children have a transparent background. For example, to see a row group’s
background, its rows and cells must have a transparent background.

A table may contain one or more column groups (<colgroup>), which may
contain one or more columns (<col>). Browsers can reliably style column groups
and columns with only two properties: background and width. This is a problem
and a severe limitation. In the second table of the example, I select column
elements to apply different background colors to each column. Notice how you
cannot see the text in cell 12, for it is black on black because browsers apply
background:black to column elements but not color:white.

Pattern HTML
<table>
<colgroup> <col /> </colgroup>
<thead> <tr> <th> CONTENT </th> </tr> </thead>
<tfoot> <tr> <th> CONTENT </th> </tr> </tfoot>
<tbody> <tr> <td> CONTENT </td> </tr> </tbody>

</table>

Location This pattern applies to tables.

Related to Table

See also www.cssdesignpatterns.com/row-groups
www.cssdesignpatterns.com/column-groups

CHAPTER 15 ■ TABLES 321

TA
B

LE
S

http://freepdf-books.com

Table Selectors

HTML

<h1>Table Selectors</h1>
<table id="t1">

<thead>

<tr class="r1"> <td class="c1">r1 c1</td> <td class="c2">c2</td>
<td class="c3">c3</td> <td class="c4">c4</td>
<td class="c5">c5</td> <td class="c6">c6</td> </tr></thead>

<tfoot>

<tr class="r3"> <td class="c1">r3 c1</td> <td class="c2">c2</td>
<td class="c3">c3</td> <td class="c4">c4</td>
<td class="c5">c5</td> <td class="c6">c6</td> </tr></tfoot>

<tbody class="b1">

<tr class="r2"> <td class="c1">r2 c1</td> <td class="c2">c2</td>
<td class="c3">c3</td> <td class="c4">c4</td>
<td class="c5">c5</td> <td class="c6">c6</td> </tr></tbody>

</table>

CSS

table,td,th { border:1px solid black; } /* Selecting all tables and cells */
td,th { background-color:white; } /* Selecting all cells */

#t1 { border-collapse:collapse; } /* Selecting table */
#t1 thead td { font-weight:bold; } /* Selecting cells in head */
#t1 tfoot td { font-style:italic; } /* Selecting cells in foot */
#t1 tbody td { font-variant:small-caps; } /* Selecting cells in body */
#t1 *.b1 td { font-size:1.2em; } /* Selecting cells in body */
#t1 *.c3 { display:none; } /* Selecting cells in column */
#t1 *.c4 { background-color:firebrick; color:white; }
#t1 *.r1 { background-color:gold; color:black; } /* Selecting row-no effect*/
#t1 *.r2 td { background-color:gold; color:black; } /* Selecting cells in row */
#t1 *.r2 *.c6 { font-size:1.8em; font-weight:bold; } /* Selecting cell */

/* Nonessential styles are not shown */

CHAPTER 15 ■ TABLES322

TA
B

LE
S

http://freepdf-books.com

Table Selectors

Problem You want a simple, flexible, and generic way to select a column, a row, or a cell
for styling.

Solution You can assign a unique ID to each table, such as t1. This allows you to select
each table individually. You can label each row with a class that is unique within
the table, such as r1, r2, and so on. You can label each cell with a class that is
unique within each row, such as c1, c2, and so on. Because each table has a
unique ID, you can reuse the same class names for rows and columns. By using
the table ID with descendant selectors, you can select the table, any row in the
table, any cell in any row, and any cell in any column.

You can also enclose rows within <thead>, <tfoot>, and <tbody> elements. If you
have multiple <tbody> elements, you can also label each one with a unique class,
such as b1, b2, and so on. You can use descendant selectors following the table’s
ID to select and style the cells in a table header, footer, or one of the row groups
defined by <tbody>. This makes it easy to style cells in groups of rows.

Selecting a row, table header, table footer, or table body is of little use because
you can only style its background and even then you cannot see the background
unless cell backgrounds are transparent. In the example, I style all cells with a
white background. I also style the first row element with a gold background,
but you cannot see its gold background because it is covered by the white cell
backgrounds. On the other hand, I style cells in the second row with a gold
background, which you can see because the selector styles cells, not the row.
Thus, selecting cells within a row or row group is very useful. All of the following
selector design patterns select cells.

Patterns All Table and Cells Selector
table,td,th { STYLES }

All Cells Selector
td,th { STYLES }

Table Selector
#tx { STYLES }

Column Cells Selector
#tx *.cx { STYLES }

Row Cells Selector
#tx *.rx td { STYLES } or #tx *.rx th { STYLES }

Cell Selector
#tx *.rx *.cx { STYLES }

Row Group Selector
#tx thead td { STYLES } or #tx thead th { STYLES }

Location This pattern applies to cells, rows, row groups, and tables.

Related to Table

See also www.cssdesignpatterns.com/table-selectors

CHAPTER 15 ■ TABLES 323

TA
B

LE
S

http://freepdf-books.com

Separated Borders

HTML

<h1>Separated Borders</h1>

<h2>Boxed Table</h2>
<table class="boxed-table" cellspacing="5">

<tr><td rowspan="2">1</td><td colspan="2">2-3</td></tr>
<tr><td>7</td><td>8</td><td> </td><td> </td><td class="x">11</td></tr></table>

<h2>Boxed Cells</h2>
<table class="boxed-cells" cellspacing="5">

<tr><td rowspan="2">1</td><td colspan="2">2-3</td></tr>
<tr><td>7</td><td>8</td><td> </td><td> </td><td class="x">11</td></tr></table>

<h2>Boxed Table and Cells</h2>
<table class="boxed-table boxed-cells" cellspacing="5">

<tr><td rowspan="2">1</td><td colspan="2">2-3</td></tr>
<tr><td>7</td><td>8</td><td> </td><td> </td><td class="x">11</td></tr></table>

CSS

table { border-collapse:separate; }
*.boxed-table { border:1px solid black; }
*.boxed-cells td { border:1px solid black; }
*.boxed-cells td.x { border:none; }

/* Nonessential styles are not shown */

CHAPTER 15 ■ TABLES324

TA
B

LE
S

http://freepdf-books.com

Separated Borders

Problem You want to put independent borders around tables and cells.

Solution You can apply the border-collapse:separate property to a table to separate
table borders from cell borders. You can use the border property to put a
border around a table or around a cell. When borders are separate, borders
around tables are distinct from borders around cells. You can use the
cellspacing attribute to control the amount of spacing around cell borders.

Pattern HTML
<table cellspacing="WIDTH">
<tr> <td> CONTENT </td> </tr>

</table>

CSS
TABLE_SELECTOR { border-collapse:separate;
border:WIDTH STYLE COLOR; }

CELL_SELECTOR { border:WIDTH STYLE COLOR; }

Location This pattern applies to tables and cells.

Limitations Internet Explorer 7 does not render a border around empty cells. An empty
cell does not contain content. Whitespace is not content. In the example,
cell 9 has no border because it is empty. In contrast, cell 10 has a border
because it contains a nonbreaking space—even though it looks empty.
You can prevent this problem by always putting a nonbreaking space in
empty cells.

No major browser renders borders or backgrounds for missing cells. Missing
cells occur when a row has fewer cells than the table has columns and
existing cells do not span enough columns to compensate. In the example,
cells 4, 5, and 6 are missing.

Browsers ignore borders applied to rows, columns, column groups, and row
groups. This means the only way to put borders around columns or rows is to
put them around each cell in the column or row.

Advantages Unlike collapsed borders, separated borders do not have border conflicts
between adjacent cells and between the table and its cells.

Disadvantages Separated borders require an HTML attribute, cellspacing, to control the
distance between cells because Internet Explorer 7 and earlier versions do
not implement the border-spacing property.

Tips You can use border:none to remove a border applied by another rule. Notice
in the example how border:none removes the border from cell 11.

You can use border-left, border-right, border-top, and border-bottom to
apply borders independently to each side of a cell or table. In other words,
any side of a table or cell can have a different border width, style, and color.

Related to Collapsed Borders; Border (Chapter 6)

See also www.cssdesignpatterns.com/separated-borders

CHAPTER 15 ■ TABLES 325

TA
B

LE
S

http://freepdf-books.com

Collapsed Borders

HTML

<h1>Collapsed Borders</h1>

<h2>Boxed Table</h2>
<table class="boxed-table" cellspacing="0">

<tr><td rowspan="2">1</td><td colspan="2">2-3</td> </tr>
<tr><td>7</td><td>8</td><td> </td><td> </td><td class="x">11</td></tr></table>

<h2>Boxed Cells</h2>
<table class="boxed-cells" cellspacing="0">

<tr><td rowspan="2">1</td><td colspan="2">2-3</td> </tr>
<tr><td>7</td><td>8</td><td> </td><td> </td><td class="x">11</td></tr></table>

<h2>Boxed Table and Cells</h2>
<table class="boxed-table boxed-cells" cellspacing="0">

<tr><td rowspan="2">1</td><td colspan="2">2-3</td> </tr>
<tr><td>7</td><td>8</td><td> </td><td> </td><td class="x">11</td></tr></table>

CSS

table { border-collapse:collapse; }
*.boxed-table { border:1px solid black; }
*.boxed-cells td { border:1px solid black; }
*.boxed-cells td.x { border:none; }

/* Nonessential styles are not shown */

CHAPTER 15 ■ TABLES326

TA
B

LE
S

http://freepdf-books.com

Collapsed Borders

Problem You want to merge table and cell borders.

Solution You can apply the border-collapse:collapse property to a table to merge its
borders with its cell borders. You can use the border property to put borders
around a table and its cells. When borders are collapsed, you must omit the
cellspacing attribute from the table element or set it to 0 to avoid problems
in Internet Explorer 7 and earlier versions.

Pattern HTML
<table cellspacing="0">
<tr> <td> CONTENT </td> </tr>

</table>

CSS
TABLE_SELECTOR { border-collapse:collapse;
border:WIDTH STYLE COLOR; }

CELL_SELECTOR { border:WIDTH STYLE COLOR; }

Location This pattern applies to tables and cells.

Limitations Internet Explorer 7 (and earlier versions) does not apply borders to rows,
columns, column groups, and row groups.

Internet Explorer 7 does not implement border:hidden. This is unfortunate
because a hidden border has the ability to override and hide a visible merged
border. border:none cannot override merged borders. Notice in the example
how cell 11’s border is set to border:none, but the left and bottom merged
borders are visible because they override border:none.

Advantages In contrast to separated borders, all major browsers render collapsed borders
around empty cells. Notice in the example how cell 9 is empty and has a
border; in the Separated Borders design pattern, it does not have a border.

Disadvantages Unlike separated borders, collapsed borders have border conflicts between
adjacent cells and between the table and its cells.

Tips When assigning collapsed borders, it is important to set both table and cell
borders. Firefox 2 and Opera 9 in particular have bugs that render extra and
incomplete borders when table borders are not set. Notice in the second table
in the example how Firefox 2 adds an extra border above the missing cells.
This is an error because the second table has no border.

If adjacent borders have different styles, width, or color, the most visible
border wins. Wider borders override narrower ones. Border styles override
each other in the following order from most prominent to least: double, solid,
dashed, dotted, ridge, outset, groove, and inset. When colors conflict, cell
border color overrides table border color. Also, left border color overrides
right, and top overrides bottom.

Related to Separated Borders; Border (Chapter 6)

See also www.cssdesignpatterns.com/collapsed-borders

CHAPTER 15 ■ TABLES 327

TA
B

LE
S

http://freepdf-books.com

Styled Collapsed Borders

HTML

<h1>Styled Collapsed Borders</h1>

<table id="t1">

<tr class="r1"> <td class="c1">1</td> <td class="c2">2</td> </tr>
<tr class="r2"> <td class="c1">1</td> <td class="c2">2</td> </tr> </table>

CSS

table { border-collapse:collapse; } /* Table and cells borders */
table,td,th { border:5px solid red; }

#t1 { border-left:1px solid black; } /* Left table border */
#t1 *.c1 { border-left:1px solid black; }

#t1 { border-right:2px solid black; } /* Right table border */
#t1 *.c2 { border-right:2px solid black; }

#t1 *.c1 { border-right:1px dotted black; } /* Interior column border */
#t1 *.c2 { border-left:1px dotted black; }

#t1 { border-top:1px solid black; } /* Top table border */
#t1 *.r1 td { border-top:1px solid black; }

#t1 { border-bottom:2px solid black; } /* Bottom table border */
#t1 *.r2 td { border-bottom:2px solid black; }

#t1 *.r1 td { border-bottom:1px dotted black; } /* Interior row border */
#t1 *.r2 td { border-top:1px dotted black; }

/* Nonessential styles are not shown */

CHAPTER 15 ■ TABLES328

TA
B

LE
S

http://freepdf-books.com

Styled Collapsed Borders

Problem You want to assign borders to rows and columns in a table with collapsed
borders. The problem is that the table shares borders with its cells, and cells
share borders with each other. Thus, each visible border is actually two borders
that have been merged, such as the left table border and the left border of each
cell in the first column. If you do not style merged borders the same, a browser
decides which of the merged borders to display, which may not be the border
you want.

Solution You can use the Table Selectors design pattern to mark up the table to make it
easy to select columns and rows of cells.

A table with collapsed borders has six types of borders: left table border, interior
column border, right table border, top border, interior row border, and bottom
border. The design patterns that follow show how to style these six types of
merged borders.

Patterns Left Table Border
#t1 { border-left: WIDTH_1 STYLE_1 COLOR_1; }
#t1 *.cx_FIRST { border-left: WIDTH_1 STYLE_1 COLOR_1; }

Right Table Border
#t1 { border-right: WIDTH_2 STYLE_2 COLOR_2; }
#t1 *.cx_LAST { border-right: WIDTH_2 STYLE_2 COLOR_2; }

Interior Column Border
#t1 *.cx { border-right: WIDTH_3 STYLE_3 COLOR_3; }
#t1 *.cx+1 { border-left: WIDTH_3 STYLE_3 COLOR_3; }

Top Table Border
#t1 { border-top: WIDTH_4 STYLE_4 COLOR_4; }
#t1 *.rx_FIRST td { border-top: WIDTH_4 STYLE_4 COLOR_4; }

Bottom Table Border
#t1 { border-bottom: WIDTH_5 STYLE_5 COLOR_5; }
#t1 *.rx_LAST td { border-bottom: WIDTH_5 STYLE_5 COLOR_5; }

Interior Row Border
#t1 *.rx td { border-bottom: WIDTH_6 STYLE_6 COLOR_6; }
#t1 *.rx+1 td { border-top: WIDTH_6 STYLE_6 COLOR_6; }

Location This pattern applies to cells and tables.

<colgroup> and <col /> cannot be used to style borders.

Tip When a table uses separated borders, you do not need this design pattern
because separated borders are not shared.

Example In the example, I use the table,td,td {} selector to set all table and cell borders
to be 5 pixels wide and solid red. If you want all borders to be the same, this
selector is all you need. The example overrides these red borders with a variety
of smaller black borders assigned to each row and column.

Related to Table Selectors, Collapsed Borders; Border (Chapter 6)

See also www.cssdesignpatterns.com/styled-collapsed-borders

CHAPTER 15 ■ TABLES 329

TA
B

LE
S

http://freepdf-books.com

Hidden and Removed Cells

HTML

<h1>Hidden and Removed Cells</h1>

<h3>Cell 1 is hidden and Cell 3 is removed.
 This moves cell 4
into cell 3's place and creates a missing cell at the end.</h3>

<div>Collapsed Borders</div>
<table class="collapsed" cellspacing="0">

<tr><td>1</td><td>2</td><td>3</td><td>4</td></tr>
<tr><td class="h">1</td><td>2</td><td class="x">3</td><td>4</td></tr></table>

<div>Separated Borders</div>
<table class="separated" cellspacing="5">

<tr><td>1</td><td>2</td><td>3</td><td>4</td></tr>
<tr><td class="h">1</td><td>2</td><td class="x">3</td><td>4</td></tr></table>

<!-- Many additional examples are not shown -->

CSS

table, td, th { border:1px solid black; }

*.separated { border-collapse:separate; }
*.collapsed { border-collapse:collapse; }

*.x { display:none; }

*.h { visibility:hidden; }

/* Nonessential styles are not shown */

CHAPTER 15 ■ TABLES330

TA
B

LE
S

http://freepdf-books.com

Hidden and Removed Cells

Problem You want to hide or remove one or more cells.

Solution You can use visibility:hidden to hide cells. Hidden cells are not rendered, but
their location and the space they would have occupied is preserved. This is the
most common way to hide a cell because it keeps cells in their proper locations.
Notice in the example how the first cell in the second row is hidden without
changing the location of the following cells.

When a table has collapsed borders, the borders around hidden cells are still
rendered. Thus, when you hide a cell in a table with collapsed borders, its
contents are hidden, but its borders are not. Notice in the first table of the
example how borders surround the hidden cell in the first column of the second
row. On the other hand, borders are not rendered around hidden cells in a table
with separate borders. In the second table in the example, there are no borders
around the hidden cell in the first column of the second row.

You can use display:none to remove cells. Removed cells are not rendered. It is as
if they never existed. This means that cells to the right of removed cells slide over
to take the place of removed cells! In the example, cell 3 is removed. Notice how
cell 4 slides into its place. Because cell 3 is removed, there are fewer cells in the
second row than in the first row, which creates a missing cell at the end. Thus, if
you do not want cells to be shuffled around, you should hide cells instead of
removing them. On the other hand, it is common to remove columns, rows, row
groups, and tables because you typically do not want these items to leave behind
empty space. This is explored further in the Removed and Hidden Rows and
Columns design pattern.

Pattern Hidden Tables, Rows, and Cells
SELECTOR { visibility:hidden; }

Removed Tables, Rows, and Cells
SELECTOR { display:none; }

Location This pattern applies to cells.

Tip When you hide a table with collapsed borders, the table’s outer borders are
hidden and its contents are hidden, but its internal borders remain visible. To
completely hide the table, you can assign visibility:hidden to the table and
border:none to its cells. This is not necessary for tables with separate borders.

Example The code and the screenshot shown here is a small part of the full example,
which includes many more examples of hidden columns, hidden rows, hidden
row groups, and hidden tables.

Related to Removed and Hidden Rows and Columns; Display (Chapter 4); Border, Visibility
(Chapter 6)

See also www.cssdesignpatterns.com/hidden-cells
www.cssdesignpatterns.com/removed-cells

CHAPTER 15 ■ TABLES 331

TA
B

LE
S

http://freepdf-books.com

Removed and Hidden Rows and Columns

HTML

<h1>Removed & Hidden Rows & Columns</h1>

<table id="t1">

<tbody class="b1">

<tr class="r1"> <td class="c1">r1 c1</td> <td class="c2">2</td>
<td class="c3">r1 c3</td> <td class="c4">4</td> </tr>

<tr class="r2"> <td class="c1">r2 c1</td> <td class="c2">2</td>
<td class="c3">r2 c3</td> <td class="c4">4</td> </tr></tbody>

<tbody class="b2">

<tr class="r3"> <td class="c1">r3 c1</td> <td class="c2">2</td>
<td class="c3">r3 c3</td> <td class="c4">4</td> </tr>

<tr class="r4"> <td class="c1">r4 c1</td> <td class="c2">2</td>
<td class="c3">r4 c3</td> <td class="c4">4</td> </tr></tbody>

<tbody class="b3">

<tr class="r5"> <td class="c1">r5 c1</td> <td class="c2">2</td>
<td class="c3">r5 c3</td> <td class="c4">4</td> </tr></tbody>

</table>

<!-- Second identical table with separated borders is not shown -->

CSS

#t1 *.c2 { display:none; } /* Removing column */
#t1 *.c3 { visibility:hidden; } /* Hiding column */
#t1 *.r2 { visibility:hidden; } /* Hiding row */
#t1 *.b2 { display:none; } /* Removing row group */

/* Nonessential styles are not shown */

CHAPTER 15 ■ TABLES332

TA
B

LE
S

http://freepdf-books.com

Removed and Hidden Rows and Columns

Problem You want to remove a column, a row, or a group of rows so that following
columns slide over and following rows slide up to take the place of the removed
row or column. You want to hide a row or column when you want to leave behind
empty space where the row, row group, or column would have been rendered.

Solution You can use the Table Selectors design pattern to mark up a table to make it easy
to select any row or column. You can use display:none to remove rows, row
groups, and columns. To remove a column, you can assign display:none to each
cell in the column. To remove a row or a row group, you can assign display:none
to <tr>, <thead>, <tfoot>, or <tbody> elements. Removed elements are not
rendered. It is as if they never existed. Columns on the right slide over into the
place of removed columns. This causes a shrinkwrapped table to shrink because
there is one less column. Rows slide up into the place of removed rows. This
causes the height of a shrinkwrapped table to shrink. In the example, the cells in
the second column are removed, which causes the third and fourth columns to
slide over. Also, the third and fourth rows in the third row group are removed,
which causes the fifth row to slide up into their place.

You can use visibility:hidden instead of display:none to hide rows and
columns instead of removing them. This is less common than removing rows and
columns because it leaves blank space behind. In the example, I hide the third
column and the second row. The space where the rows and columns would have
been rendered remains behind.

When columns and rows are removed, a browser does not render their borders.
On the other hand, when columns and rows are hidden, a browser renders
borders when borders are collapsed, but not when separated. In the first table of
the example, borders are collapsed, and you can see the borders around hidden
rows and columns. In the second table, borders are separated, and you cannot
see the borders around the hidden rows and columns.

Patterns Hidden Rows, Row Groups, and Cells
SELECTOR { visibility:hidden; }

Removed Rows, Row Groups, and Cells
SELECTOR { display:none; }

Location This pattern applies to cells, rows, and row groups.

Limitations You may be tempted to remove or hide columns using the two column elements:
<colgroup> and <col />. Internet Explorer has a proprietary feature that allows
this, but other major browsers do not. You may also want to apply visibility:
collapse to these elements, but this does not work in Internet Explorer 7 or
Opera 9. This design pattern is the best way to hide or remove columns.

Related to Hidden and Removed Cells; Display (Chapter 4); Border, Visibility (Chapter 6)

See also www.cssdesignpatterns.com/removed-rows-and-columns
www.cssdesignpatterns.com/hidden-rows-and-columns

CHAPTER 15 ■ TABLES 333

TA
B

LE
S

http://freepdf-books.com

Vertical-aligned Data

HTML

<h1>Vertical-aligned Data</h1>

<table>
<tr>
<td class="align-top" >These lines of text are vertically aligned
to the top of the cell.</td>

<td class="align-middle">These lines of text are vertically aligned
to the middle of the cell.</td>

<td class="align-bottom">These lines of text are vertically aligned
to the bottom of the cell.</td></tr></table>

CSS

*.align-top { height:200px; vertical-align:top; }

*.align-middle { height:200px; vertical-align:middle; }

*.align-bottom { height:200px; vertical-align:bottom; }

/* Nonessential styles are not shown */

CHAPTER 15 ■ TABLES334

TA
B

LE
S

http://freepdf-books.com

Vertical-aligned Data

Problem You want to align multiple lines of data as a group to the top, middle, or bottom
of a cell.

Solution You can place multiple lines of data in a cell and use vertical-align to
automatically align it to the top, middle, or bottom of the cell. For this to work,
the cell needs to have a height greater than the height of the data; otherwise,
there is no space for the data to move up or down within the cell.

vertical-align applies to cells and to inline elements. Just as you can use
vertical-align to offset inline elements from the baseline, you can do the
same to the contents of a cell.

There are three vertical-align settings that apply in unique ways to cells. These
are top, middle, and bottom. top is the top of the cell, middle is the middle of the
cell, and bottom is the bottom of the cell. When top, middle, and bottom are
applied to inline elements, top is the top of the line, bottom is the bottom of
the line, and middle is roughly the middle of the line.

What is unique and useful about top, middle, and bottom when applied to a cell is
that they align the entire contents of a cell including multiple lines of content to
the top, middle, or bottom of the cell. In contrast, when you apply vertical-align
to an inline element, it aligns an inline element to another inline element within
a line. In other words, vertical-align positions inline elements in relation to
each other within a single line, whereas vertical-align applied to a cell
vertically positions its content within the cell—including multiple lines of
content.

There is no other mechanism in CSS and HTML that can vertically align multiple
lines of content. The closest approximations are the absolute design patterns that
vertically align an element (not its content) to the top, middle, or bottom of its
closest positioned ancestor. These design patterns include Align Top, Align
Middle, and Align Bottom. The main problem with absolute design patterns is
that they remove elements from the flow. A cell can align its contents without
leaving the normal flow.

Patterns HTML
<table><tr><td class="ALIGNMENT"> CONTENT </td></tr></table>

CSS
*.align-top { height:+VALUE; vertical-align:top; }
*.align-middle { height:+VALUE; vertical-align:middle; }
*.align-bottom { height:+VALUE; vertical-align:bottom; }

Location This design pattern works on any cell.

Related to Vertical-aligned Content, Vertical-offset Content (Chapter 12)

See also www.cssdesignpatterns.com/vertical-aligned-data

CHAPTER 15 ■ TABLES 335

TA
B

LE
S

http://freepdf-books.com

Striped Tables

HTML

<h1>Striped Tables</h1>

<table id="t1">

<tr class="r1 odd"> <td class="c1">r1 c1</td> <td class="c2">c2</td>
<td class="c3"> c3</td> <td class="c4">c4</td> </tr>

<tr class="r2"> <td class="c1">r2 c1</td> <td class="c2">c2</td>
<td class="c3"> c3</td> <td class="c4">c4</td> </tr>

<tr class="r3 odd"> <td class="c1">r3 c1</td> <td class="c2">c2</td>
<td class="c3"> c3</td> <td class="c4">c4</td> </tr>

<tr class="r4"> <td class="c1">r4 c1</td> <td class="c2">c2</td>
<td class="c3"> c3</td> <td class="c4">c4</td> </tr>

<tr class="r5 odd"> <td class="c1">r5 c1</td> <td class="c2">c2</td>
<td class="c3"> c3</td> <td class="c4">c4</td> </tr>

</table>

CSS

#ts td { background:white; } /* Background of all cells */
#t1 *.odd td { background:palegreen; } /* Alternating Row Background */
#t1 td.c3 { background:darkgreen; color:white; } /* Column Background */

/* Nonessential styles are not shown */

CHAPTER 15 ■ TABLES336

TA
B

LE
S

http://freepdf-books.com

Striped Tables

Aliases Greenbar, Zebra Stripes

Problem You want to style alternating rows with different background colors—much
like reports printed on greenbar paper.

Solution You can optionally assign a standard background color to all cells or leave
them all transparent. You can add a class to odd rows, even rows (or any
arbitrary row for that matter), and you can use this class to select and style
the background of cells in these rows. You can optionally style the backgrounds
of cells in columns as well.

Pattern HTML
<table><tr><td class="ALIGNMENT"> CONTENT </td></tr></table>

CSS
#TABLE_ID *.odd td { background:COLOR; }
or
#TABLE_ID *.odd th { background:COLOR; }

Location This pattern applies to cells in a row.

Advantages Styling alternate rows in alternating background colors makes it easier to read
extra wide tables. It also promotes the user to read data in rows.

Disadvantages When styling the backgrounds of columns, it takes careful planning and
color coordination to make the background of columns blend well with the
alternating backgrounds of rows. Furthermore, if you want a column
background to override an alternating row background, you need to make
sure the column selector has a higher priority in the cascade order than the
row selector. In the example, I made the column selector equal priority to the
alternating selector by using #t1 td.c3 instead of #t1 *.c3, and I made it a
higher priority by placing it after the alternating row selector in the stylesheet.

Tips The most important point of this simple design pattern is selecting and
styling cells within rows. If you style the background of a row element, you
will not see the background unless the background of each cell in the row is
transparent. This is because the background of each cell overlays the
background of its row. Even when you use separated borders, the spacing
between cells does not reveal a row’s background, it reveals the table’s
background. Thus, this design pattern uses the descendant operator to
select and style the cells in a row rather than the row itself.

In addition to background, you may also want to style border and padding
differently for alternating cells. You may also want to style text properties
differently, such as font-size, font-style, font-variant, font-weight,
text-decoration, text-transform, line-height, letter-spacing, and
word-spacing.

Related to Border, Padding, Background (Chapter 6); Font (Chapter 10); Spacing
(Chapter 11)

See also www.cssdesignpatterns.com/striped-Tables

CHAPTER 15 ■ TABLES 337

TA
B

LE
S

http://freepdf-books.com

Tabled, Rowed, and Celled

HTML

<h1>Tabled, Rowed, and Celled</h1>

<h2>Before</h2>
<div>
<div>
<div>division</div>
<div>division</div></div>

span
span</div>

<h2>After being rendered as a table with rows and cells</h2>
<div class="tabled">
<div class="rowed">
<div class="celled">division</div>
<div class="celled">division</div></div>

span
span</div>

CSS

div,span { border:1px solid black; background-color:gold; padding:5px; }

*.tabled { display:table; border-collapse:collapse; }
*.rowed { display:table-row; }
*.celled { display:table-cell; }

CHAPTER 15 ■ TABLES338

TA
B

LE
S

http://freepdf-books.com

Tabled, Rowed, and Celled

Problem You want to render ordinary inline and block elements as tables, rows, and cells.

Solution You can use the display:table, display:table-row, and display:table-cell
rules to transform elements into tables, rows, and cells.

Typically you nest an element rendered as a cell within an element rendered as a
row. In turn, you nest an element rendered as a row within an element that is
rendered as a table. It does not matter what type of element is used as long as it
is valid XHTML. A table can be created completely out of inline elements, block
elements, or a mixture of both.

You can also render an element as a stand-alone cell, and a browser will
automatically create a row box and table box. Since tables shrinkwrap by default
and since blocks stretch by default, rendering a block as a cell is a good way to
shrinkwrap it without having to leave the normal flow.

Patterns HTML
<ELEMENT class="tabled">
<ELEMENT class="rowed">
<ELEMENT class="celled"> CONTENT </ELEMENT>

<ELEMENT class="rowed">
</ELEMENT>

CSS
*.tabled { display:table; border-collapse:collapse; }
*.rowed { display:table-row; }
*.celled { display:table-cell; }

Location This pattern applies to block and inline elements.

Limitations This pattern does not work in Internet Explorer 7 or earlier versions. This is
unfortunate because this is a very useful design pattern. If Internet Explorer
supported this part of the CSS standard, you could take advantage of all the
unique features offered only by tables. For example, an element displayed as a
table automatically shrinkwraps instead of stretches—without leaving the
normal flow. This is very useful when you want to create shrinkwrapped buttons,
menus, boxes around images, and so on. Displaying an element as a table also
allows you to lay out its child elements using the many powerful and automatic
layouts presented in Chapter 16. In short, you can take nontabular elements and
lay them out in rows and columns for pure presentational pleasure without guilt.

Example In the example, I transform four divisions and three spans into a table with two
rows and two columns. Notice how block elements and inline elements can be
combined to create a table.

Related to Table; Display, Table Box (Chapter 4); Blocked (Chapter 11); Inlined (Chapter 13)

See also www.cssdesignpatterns.com/tabled-rowed-celled

CHAPTER 15 ■ TABLES 339

TA
B

LE
S

http://freepdf-books.com

Table Layout

HTML

<h1>Table Layout</h1>

<h2>Shrinkwrapped Table</h2>
<table class="auto-layout shrinkwrapped">
<tr><td>auto</td><td>auto</td></tr></table>

<h2>Sized Table</h2>
<table class="auto-layout sized"> <tr><td>auto</td><td>auto</td></tr></table>

<h2>Stretched Table</h2>
<table class="auto-layout stretched"> <tr><td>auto</td><td>auto</td></tr></table>

<h2>Fixed Table</h2>
<table class="fixed-layout sized"> <tr><td>auto</td><td>auto</td></tr></table>

CSS

*.auto-layout { table-layout:auto; }
*.fixed-layout { table-layout:fixed; }
*.shrinkwrapped { width:auto; }
*.sized { width:350px; }
*.stretched { width:100%; }

/* Nonessential styles are not shown */

CHAPTER 15 ■ TABLES340

TA
B

LE
S

http://freepdf-books.com

Table Layout

Problem You want to create shrinkwrapped, sized, stretched, or fixed tables.

Solution There are four types of tables: shrinkwrapped, sized, stretched, and fixed. Each
has unique capabilities for laying out columns. These layouts are explored in
detail in the next chapter.

A shrinkwrapped table shrinks to the width of its columns and will not expand
beyond the width of its container. A sized or stretched table can lay out its
columns in proportion to the table’s width, and can expand beyond the width of
its container. A fixed table is a variation of a sized or stretched table, except it
ignores the width of its content when laying out columns. This greatly speeds the
rendering and prevents content from expanding a column’s width.

The following two properties assigned to a table determine the type of table:
table-layout and width.

There are two values for table-layout: auto and fixed. The default value is auto.
An auto-layout table lays out columns based on the minimum and maximum
widths of cell contents and on the width assigned to its cells. A fixed-layout table
ignores content and lays out columns based only on the width assigned to the
cells in its first row.

The type of width assigned to the table determines whether a table is
shrinkwrapped, sized, or stretched. There are three types of width: auto, fixed,
and percentage. An auto width is created using width:auto. A fixed width is
created using width:VALUE, such as width:100px. A percentage width is created
using width:PERCENT%, such as width:100%.

A shrinkwrapped table is auto layout and auto width. A stretched table is auto
layout and has a percentage width of 100%. A sized table is auto layout and fixed
width, or has a percentage width other than 100%. A fixed table is fixed layout
and has a fixed width or percentage width.

Patterns Shrinkwrapped Table
TABLE_SELECTOR { table-layout:auto; width:auto; }

Sized Table
TABLE_SELECTOR { table-layout:auto; width:VALUE_OR_PERCENT; }

Stretched Table
TABLE_SELECTOR { table-layout:auto; width:100%; }

Fixed Table
TABLE_SELECTOR { table-layout:fixed; width:VALUE_OR_PERCENT; }

Location This pattern applies to table elements.

Tip A good way to set the width of columns is to assign width to each cell in the first
row of the table. This works in fixed-layout and auto-layout tables, and it does
not require <colgroup> and <col> elements.

Related to Table; Sized, Shrinkwrapped, Stretched (Chapter 5); Offset or Indented Static
Table, Aligned and Offset Static Table (Chapter 8); all design patterns in
Chapter 16

See also www.cssdesignpatterns.com/table-layout

CHAPTER 15 ■ TABLES 341

TA
B

LE
S

http://freepdf-books.com

http://freepdf-books.com

Column Layout

Browsers have many built-in capabilities for automatically sizing columns in tables. This
chapter shows how to harness these automatic features to shrinkwrap columns, size them
to specific widths, size them proportionally to each other, size them proportionally to their
content, size them equally, size them flexibly, and undersize or oversize them.

Table Layout Models
There are four types of tables: shrinkwrapped, sized, stretched, and fixed. Each type of table
has unique column layouts that only it can create.

The main purpose of a shrinkwrapped table is shrinking columns to fit their content.
The main purpose of a sized or stretched table is proportionally dividing its width among its
columns. The main purpose of a fixed table is setting its columns to fixed widths and speeding
the rendering of the table.

Shrinkwrapped tables shrink to fit their content. This gives them the unique capability to
shrink columns to fit the width of their content. A shrinkwrapped table can be narrower than
its container and will not expand beyond the width of its container. Shrinkwrapped tables are
the best choice when you want flexible layouts that adapt to different devices, screen resolu-
tions, and viewport sizes. The following unique layouts apply to shrinkwrapped tables:
Shrinkwrapped Columns, Sized Columns, Equal Content-sized Columns, and Inverse-
proportioned Columns.

Sized and stretched tables divide their width proportionally among their columns while
ensuring no column is narrower than its content. Sized and stretched tables work exactly the
same when laying out columns. The only difference is that a sized table can be narrower or
wider than its container, and a stretched table stretches to the width of its container. The fol-
lowing layouts apply to stretched tables: Content-proportioned Columns, Size-proportioned
Columns, Percentage-proportioned Columns, Equal-sized Columns, and Flex Columns.

Fixed tables are a variation of sized or stretched tables. They can be sized or stretched,
but not shrinkwrapped. They are different from sized and stretched tables in that they ignore
the width of their content when laying out columns. This prevents a cell’s content from having
any influence over a column’s width. Because fixed tables ignore content, they render much
faster than the other types of tables. For shrinkwrapped, sized, and stretched tables, a browser
must wait for the entire table to download so it can calculate the minimum and maximum
width of the content in each cell before it can even begin rendering the table. Fixed tables can
be rendered progressively as soon as the first row downloads. Fixed tables can size columns
smaller than their content and wider than the table width. Fixed tables have unique support

343

C H A P T E R 1 6

http://freepdf-books.com

for Sized Columns and Undersized Columns. Fixed tables support all the layouts of sized
and stretched tables except for Content-proportioned Columns. These layouts include Size-
proportioned Columns, Percentage-proportioned Columns, Equal-sized Columns, and Flex
Columns.

The type of layout algorithm chosen by the browser depends on the type of table and on
the type of width assigned to its cells. In other words, it makes a big difference whether you
assign a value of auto, 100px, or 20% to a cell. Not only are these different widths, but they are
also different types of width: auto, fixed, or percentage. These different types of width com-
bined with the type of table cause the browser to use different algorithms for sizing columns.

A value of auto assigned to width creates an auto width. A measurement assigned to
width, such as pixels or ems, creates a fixed width. A percentage assigned to width, such as
50%, creates a percentage width.

Finally, a browser examines the width assigned to all cells in the same column in all rows
to determine the column width and the type of column width. How a browser reconciles dif-
ferent cell widths in the same column is explained in the Column Width design pattern. Also,
assigning different types of width to different columns causes the browser to use multiple lay-
out algorithms in the same table. How a browser combines column layouts is explained in the
Mixed Column Layouts design pattern.

Even though a browser examines the width of all cells in nonfixed tables to determine the
column width, you only need to assign a width to the cells in the first row.

The following design patterns are created by combining the four types of tables with the
three types of widths.

Using Column Layouts
For many years, designers and developers have used the many automatic and powerful layout
features of columns to lay out nontabular content. In fact, this extensive use has promoted
browser venders to enhance these capabilities more than any other feature. It has also caused
the major browser vendors to ensure column layouts work consistently and are bug free.

Even though you can use column layouts to lay out nontabular data, I do not recommend
it because it leads to less-accessible content.

The purpose of this chapter is to show you how to lay out tabular data. Tabular data needs
to be styled and laid out. Each example in this chapter shows how you can automatically lay
out columns using the many powerful and automatic algorithms built into browsers.

Chapter Outline

• Column Width shows how a browser calculates the column width when cells in the
same column in different rows have different widths, different types of widths, different
minimum content widths, and different maximum content widths. This pattern applies
to shrinkwrapped, sized, and stretched tables.

• Shrinkwrapped Columns shows how to shrinkwrap columns to fit the width of their
content. This pattern applies to shrinkwrapped tables.

CHAPTER 16 ■ COLUMN LAYOUT344

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

• Sized Columns shows how to assign fixed widths to columns while keeping the table’s
width within a minimum or maximum value. This pattern applies to shrinkwrapped or
fixed tables.

• Content-proportioned Columns shows how to automatically distribute a table’s width
among its columns proportionally to the width of the content in each column. Columns
with wider content are assigned to a wider width than columns with narrower content.
This pattern applies to sized and stretched tables. It also applies to shrinkwrapped
tables when their content stretches them to the width of their containers.

• Size-proportioned Columns shows how to automatically distribute a table’s width
among its columns proportionally to the width assigned to each column. In this design
pattern, a browser does not necessarily render a column at its assigned width. Instead,
it renders a column proportionally to the widths assigned to other columns. This pat-
tern applies to sized, stretched, and fixed tables. It also applies to shrinkwrapped tables
when assigned cell widths stretch them to the width of their containers.

• Percentage-proportioned Columns shows how to distribute a table’s width among its
columns proportionally to the percentage assigned to the width of each column. In this
design pattern, a browser does not necessarily render a column at its assigned percent-
age of the table’s width. Instead, it renders a column proportionally to the percentages
assigned to other columns. This pattern applies to sized, stretched, and fixed tables.

• Inverse-proportioned Columns shows how to size columns in proportion to their con-
tent. For example, a cell can be sized to be double the width of its content. This pattern
applies to shrinkwrapped tables.

• Equal Content-sized Columns shows how to automatically shrink a table to its smallest
possible width while sizing all columns equally. In other words, it sets all columns to the
same width while using the smallest possible width that will display each cell’s content.
It creates compact tables with uniform columns. It works best with tables containing
numbers and short text. This pattern applies to shrinkwrapped tables.

• Equal-sized Columns shows how to automatically divide a table’s width into equal pro-
portions for each cell. This pattern applies to sized, stretched, and fixed tables.

• Undersized Columns shows how to create columns that are narrower than their
content. This pattern applies to fixed tables.

• Flex Columns shows how to create dynamically sized columns alongside fixed-width or
percentage-width columns. These columns fill in the space not taken by sized or per-
centage cells. As a table’s container grows or shrinks, so do flex columns. This pattern is
most useful when applied to stretched and fixed tables, but also applies to sized tables.

• Mixed Column Layouts shows how to combine fixed-width, percentage-width, and
auto-width columns to create additional layouts. It shows how browsers assign differ-
ent priorities to fixed-width, percentage-width, and auto-width columns depending on
whether a table is shrinkwrapped, sized, stretched, or fixed.

CHAPTER 16 ■ COLUMN LAYOUT 345

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Column Width

HTML

<h1>Column Width</h1>
<h2>Percentage widths trump fixed widths, which trump auto widths.</h2>

<table class="auto-layout sized">
<tr> <td class="a i">auto</td><td class="a">auto</td> <td class="a">auto</td>

<td class="a">auto</td> <td class="a">auto</td></tr>
<tr> <td class="a">auto</td> <td class="b i">75px</td> <td class="b">75px</td>

<td class="b">75px</td> <td class="b">75px</td></tr>
<tr> <td class="a">auto</td> <td class="a">auto</td> <td class="c i">150px</td>

<td class="c">150px</td> <td class="c">150px</td></tr>
<tr> <td class="a">auto</td> <td class="a">auto</td> <td class="a">auto</td>

<td class="d i">10%</td> <td class="d">10%</td></tr>
<tr> <td class="a">auto</td> <td class="a">auto</td> <td class="a">auto</td>

<td class="a">auto</td> <td class="e i">50%</td></tr>
</table>

CSS

*.i { background-color:black; color:white; font-weight:bold; }
*.auto-layout { table-layout:auto; }
*.sized { width:700px; }

*.a { width:auto; }
*.b { width:75px; }
*.c { width:150px; }
*.d { width:10%; }
*.e { width:50%; }

/* Nonessential styles are not shown */

CHAPTER 16 ■ COLUMN LAYOUT346

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Column Width

Problem You want to know how a browser chooses the width of a column when you assign
different widths to cells in the same column in different rows.

Solution This design pattern is the algorithm built into each browser that determines the
width of a column. You do not have to do anything to use this pattern.

It is simplest to assign widths only to cells in the first row. However, you may
want to assign different styles with different widths to arbitrary cells in a table,
and let a browser figure out the width of a column.

This design pattern does not apply to fixed tables, because a browser determines
column widths using only the widths of cells in the first row. Content in
subsequent rows is truncated when it exceeds the column width. The following
discussion applies only to nonfixed tables.

A browser assigns a minimum content width to each cell. This is the minimum
width needed to display cell content. On nonfixed tables, a browser will not
shrink a column smaller than this width. For text, the minimum content width
is the width of the widest word in the cell. For a replaced element, such as an
image, it is the width of the replaced element.

A browser assigns a maximum content width to each cell. This is the width of a
cell’s content up to the width of the table’s container. Some design patterns use
this width to size or proportion columns.

A browser downloads the entire table and scans all its rows to determine the
following for each column: width type, maximum width value, minimum content
width, and maximum content width.

A browser uses the following rules to reconcile different types and values:

1. A column defaults to auto width.

2. A fixed width changes the column’s type to fixed width.

3. A percentage width changes the column’s type to percentage width.

4. A larger fixed width replaces a smaller one.

5. A larger percentage width replaces a smaller one.

6. A larger minimum content width replaces a smaller one.

7. A larger maximum content width replaces a smaller one.

A browser chooses a layout design pattern based on the type of table and the
type of each column (auto, fixed, or percentage width). The column is sized using
the largest width value in the column that matches its type.

Location This pattern applies to shrinkwrapped, sized, and stretched tables.

Example The table is 700 pixels wide. The second column in the example is 75 pixels wide,
showing how a fixed-width cell overrides an auto cell in the same column. The
third column is 150 pixels wide, showing how a larger fixed-width value (150px)
overrides a smaller one (75px). The fourth column is 70 pixels wide, showing how
a percentage-width cell (10%) overrides a fixed-width cell (150px) in the same
column. The fifth column is 350 pixels wide, showing how a larger percentage
width (50%) overrides a smaller one (10%).

Related to All the design patterns in this chapter

See also www.cssdesignpatterns.com/column-width

CHAPTER 16 ■ COLUMN LAYOUT 347

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Shrinkwrapped Columns

HTML

<h1>Shrinkwrapped Columns</h1>

<table class="auto-layout shrinkwrap">
<tr>
<td class="shrinkwrap">auto</td>
<td class="shrinkwrap">auto</td>

</tr>
</table>

<table class="auto-layout shrinkwrap">
<tr> <td class="shrinkwrap">auto (less content - less width)</td>

<td class="shrinkwrap">auto (extra content turns shrinkwrapped columns
into content-proportioned columns)</td></tr></table>

CSS

table { border-collapse:collapse; }
td { overflow:hidden; }

*.auto-layout { table-layout:auto; }
*.shrinkwrap { width:auto; }

/* Nonessential styles are not shown */

CHAPTER 16 ■ COLUMN LAYOUT348

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Shrinkwrapped Columns

Problem You want to shrinkwrap columns to fit the width of their content.

Solution You can shrinkwrap columns by applying table-layout:auto and width:auto
to the table and width:auto to its cells. Since these rules are the default, this
happens by default.

The width of each cell expands to its maximum content width, which is the
width of a cell’s content up to the width of the table’s container. The content
can expand a table up to the width of the table’s container. If this happens, the
cells are laid out using the Content-proportioned Columns design pattern.

Pattern HTML
<table>
<tr>
<td> CONTENT </td>

</tr>
</table>

CSS
TABLE_SELECTOR { width:auto; table-layout:auto; }
CELL_SELECTOR { width:auto; }

Location This pattern applies to shrinkwrapped tables.

Advantages Browsers use this design pattern by default because it is the most adaptable
and natural. It automatically sizes columns and tables to fit their content.
It adapts automatically to any device and display size. This is a very powerful
feature that requires a lot of code to implement in other graphical user
interfaces.

Disadvantages A browser determines the layout of columns. Other design patterns allow
you to control column width, to size columns equally, or to size them
proportionally.

Tips The only time shrinkwrapped columns can expand a table beyond the
width of its container is when the combined minimum content width of
each column is greater than the width of the container. For example,
replaced elements, such as images, tables nested in cells, or text set to
white-space:nowrap can easily expand a shrinkwrapped table beyond the
width of its container. This causes the table to overflow its container.

Example The first table in the example shows how cells can shrinkwrap to fit their
content. The second table shows how wider content expands a table up to
the width of its container and automatically uses the Content-proportioned
Columns design pattern to lay out columns.

Related to Content-proportioned Columns

See also www.cssdesignpatterns.com/shrinkwrapped-columns

CHAPTER 16 ■ COLUMN LAYOUT 349

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Sized Columns

HTML

<h1>Sized Columns</h1>
<h2>Shrinkwrapped Table</h2>
<table class="auto-layout shrinkwrapped">
<tr> <td class="sized1">200px</td> <td class="sized2">300px</td></tr></table>

<h2>Fixed Table</h2>
<table class="fixed-layout min-width1">
<tr> <td class="sized1">200px</td> <td class="sized2">300px</td></tr></table>

<h2>Maximum-width Sized Columns</h2>
<div class="sized2">
<table class="auto-layout shrinkwrapped">
<tr> <td class="sized1">200px</td><td class="sized2">300px</td></tr></table></div>

<h2>Minimum-width Sized Columns</h2>
<table class="fixed-layout min-width2">
<tr> <td class="sized1">200px</td> <td class="sized2">300px</td></tr></table>

CSS

*.auto-layout { table-layout:auto; }
*.fixed-layout { table-layout:fixed; }
*.shrinkwrapped { width:auto; }
*.min-width1 { width:1px; } *.min-width2 { width:700px; }
*.sized1 { width:200px; } *.sized2 { width:300px; }

/* Nonessential styles are not shown */

CHAPTER 16 ■ COLUMN LAYOUT350

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Sized Columns

Problem You want to assign fixed widths to columns while keeping the table’s width
within a minimum or maximum value.

Solution You can size columns by applying table-layout:auto and width:auto to the table
and width:VALUE to its cells. If the total width of the columns is greater than the
width of the container, the layout changes to the Sized-proportioned Columns
design pattern. I call this the Maximum-width Sized Columns design pattern
because columns are rendered at the width you assigned only as long as their
total width is less than or equal to the width of the table’s container. In other
words, the container’s width sets the maximum width of the table. Finally,
regardless of the assigned width, columns cannot be smaller than their
minimum content width.

You can also size columns by applying table-layout:fixed and width:MIN_WIDTH
to the table and width:VALUE to cells in the first row. If you assign a 1-pixel width
to the table, a browser will expand the table as necessary to fit the fixed width
of its cells. There is no maximum width—the table overflows its container as
needed to ensure its columns are sized to their assigned width. If you assign a
larger width to the table than the total width of the columns, the layout changes
to the Sized-proportioned Columns design pattern. I call this the Minimum-
width Sized Columns design pattern because columns are rendered at the width
you assigned only as long as their total width is greater than or equal to the width
assigned to the table. Finally, minimum content width has no effect on column
width.

Patterns Maximum-width Sized Columns
HTML
<table> <tr> <td> CONTENT </td> </tr> </table>
CSS
TABLE_SELECTOR { width:auto; table-layout:auto; }
CELL_SELECTOR { width:VALUE; }

Minimum-width Sized Columns
HTML
<table> <tr> <td> CONTENT </td> </tr> </table>
CSS
TABLE_SELECTOR { width:MIN_WIDTH; table-layout:fixed; }
CELL_SELECTOR { width:VALUE; }

Location This pattern applies to shrinkwrapped or fixed tables.

Example The columns in all four tables are sized the same. The first column is 200 pixels,
and the second is 300 pixels. The difference is the type of table (fixed or
shrinkwrapped) and the table’s width or its container’s width.

Related to Sized-proportioned Columns

See also www.cssdesignpatterns.com/sized-columns

CHAPTER 16 ■ COLUMN LAYOUT 351

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Content-proportioned Columns

HTML

<h1>Content-proportioned Columns</h1>

<h2>Sized Table</h2>
<table class="auto-layout sized">
<tr> <td class="auto-width">auto</td>

<td class="auto-width">auto (more content - more width)</td></tr></table>

<h2>Stretched Table</h2>
<table class="auto-layout stretched">
<tr> <td class="auto-width">auto (same content - same width)</td>

<td class="auto-width">auto (same content - same width)</td></tr></table>

<h2>Shrinkwrapped Table</h2>
<table class="auto-layout shrinkwrapped">
<tr> <td class="auto-width">auto (less content - less width)</td>

<td class="auto-width">auto (extra content turns shrinkwrapped columns
into content-proportioned columns)</td></tr></table>

CSS

*.auto-layout { table-layout:auto; }
*.fixed-layout { table-layout:fixed; }
*.sized { width:700px; }
*.stretched { width:100%; }
*.shrinkwrapped { width:auto; }
*.auto-width { width:auto; }

/* Nonessential styles are not shown */

CHAPTER 16 ■ COLUMN LAYOUT352

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Content-proportioned Columns

Problem You want columns to fill the specified width of a table, and you want columns
with wider content to have a wider width than columns with narrower
content. In other words, you want to distribute a table’s width automatically
among its columns while keeping the table stretched or sized, and you want
columns to be sized proportionally to the width of their content.

Solution You can size columns proportionally to the width of their content by applying
table-layout:auto and width:VALUE_OR_PERCENT to the table and width:auto
to its cells. In other words, you size or stretch the table and make cells auto
width. A browser automatically calculates the maximum content width of
each column and totals the maximum content widths of all columns. It then
sizes each column based on the percentage of its maximum content width
divided by the total maximum content width of all columns. Thus, it gives
columns with a larger maximum content width a proportionally larger width
compared to cells with a smaller maximum content width.

A shrinkwrapped table cannot expand beyond the width of its container.
When content expands a shrinkwrapped table to the full width of its
container, the table behaves as if it were stretched and turns shrinkwrapped
columns into content-proportioned columns.

Pattern HTML
<table> <tr> <td> CONTENT </td> </tr> </table>

CSS
TABLE_SELECTOR { width:VALUE_OR_PERCENT; table-layout:auto; }
CELL_SELECTOR { width:auto; }

Location This pattern applies to sized and stretched tables. It also applies to
shrinkwrapped tables when their content stretches them to the width of
their containers. It does not apply to fixed tables.

Advantages Sized and stretched tables are particularly useful when you have multiple
tables that you want to be the same size. This gives a document a consistent
look and feel. Stretched tables have an advantage over sized tables in that
they automatically resize to fit smaller displays.

Disadvantages Sized tables do not adapt to small displays, such as mobile devices.

Example In the example, the first table is sized, and its first column is smaller than its
second column because it has less content. Notice that both columns are
wider than they would have been if they were shrinkwrapped. In the second
table, both columns have identical content, and the browser makes them the
same size. The third table is shrinkwrapped, but its content stretches the table
to the width of its container. This makes its columns content proportioned.
Notice how the second column is twice as wide as the first column because its
content is twice as wide.

Related to Shrinkwrapped Columns

See also www.cssdesignpatterns.com/content-proportioned-columns

CHAPTER 16 ■ COLUMN LAYOUT 353

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Size-proportioned Columns

HTML

<h1>Sized-proportioned Columns</h1>
<h2>Sized or Stretched Table</h2>
<table class="auto-layout stretched">
<tr> <td class="size3">100px</td>

<td class="size4">300px</td></tr></table>

<h2>Shrinkwrapped Table</h2>
<table class="auto-layout shrinkwrapped">
<tr> <td class="size1">1000px</td>

<td class="size2">3000px</td></tr></table>

<h2>Fixed Table</h2>
<table class="fixed-layout sized">
<tr> <td class="size3">100px</td>

<td class="size4">300px</td></tr></table>

CSS

*.auto-layout { table-layout:auto; }
*.fixed-layout { table-layout:fixed; }
*.sized { width:700px; }
*.stretched { width:100%; }
*.shrinkwrapped { width:auto; }
*.size1 { width:1000px; } *.size2 { width:3000px; }
*.size3 { width:100px; } *.size4 { width:300px; }

/* Nonessential styles are not shown */

CHAPTER 16 ■ COLUMN LAYOUT354

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Size-proportioned Columns

Problem You want columns to fill the specified width of a table, and you want columns
with larger width to be proportionally wider than columns with smaller width.
In other words, you want to distribute a table’s width among its columns
proportionally to each column’s assigned width.

Solution You can size columns proportionally to their width by applying
table-layout:auto and width:VALUE_OR_PERCENT to the table and width:VALUE
to its cells. In other words, you size or stretch the table and assign fixed widths
to cells.

When all column widths, padding, borders, and cell spacing add up to the width
you assign to the table, a browser renders each column at the exact width you
assigned. Since this is tedious to calculate and error prone, it is easy for column
widths to add up to more or less than the table’s width. When this happens, a
browser renders a column proportionally to the widths you assigned to other
columns.

Pattern HTML
<table> <tr> <td> CONTENT </td> </tr> </table>

CSS
TABLE_SELECTOR { width:VALUE_OR_PERCENT; table-layout:auto; }
CELL_SELECTOR { width:VALUE; }

Location This pattern applies to sized and stretched tables.

This pattern applies to a shrinkwrapped table when the total width of all its
columns is greater than the width of its container. This stretches it to the sides
of its container, causing it to behave like a stretched table.

This pattern applies to a fixed table when the total width of all its columns is less
than the width assigned to the table. In contrast, if the total width of the columns
is greater than the width of a fixed table, the width of the table expands, and the
columns are not size proportioned.

Advantages Size-proportioned columns give you the ability to specify the relative size of each
column in relation to the other columns while preserving the width you assigned
to the table. Size-proportioned columns are most common in stretched and
sized tables where you want multiple tables to have a uniform width and you
want to tweak the width of individual columns.

Tips Since the widths you assign to columns are proportional, you can make widths
huge or tiny because only the ratio between widths matters.

Example Notice how the columns in the shrinkwrapped table had to be set to a width
large enough to stretch the table to the width of its container. This allows the
columns to be size proportioned. Notice how the total width of the columns in
the fixed table is much smaller than the width of the table. This allows the fixed
table to be size proportioned.

Related to Sized Columns

See also www.cssdesignpatterns.com/size-proportioned-columns

CHAPTER 16 ■ COLUMN LAYOUT 355

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Percentage-proportioned Columns

HTML

<h1>Percentage-proportioned Columns</h1>
<h2>Sized or Stretched Table</h2>
<table class="auto-layout sized">
<tr> <td class="p3">50%</td> <td class="p3">50%</td></tr></table>

<table class="auto-layout sized">
<tr> <td class="p1">20%</td> <td class="p1">20%</td></tr></table>

<table class="auto-layout sized">
<tr> <td class="p2">80%</td> <td class="p2">80%</td></tr></table>

<table class="auto-layout sized">
<tr> <td class="p2">80%</td> <td class="p1">20%</td></tr></table>

<table class="auto-layout sized">
<tr> <td class="p2">80%</td> <td class="p1">20%</td>

<td class="p3">50%</td></tr></table>

CSS

*.auto-layout { table-layout:auto; }
*.fixed-layout { table-layout:fixed; }
*.sized { width:700px; }
*.stretched { width:100%; }
*.p1 { width:20%; } *.p2 { width:80%; } *.p3 { width:50%; }

/* Nonessential styles are not shown */

CHAPTER 16 ■ COLUMN LAYOUT356

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Percentage-proportioned Columns

Problem You want to size columns as a percentage of a table’s width. In other words,
you want columns to fill the specified width of a table, and you want to
distribute a table’s width among its columns using percentages. When the
total column percentage falls short of 100%, you want a browser to scale the
percentages to equal 100%.

Solution You can size columns as a percentage of a table’s width by applying
width:VALUE_OR_PERCENT to the table and width:PERCENT to its cells. In other
words, you size or stretch the table and assign percentages to cells. The table
can be fixed layout or auto layout.

When the total percent of all columns is less than 100%, a browser scales
percents to equal 100%. In the example, the two columns in the second table
are both assigned to 20%, which totals 40%. These percents are scaled to
100%, laying out the table as if each column were assigned to 50%.

A browser works from left to right when sizing percentage-width columns.
When a browser encounters a percentage that increases the total beyond
100%, it truncates the percentage assigned to that column so the total equals
100% and it treats any remaining columns as width:auto. In the example,
the two columns of the third table are both set to 80%, which totals 160%.
The percentage assigned to the second table is reduced to 20% so that the
columns total 100%. In the last table of the example, the third column occurs
after the percentage totals 100%. This causes a browser to shrinkwrap the
third column and to scale the previous columns to fit in the remaining space.

In fixed tables, when percents total 100% or less, percents work the same as
they work in sized and shrinkwrapped tables. When they exceed 100%, the
results vary from browser to browser.

Pattern HTML
<table> <tr> <td> CONTENT </td> </tr> </table>

CSS
TABLE_SELECTOR { width:VALUE_OR_PERCENT; }
CELL_SELECTOR { width:PERCENT; }

Location This pattern applies to sized, stretched, and fixed tables.

Advantages Percentages are an intuitive, self-documenting way to proportion columns.

Disadvantages Size-proportioned columns are more forgiving because they do not have to
add up to 100%.

Tip It is best not to allow column percentages to exceed 100% for any type of
table. If you want some cells to be shrinkwrapped and others to be percentage
proportioned, your intention is clearer and the result more reliable when you
assign width:auto to shrinkwrapped cells and width:PERCENT to percentage-
proportioned cells.

Related to Size-proportioned Columns

See also www.cssdesignpatterns.com/percentage-proportioned-columns

CHAPTER 16 ■ COLUMN LAYOUT 357

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Inverse-proportioned Columns

HTML

<h2>Shrinkwrapped Table</h2>
<table class="auto-layout shrinkwrapped">
<tr> <td class="p1">20%</td></tr></table>

<table class="auto-layout shrinkwrapped">
<tr> <td class="p1">20%</td>

<td class="p1">20%</td>
<td class="p1">20%</td>
<td class="p1">20%</td>
<td class="p1">20%</td></tr></table>

<table class="auto-layout shrinkwrapped">
<tr> <td class="p1">20%</td>

<td class="p2">50%</td></tr></table>

CSS

*.auto-layout { table-layout:auto; }
*.shrinkwrapped { width:auto; }

*.p1 { width:20%; }
*.p2 { width:50%; }

/* Nonessential styles are not shown */

CHAPTER 16 ■ COLUMN LAYOUT358

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Inverse-proportioned Columns

Problem You want to size a table in proportion to its column with the widest content,
and you want its columns to be percentage proportioned within this width. For
example, you want a table to be automatically sized at twice the width of the
column containing the widest content.

Solution You can size a table in proportion to the column with the widest content by
assigning table-layout:auto and width:auto to the table and width:PERCENT to
its cells. In other words, you shrinkwrap the table and assign percentages to cells.

A browser calculates the table width by multiplying the maximum content width
by the inverse of the percentage assigned to each column. The largest resulting
width becomes the width of the table. Once the table width is calculated, a
browser percentage-proportions each column to fit into the table’s width.

This design pattern provided by browsers is too unintuitive to be useful as it
stands. But it can be used to create equal-sized columns based on the content
width, which is the basis of the next design pattern, Equal Content-sized
Columns. And this is a very useful design pattern.

Pattern HTML
<table> <tr> <td> CONTENT </td> </tr> </table>

CSS
TABLE_SELECTOR { width:auto; table-layout:auto; }
CELL_SELECTOR { width:PERCENT; }

Location This pattern applies to shrinkwrapped tables.

Limitations This pattern works only when the total of all columns is less than or equal
to 100%.

Example In the example, the first table has one column assigned to width:20%. A browser
multiplies the content’s width, which is 40 pixels, by the inverse of 20%, which
is 5. This sizes the table at 200 pixels plus cell spacing, padding, and borders
around each cell. The second table shows that the table width is wide enough to
hold five equal-sized columns shrinkwrapped to their content. The third table
shows that columns with different percentages are percentage proportioned
within the calculated width of the table.

Also notice in the example how smaller percentages and wider content make
wider tables. For example, given a content width of 40 pixels, the first column of
the third table with a width of 20% suggests a table width of 200 pixels (5✕40).
The second column with a width of 50% suggests a table width of 80 pixels
(2✕40). The first column wins because it suggests a larger table width. If the
content width of the second column were wider, say 150 pixels, it would win
and size the table at 300 pixels (2✕150).

Related to Equal Content-sized Columns

See also www.cssdesignpatterns.com/inverse-proportioned-columns

CHAPTER 16 ■ COLUMN LAYOUT 359

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Equal Content-sized Columns

HTML

<h1>Equal Content-sized Columns</h1>

<h2>Shrinkwrapped Table</h2>
<table class="auto-layout shrinkwrapped">
<tr> <td class="p2">2=50%</td> <td class="p2">50%</td></tr></table>

<!-- Additional tables are not shown -->

CSS

*.auto-layout { table-layout:auto; }
*.shrinkwrapped { width:auto; }

.p2 { width:50%; } / 2 columns */
.p3 { width:33.5%; } / 3 columns */
.p4 { width:25%; } / 4 columns */
.p5 { width:20%; } / 5 columns */
.p6 { width:16.5%; } / 6 columns */
.p7 { width:14.1%; } / 7 columns */
.p8 { width:12.3%; } / 8 columns */
.p9 { width:11%; } / 9 columns */
.p10 { width:10%; } / 10 columns */

/* Nonessential styles are not shown */

CHAPTER 16 ■ COLUMN LAYOUT360

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Equal Content-sized Columns

Problem You want to create a compact table with uniformly sized columns. In other
words, you want to automatically shrink a table to its smallest possible width
while sizing all columns equally.

Solution You can use a variation of the Inverse-proportioned Columns design pattern
to set all columns to the same width while ensuring the width is no larger
than necessary to display the table’s content.

You can do this by assigning table-layout:auto and width:auto to the table
and width:PERCENT to its cells. In other words, you shrinkwrap the table and
assign percentages to cells. The key is to apply the same percentage to all cells
and to use a percentage that is the inverse of the number of columns in the
table.

- A two-column table requires each column to be sized at 50%.

- A three-column table requires each column to be sized at 33.5%.

- A four-column table requires each column to be sized at 25%.

- A five-column table requires each column to be sized at 20%.

- A six-column table requires each column to be sized at 16.5%.

- A seven-column table requires each column to be sized at 14.1%.

- An eight-column table requires each column to be sized at 12.3%.

- A nine-column table requires each column to be sized at 11%.

- A ten-column table requires each column to be sized at 10%.

Note that some percentages are not exact inverses of the number of columns
because the inexact value works better in some browsers.

Pattern HTML
<table> <tr> <td> CONTENT </td> </tr> </table>

CSS
TABLE_SELECTOR { width:auto; table-layout:auto; }
CELL_SELECTOR { width:PERCENT; }

Location This pattern applies to shrinkwrapped tables.

Advantages You can automatically shrinkwrap a table and its columns, and at the same
time have all columns be equal width. This scales nicely on all devices, and
when a small display shrinks a table’s container to the width of the table or
smaller, a browser automatically switches the table to the Equal-sized
Columns design pattern.

Disadvantages This design pattern only works best when you have columns containing
numbers and short text. When content is wide enough to stretch a table to the
width of its container, a browser automatically switches to the Equal-sized
Columns design pattern.

Related to Inverse-proportioned Columns, Equal-sized Columns

See also www.cssdesignpatterns.com/equal-content-sized-columns

CHAPTER 16 ■ COLUMN LAYOUT 361

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Equal-sized Columns

HTML

<h2>Sized, Stretched, or Fixed Table</h2>
<table class="auto-layout sized">
<tr> <td class="p2">2=50%</td> <td class="p2">50%</td></tr></table>

<!-- Additional tables are not shown -->

CSS

*.auto-layout { table-layout:auto; } *.fixed-layout { table-layout:fixed; }
*.sized { width:700px; } *.stretched { width:100%; }

.p2 { width:50%; } / 2 columns */
.p3 { width:33.5%; } / 3 columns */
.p4 { width:25%; } / 4 columns */
.p5 { width:20%; } / 5 columns */
.p6 { width:16.5%; } / 6 columns */
.p7 { width:14.1%; } / 7 columns */
.p8 { width:12.3%; } / 8 columns */
.p9 { width:11%; } / 9 columns */
.p10 { width:10%; } / 10 columns */

/* Nonessential styles are not shown */

CHAPTER 16 ■ COLUMN LAYOUT362

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Equal-sized Columns

Problem You want to automatically divide a table’s width into equal proportions for
each cell. In other words, you want to size all columns equally as a percentage
of a table’s width.

Solution You can size columns equally as a percentage of a table’s width by applying
width:VALUE_OR_PERCENT to the table and width:PERCENT to its cells. In other
words, you size or stretch the table and assign percentages to cells. The table
can be fixed layout or auto layout. The key is to apply the same percentage to
all cells.

The same percentages that work for the Equal Content-sized Columns design
pattern work for this design pattern:

- A two-column table requires each column to be sized at 50%.

- A three-column table requires each column to be sized at 33.5%.

- A four-column table requires each column to be sized at 25%.

- A five-column table requires each column to be sized at 20%.

- A six-column table requires each column to be sized at 16.5%.

- A seven-column table requires each column to be sized at 14.1%.

- An eight-column table requires each column to be sized at 12.3%.

- A nine-column table requires each column to be sized at 11%.

- A ten-column table requires each column to be sized at 10%.

Note that some percentages are not exact inverses of the number of columns
because the inexact value works better in some browsers. It does not matter
if the total percentage exceeds 100%, because a browser compensates by
proportionately shrinking the width of all columns to fit into its width.

The difference between this design pattern and the Equal Content-sized
Columns design pattern is that this pattern divides columns equally into the
table’s width, and the Equal Content-sized Columns pattern shrinkwraps
columns to create the narrowest possible table with equal-width columns.

Pattern HTML
<table> <tr> <td> CONTENT </td> </tr> </table>

CSS
TABLE_SELECTOR { width:VALUE_OR_PERCENT; }
CELL_SELECTOR { width:PERCENT; }

Location This pattern applies to sized, stretched, and fixed tables.

Advantages Equal-sized columns are most common in stretched and sized tables where
you want multiple tables to have a uniform width and you want their
columns to have a uniform width.

Disadvantages Sized tables do not adapt to small displays, such as mobile devices.

Tips Fixed tables automatically create equal-sized columns by default because
assigning width:auto to cells triggers this unique behavior of fixed tables.

Related to Equal Content-sized Columns, Percentage-proportioned Columns

See also www.cssdesignpatterns.com/equal-sized-columns

CHAPTER 16 ■ COLUMN LAYOUT 363

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Undersized Columns

HTML

<h1>Undersized Columns</h1>

<h2>Fixed Table</h2>
<table class="fixed-layout sized">
<tr> <td class="undersized">18px</td> <td class="flex">auto</td></tr></table>

<h2>Sized Table — cannot be undersized</h2>
<table class="auto-layout sized">
<tr> <td class="undersized">18px</td> <td class="flex">auto</td></tr></table>

CSS

td { overflow:hidden; }

*.fixed-layout { table-layout:fixed; }

*.auto-layout { table-layout:auto; }

*.sized { width:700px; }
*.stretched { width:100%; }

*.undersized { width:18px; }
*.flex { width:auto; }

/* Nonessential styles are not shown */

CHAPTER 16 ■ COLUMN LAYOUT364

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Undersized Columns

Problem You want to create columns that will be the exact width assigned to them.
They may even be undersized, which means a column may be narrower than
its content, and its content may be truncated.

Solution You can fix the size of columns by applying table-layout:fixed and
width:VALUE_OR_PERCENT to the table and width:VALUE_OR_PERCENT to its cells.
In other words, you can size or stretch a fixed table, and assign fixed widths
to cells.

A fixed-layout table truncates content in a cell if the content cannot fit within
the column’s assigned width. Contrast this with auto-layout tables, where a
browser always increases the width of a cell to fit its minimum content width.
To ensure consistent behavior in browsers, you can assign overflow:hidden to
all table cells. overflow:hidden is the only overflow setting that is consistently
applied by major browsers to tables.

Pattern HTML
<table> <tr> <td> CONTENT </td> </tr> </table>

CSS
TABLE_SELECTOR { width:VALUE_OR_PERCENT; table-layout:fixed; }
CELL_SELECTOR { width:VALUE_OR_PERCENT; overflow:hidden; }

Location This pattern applies only to fixed tables.

Advantages This design pattern works best when you need to ensure pixel-perfect
precision that cannot be broken by content. For example, you need to align
tabular data with a background image.

Fixed tables render much faster than auto-layout tables because a browser
only reads the widths assigned to the first row of cells, and it completely
ignores the width of content. This means a browser does not have to wait for
the entire table to download, and it does not have to calculate minimum and
maximum content widths.

Disadvantages Fixed tables do not adapt to small displays, such as mobile devices.

Example The example contains two tables. The first is a fixed table showing how it can
create undersized columns. The second is an auto-layout table showing how
it cannot create undersized columns.

Related to Column Width

See also www.cssdesignpatterns.com/undersized-columns

CHAPTER 16 ■ COLUMN LAYOUT 365

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Flex Columns

HTML

<h1>Flex Columns</h1>
<h2>Sized, Stretched, or Fixed Table</h2>
<table class="fixed-layout sized"><tr><td class="sized1">200px</td>
<td class="p1">20%</td> <td class="sized2">100px</td>
<td class="flex">auto flex</td> <td class="flex">auto flex</td></tr></table>

<h2>Sized or Stretched — Oversized</h2>
<table class="auto-layout sized"><tr><td class="sized1">200px</td>
<td class="p1">20%</td> <td class="sized3">500px</td>
<td class="flex">auto flex</td> <td class="flex">auto flex</td></tr></table>

<h2>Fixed — Oversized</h2>
<table class="fixed-layout sized"><tr><td class="sized1">200px</td>
<td class="p1">20%</td> <td class="sized3">500px</td>
<td class="flex">auto flex</td> <td class="flex">auto flex</td></tr></table>

CSS

*.fixed-layout { table-layout:fixed; }
*.auto-layout { table-layout:auto; }
*.sized { width:700px; }
*.stretched { width:100%; }
*.flex { width:auto; }
*.sized1 { width:200px; }
*.sized2 { width:100px; }
*.sized3 { width:500px; }
*.p1 { width:20%; }

/* Nonessential styles are not shown */

CHAPTER 16 ■ COLUMN LAYOUT366

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Flex Columns

Problem You want to create dynamically sized columns alongside fixed-width or
percentage-width columns. You want these columns to fill in space that is not
used by sized or percentage cells. As a table’s container grows or shrinks, you
want flex columns to grow or shrink (i.e., to flex with the table).

Solution You can flex the size of one or more columns by applying
width:VALUE_OR_PERCENT to the table and width:auto to its cells. In other words,
you can size or stretch a table, assign fixed widths and percentage width to most
cells, and apply auto width to those cells you want to flex.

When there are multiple flex columns in fixed tables, each one is sized equally.
In auto-layout tables, flex columns are content proportioned.

Flex columns stretch to fill any space left over after fixed-width and percentage-
width columns are calculated. If there is no remaining width, flex columns
collapse or shrinkwrap. In auto-layout tables, flex columns shrinkwrap to their
minimum content width. In fixed tables, flex columns completely disappear!

Pattern HTML
<table> <tr> <td> CONTENT </td> </tr> </table>

CSS
TABLE_SELECTOR { width:VALUE_OR_PERCENT; }
FLEX_CELL_SELECTOR { width:auto; }
FIXED_CELL_SELECTOR { width:VALUE; }
PERCENTAGE_CELL_SELECTOR { width:PERCENT; }

Location This pattern applies to stretched and fixed tables. It does not apply to
shrinkwrapped tables because their auto-width columns shrinkwrap rather
than flex. It applies to sized tables, but this serves no purpose since a sized
table does not flex.

Example The first table in the example is 700 pixels wide and has two flex columns, two
fixed-width columns, and one percentage-width column. The fixed-width
columns take up 300 pixels, and the percentage-width column takes up
140 pixels. This leaves 260 pixels for the flex columns. Since this is a fixed table,
both flex columns are sized equally to fit in the remaining 260 pixels.

The second table shows how flex columns shrink to their minimum content
width in auto-layout tables when the total width of nonflex columns (840 pixels
in the example) are larger than or equal to the table’s width.

The third table shows how flex columns disappear in fixed tables when the total
width of nonflex columns (700 pixels in the example) are larger than or equal to
the table’s width.

Related to Mixed Column Layouts

See also www.cssdesignpatterns.com/flex-columns

CHAPTER 16 ■ COLUMN LAYOUT 367

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Mixed Column Layouts

HTML

<h1>Mixed Column Layouts</h1>

<h2>Shrinkwrapped, Stretched, or Sized Tables</h2>
<table class="auto-layout stretched"> <tr> <td class="sized1">500px</td>
<td class="p1">10%</td> <td class="flex">auto</td></tr></table>

<table class="auto-layout stretched"> <tr> <td class="sized1">500px</td>
<td class="sized2">200px</td> <td class="p3">40%</td>
<td class="p1">10%</td> <td class="flex">auto</td></tr></table>

<table class="auto-layout stretched"> <tr> <td class="sized1">500px</td>
<td class="sized2">200px</td> <td class="p4">80%</td>
<td class="p2">20%</td> <td class="flex">auto</td></tr></table>

<h2>Fixed Table</h2>
<table class="fixed-layout stretched"> <tr> <td class="sized1">500px</td>
<td class="sized2">200px</td> <td class="p4">80%</td>
<td class="p2">20%</td> <td class="flex">auto</td></tr></table>

CSS

*.fixed-layout { table-layout:fixed; } *.auto-layout { table-layout:auto; }
*.shrinkwrapped { width:auto; }
*.stretched { width:100%; }
*.flex { width:auto; }
*.sized1 { width:500px; } *.sized2 { width:200px; }
*.p1 { width:10%; } *.p2 { width:20%; }
*.p3 { width:40%; } *.p4 { width:80%; }

/* Nonessential styles are not shown */

CHAPTER 16 ■ COLUMN LAYOUT368

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

Mixed Column Layouts

Problem You want to use a mixture of columns in a table. For example, you want some
columns to have a fixed width, some to be a percentage of the table’s width, and
some to fill in the remaining space.

Solution This design pattern is the algorithm built into each browser that prioritizes how
much width to give different types of columns when the table is not wide enough
for all its columns to fit.

In a shrinkwrapped, sized, or stretched table, percentage-width columns have
highest priority followed by fixed-width and auto-width columns. In other words,
auto-width columns are shrunk to the minimum width of their content to make
room for other columns. If there is still not enough room, fixed-width columns
are shrunk to the minimum width of their content. Percentage-width columns
are percentage proportioned in the remaining space. If there is space left over for
fixed-width columns, they are size proportioned to fill the remaining space.

In a fixed table, fixed-width columns have highest priority followed by
percentage-width and auto-width columns. In other words, auto-width columns
are collapsed as needed to make room for other columns—they completely
disappear. If there is still not enough room for all the columns, percentage-width
columns are collapsed to make room—they completely disappear. Fixed-width
cells are displayed at their assigned width—even if it increases the width of the
table beyond its specified width. If there is space left over for percentage-width
columns, they are percentage proportioned to fill the remaining space.

Location This pattern applies to shrinkwrapped, stretched, and fixed tables that are
stretched. This is because a browser resizes them automatically to fit their
content and to fit large or small displays. In this situation, you may want some
columns to be a fixed width, some to be a percentage of the table’s width, some
to shrinkwrap, or some to flex to fill in the remaining width.

There is no need to mix columns in sized tables, because you already know their
width, and you can simply use fixed-width columns.

Example The first table in the example is a stretched table with mixed columns that do
not exceed the width of the table. Notice how the auto-width column flexes to
take up the extra space. The remaining tables have columns with a combined
width that exceeds the width of the table. Notice in the second table how the
percentage-width columns are fully sized to their assigned percentages, the
auto-width column is forced down to the minimum width of its content, and the
fixed-width columns are size proportioned to fit the remaining space. The third
table shows how large percentage-width columns can force fixed-width and
auto-width columns to shrink to their minimum content width. The fourth table
is identical to the third table, except it is fixed. Notice how the fixed-width
columns in this fixed table have completely removed the percentage-width
and auto-width columns!

Related to Flex Columns

See also www.cssdesignpatterns.com/mixed-column-layouts

CHAPTER 16 ■ COLUMN LAYOUT 369

C
O

LU
M

N
LA

YO
U

T

http://freepdf-books.com

http://freepdf-books.com

Layouts

This chapter shows how to create fluid layouts, which automatically adapt to different
devices, fonts, widths, and zoom factors. These design patterns are accessible, modular, and
easily customized. The dynamic patterns use open source JavaScript libraries to attach event
handlers to elements. This allows you to create dynamic effects without putting a single line of
JavaScript in your document! The libraries use CSS selectors to determine which elements to
process in response to events, and they can modify the class attribute of elements so your
stylesheet has complete control over how events dynamically style an element.

Chapter Outline

• Fluid Layout Overview explores problems and solutions in creating fluid layouts.

• Outside-in Box shows how to size the outer width of a box instead of the inner width.

• Floating Section shows how to render sections in columns using a fluid layout.

• Float Divider shows how to separate and integrate floats and content predictably.

• Fluid Layout shows how to create layouts that automatically adapt to any display.

• Opposing Floats shows how to move content to opposite sides of its container.

• Event Styling shows how to assign events to elements without putting code in your
document. It shows how events can modify classes to change how elements are styled.

• Rollup shows how to collapse and open sections with a mouse click.

• Tab Menu shows how to create a tabbed interface that loads new pages when clicked.

• Tabs shows how to create a tabbed interface that dynamically switches content in and
out of the display when the user clicks a tab—without loading a new page.

• Flyout Menu shows how to create a menu that opens when clicked or hovered over.

• Button shows how to create buttons and process their events using JavaScript.

• Layout Links shows how to use links as part of the layout, such as breadcrumbs.

• Layout Example shows how these design patterns can be combined and extended.

371

C H A P T E R 1 7

http://freepdf-books.com

Fluid Layout Overview

HTML

<body>

<h1>Fluid Layout Overview</h1>

<div id="nav">
<h2>Navigation</h2>
<p>20% of container's width.</p></div>

<div id="main">
<h2>Main</h2>
<p>40% of container's width.</p></div>

<div id="news">
<h2>News</h2>
<p>20% of container's width.</p></div>

</body>

CSS

body { max-width:1000px; margin-left:auto; margin-right:auto; }

div { background-color:gold; margin-right:10px; padding:5px;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

#nav { float:left; width:20%; min-width:170px; }

#main { float:left; width:40%; min-width:170px; }

#news { float:left; width:20%; min-width:170px; }

/* Nonessential rules are not shown. */

CHAPTER 17 ■ LAYOUTS372

LA
YO

U
T
S

http://freepdf-books.com

Fluid Layout Overview

Problems You want to create fluid layouts that automatically adapt to different devices,
fonts, widths, and zoom factors.

You want to lay out content in columns and rows that dynamically expand and
contract to fit the width of the viewport. You want to use columns even for
nontabular data, but you cannot use tables for nontabular content because this
is less accessible. (Content is tabular only when the content of each cell is related
to all cells in its row and all cells in its column.)

You want columns automatically to reflow into rows when the width of the
viewport is narrow, such as on a handheld device. You cannot use tables because
they cannot render columns as rows.

You want the width of columns to expand automatically to take advantage of a
wide viewport, but only to a certain point because extremely wide columns are
not very readable.

You want the width of columns to shrink automatically when the width of the
viewport is narrow, but not so much that content becomes unreadable.

You want to lay out columns proportionally so that some columns have a greater
percentage of their parent’s width and some have less.

You want some columns to be aligned to the left side and others to the right—see
the Opposing Floats design pattern.

Solutions Each of these problems is solved by the design patterns in this chapter. The
Fluid Layout design pattern shows how to lay out content in rows and columns
without using tables. In turn, it relies on the Outside-in Box, Float Divider, and
Floating Section design patterns.

Example The example shows only the minimum markup and styles needed to create fluid
layouts. As the chapter progresses, additional markup and styles will be added to
implement additional capabilities and better reliability when combined with
other markup.

The example illustrates several key capabilities of the Fluid Layout design
pattern. A maximum width is assigned to the body element so that the width
does not get too wide to be usable. (For fun, I have also centered the body in
the viewport.) In addition, I floated the divisions to the left to display them as
columns, but when the viewport is too narrow for all of them to be displayed side
by side, a browser automatically wraps one or more of them to the next row. In
addition, I assigned a minimum width to each division so that it won’t shrink too
small to be readable. Lastly, I assigned a percentage to the width of each division
so that it will scale proportionately to the width of the viewport.

You may want to resize the example in a browser to see how it responds to
different widths.

Related to Outside-in Box, Floating Section, Float Divider, Fluid Layout

See also www.cssdesignpatterns.com/fluid-layout-overview

CHAPTER 17 ■ LAYOUTS 373

LA
YO

U
T
S

http://freepdf-books.com

Outside-in Box

HTML

<h1>Outside-in Box</h1>

<h2>Before</h2>
<div class="container"><div class="before float"> Float </div></div>
<div class="container"> Absolute </div>
<div class="container"><div class="before static"> Static </div></div>

<div class="float-divider"></div><h2>After</h2>

<div class="container">
<div class="after float"><div class="oi"> Float </div></div></div>

<div class="container">
 Absolute </div>

<div class="container">
<div class="after static"><div class="oi"> Static </div></div></div>

CSS

*.before { width:100%; margin:5px; padding:5px; border:5px solid black; }

*.after { width:100%; }

*.after *.oi { margin:5px; padding:5px; border:5px solid black; display:block; }

*.float { float:left; }
*.absolute { position:absolute; }
*.static { position:static; }

/* Nonessential rules are not shown. */

CHAPTER 17 ■ LAYOUTS374

LA
YO

U
T
S

http://freepdf-books.com

Outside-in Box

Alias Outer Width

Problem You want to set the outer width of a float, an absolute, or a static element to a
specific measurement or percentage. You do not want margins, borders, and
padding to increase the outer width. This is a problem because CSS does not
provide an outer-width property. The width property is the inner width of an
element, and margins, borders, and padding expand the outer width.

Solution Instead of assigning margins, borders, and padding to an element, you can
assign them to an embedded element. Because the outer element does not have
margins, borders, and padding, its outer width is its inner width. This lets you set
its outer width using width.

I call the embedded element the outside-in box because it moves the margins,
borders, and padding from the outside of the box to the inside. In the example,
I identify outside-in boxes using a class named oi.

The outside-in box must be stretched to fill the width and height of its parent so
its margins, borders, and padding will be indented inside its container. (You
could also use negative margins to outdent the outside-in box.) A block element
or an inline element displayed as a block make great outside-in boxes because a
browser automatically stretches them.

Application When creating layouts, you often need to set the outer width of child elements
to a percentage of the width of their parent. For example, you may want each of
two floats in a container to be set to 50% of the container’s width. If you apply
margins, borders, or padding directly to these floats, their outer width expands to
more than 50%. This causes the second float to move below the first float instead
of beside it. You can solve this problem by applying margins, borders, and
padding to embedded outside-in boxes.

This pattern is essential when using percentages to lay out elements in fluid
layouts because it is impossible to anticipate in advance what percentage
assigned to width will compensate for fixed margins, borders, and padding.

Pattern HTML
<BLOCK><div class="oi"> CONTENT </div></BLOCK>
or
<INLINE> CONTENT </INLINE>

CSS
SELECTOR { width:PERCENT; min-width:+VALUE; }

SELECTOR *.oi { margin:+VALUE; border:WIDTH STYLE COLOR;
padding:+VALUE; background:STYLES; display:block; }

Location This pattern works anywhere.

Limitations This pattern does not apply to tables. It also does not apply to outer height
because a static block box’s height shrinkwraps instead of stretches.

Related to Fluid Layout; Display, Box Model, Block Box (Chapter 4); Width, Stretched
(Chapter 5); Margin, Border, Padding, Background (Chapter 6); Blocked
(Chapter 11)

See also www.cssdesignpatterns.com/outside-in-box

(Continued)

CHAPTER 17 ■ LAYOUTS 375

LA
YO

U
T
S

http://freepdf-books.com

Outside-in Box (Continued)

HTML

<h1>Outside-in vs. Inside-out Design</h1>

<h2>Two floats with 50% width and no margins, borders, or padding</h2>
<div class="ex1"> Float1 </div> <div class="ex1"> Float2 </div><hr />

<h2>Two floats with 50% width and 1px border</h2>
<div class="ex2"> Float1 </div> <div class="ex2"> Float2 </div><hr />

<h2>Two floats with 45% width and 5% left margin</h2>
<div class="ex3"> Float1 </div> <div class="ex3"> Float2 </div><hr />

<h2>Two floats with 49.5% width and 5px left margin</h2>
<div class="ex4"> Float1 </div> <div class="ex4"> Float2 </div>

CSS

body { max-width:1200px; }
div { min-width:100px; }

*.ex1 { float:left; width:50%; }
*.ex2 { float:left; width:50%; border:1px solid; }
*.ex3 { float:left; width:45%; margin-left:5%; }
*.ex4 { float:left; width:49.5%; margin-left:5px; }

/* Nonessential rules are not shown. */

CHAPTER 17 ■ LAYOUTS376

LA
YO

U
T
S

http://freepdf-books.com

Outside-in Box (Continued)

OUTSIDE-IN VS. INSIDE-OUT DESIGN

Fluid layouts are designed from the outside to the inside. This is because you start with the width of the viewport and

divide up its width among elements using percentages, minimum widths, and maximum widths.

The problem is that the width property sets the inner width of an element. Padding, borders, and margins surround

the inner width of an element, and thus increase its outer width. Because CSS does not have an outer-width property, CSS

requires you to design from the inside to the outside. The result is that margins, borders, and padding can break fluid lay-

out designs.

For example, you may want to float two elements to the left and assign each to width:50% so they will be posi-

tioned side by side and evenly divide the width of the viewport. The first two divisions in the example show how this works.

No matter how you resize the viewport, these elements stay positioned side by side (until their minimum width no longer

allows them to fit within the width of the viewport).

If you assign any margins, borders, and padding to these two side-by-side floats, the floats will no longer fit within

the width of the viewport. For example, if you assign a 1-pixel border around each of them, their total outer width exceeds

the width of the viewport by 4 pixels (1 pixel for the left and right sides of each element). When floats do not fit side by side

within their container, they wrap to the next line. This is not what you want! The second set of divisions in the example

shows how a tiny 1-pixel border can break the fluid layout. No matter how you resize the viewport, the floats will not fit

side by side.

To fit two elements with margins, borders, and padding within their container, you have to reduce the percentage

width of each element, but by how much? If you assign percentages to margins and padding, you can simply subtract each

of their percentages from the percentage you assign to the width. For example, if you assign a 5% left margin to each of

two elements, you can assign a width of 45% to each element. This is demonstrated by the third set of divisions in the

example. No matter how you resize the viewport, these elements stay positioned side by side (until their minimum width

prevents them from fitting in the viewport).

Per the CSS specification, browsers ignore percentages assigned to borders, which means you must use a fixed

measurement to create borders. It is also unusual to assign percentages to margins and padding because margins and

padding typically look better when they do not resize with the viewport. You can resize the example to contrast the behav-

ior of percentage margins and fixed margins.

In fluid layouts, assigning fixed margins, borders, and padding to an element is not compatible with a percentage

assigned to its width. As the viewport shrinks, percentages shrink the width of an element, but its fixed margins, borders,

and padding do not shrink. For example, given a viewport width of 1000 pixels containing two side-by-side child elements

where each has 5-pixel left margins, the available width is 990 pixels, or 99%—that is, (1000px – 5px – 5px) / 1000px. If

you were to divide this equally among the two elements, you would assign width:49.5% to each. Given a viewport width

of 100 pixels, the available width is 90 pixels, or 90%—that is, (100px – 5px – 5px) / 100px. To divide that equally among

the two elements, you would assign width:45% to each. Thus, mixing fixed margins, borders, and padding with percent-

age widths does not work in fluid layouts. In the example, the fourth set of divisions is set to 49.5%, with left margins set

to 5 pixels. The screenshot is taken at 750 pixels wide, which is not wide enough for them to fit side by side, but if you

enlarge the browser window to 1000 pixels or more, they will fit.

Note that Internet Explorer 7 and earlier versions do not quite play by the rules. When floating two elements set to

width:50%, Internet Explorer guesses you want them to be side by side, so it breaks the rules and puts them side by side.

All other major browsers behave properly. Furthermore, Internet Explorer 6 has bugs that sometimes cause floats not to be

placed side by side when they should be. For example, in the third set of divisions, Internet Explorer 6 moves the second

float below the first. Internet Explorer 7 fixes these bugs.

The Outside-in design pattern solves all these problems (including the ones with Internet Explorer). Thus, it is an

essential design pattern for creating fluid layouts. The alternative is to hack away at percentages until you find something

that works in most browsers and looks close to what you want most of the time.

CHAPTER 17 ■ LAYOUTS 377

LA
YO

U
T
S

http://freepdf-books.com

Floating Section

HTML

<h1>Floating Section</h1>

<div id="nav" class="section">

<div class="oi">

<h2>Navigation Section</h2>
<p>25% of container's width.</p>

</div>
</div>

<div id="main" class="section">

<div class="oi">

<h2>Main Section</h2>
<p>75% of container's width minus 80-pixel left margin, 1-pixel left border,

2-pixel left border, and 80-pixel left padding.</p>
</div>

</div>

CSS

*.oi { background-color:gold;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

#nav { float:left; width:25%; min-width:170px; }
#nav *.oi { min-height:150px; margin:0; padding:5px; }

#main { float:left; width:75%; min-width:170px; }
#main *.oi { min-height:150px; margin-left:80px; padding:5px; padding-left:80px; }

/* Nonessential rules are not shown. */

CHAPTER 17 ■ LAYOUTS378

LA
YO

U
T
S

http://freepdf-books.com

Floating Section

Problem You want sections to be rendered in columns instead of rows. You want a browser
to reflow sections automatically into rows to fit small displays. You also want
sections to be sized proportionally to the width of their parent while controlling
spacing between sections. You also want to set minimum and maximum heights
and widths to ensure a browser does not automatically size sections too small or
too large.

Solution You can use the Section design pattern to create a section, and you can float it to
the left to render it as a column instead of a row. You can assign a unique ID to it
so you can select it, style it, and target it with hyperlinks.

You can embed an outside-in box within each float and style its margins,
borders, padding, and background instead of the float’s. This makes it easy
and reliable to size floats proportional to their container.

You can assign min-width to a section to prevent it from shrinking too small. You
can assign max-width to a section to prevent it from growing too wide. You can
also assign min-height to the outside-in box to ensure floats with less content
have the same minimum height as those with more content.

Pattern HTML
<div id="SECTION_ID" class="section">
<div class="oi">
<h2> HEADING </h2>
<p> CONTENT </p> </div></div>

CSS
#SECTION_ID { float:left; width:PERCENT;
min-width:VALUE; max-width:VALUE; }

#SECTION_ID *.oi { min-height:+VALUE;
margin:+VALUE; border:WIDTH STYLE COLOR;
padding:+VALUE; background:STYLES; }

Location This pattern works anywhere sections can be used.

Limitations Internet Explorer 6 does not implement min-width and max-width, but Internet
Explorer 7 does. These properties are not essential to this design.

Example In the example, the first float’s width is 25% of its container’s width, and the
second float is 75%. Notice how the percentages add up to 100%. Without the
outside-in box, you would have to play around with percentages to find values
that compensate for margins, borders, and padding around floats.

Notice how the floats in the example have no margin, border, padding, or
background. What you see is the border and background of the outside-in box
inside each float. For example, the outside-in box in the second float has an
80-pixel left margin, which creates the illusion of space between the floats when
it is actually inside the second float. It also has an 80-pixel left padding, which
indents the content without changing the float’s outer width.

Related to Outside-in Box, Fluid Layout; Floated Box (Chapter 4); Width (Chapter 5);
Margin, Border, Padding, Background (Chapter 6); Float and Clear (Chapter 7);
Section (Chapter 13)

See also www.cssdesignpatterns.com/floating-section

CHAPTER 17 ■ LAYOUTS 379

LA
YO

U
T
S

http://freepdf-books.com

Float Divider

HTML

<h1>Float Divider</h1>
<h2>First Row of Floats</h2>

<div class="float box"><h3>Float 1</h3></div>
<div class="float box"><h3>Float 2</h3></div>
<div class="float box"><h3>Float 3</h3></div>

<div class="float-divider"></div>

<h2>Second Row of Floats</h2>
<div class="float box"><h3>Float 4</h3></div>
<div class="float box"><h3>Float 5</h3></div>
<div class="float box"><h3>Float 6</h3></div>

CSS

*.float { float:left; }

*.float-divider { clear:both;

height:20px;
margin-bottom:20px;
border-bottom:5px solid black;
font-size:1px; line-height:1px; }

/* Nonessential rules are not shown. */

CHAPTER 17 ■ LAYOUTS380

LA
YO

U
T
S

http://freepdf-books.com

Float Divider

Problem You want to put a divider between two sets of floats or between floats and
content—much like how you would put a linebreak or a horizontal rule in the
normal flow. You want to control how much space the divider inserts, and you
want to style it with borders and background.

Solution You can add clear:both to the Horizontal Rule design pattern, which is an empty
division styled with width, height, and margin to control how much space it
inserts. You can use font-size:1px and line-height:1px to ensure Internet
Explorer 6 does not expand its height beyond the height you specify. You can
also use border and/or background to style the divider’s line.

Instead of inserting a float divider, you may want to add a unique ID to an
existing element and style it with clear:both.

Pattern HTML
<div class="float-divider"></div>

CSS
*.float-divider { clear:both; font-size:1px; line-height:1px;
height:+VALUE; width:+VALUE;
margin-left:±VALUE; margin-right:±VALUE;
margin-top:+VALUE; margin-bottom:+VALUE;

border-top:WIDTH STYLE COLOR;
border-bottom:WIDTH STYLE COLOR;
background-color:COLOR;
background-image:url("FILE.EXT");
background-repeat:REPEAT_OPTIONS; }

Location This pattern works anywhere a division can be located.

Advantages A float divider solves several problems. Firefox 2 and Opera 9 do not honor the
top margin of cleared elements, which moves cleared elements too close to the
floats above them. The float divider does not have this problem because it uses
its height instead of its top margin to create space.

A float divider is modular and self-documenting. Its borders, background, and
margins are self-contained, which simplifies the stylesheet and avoids styles
being overridden by the cascade order. You can quickly and easily reposition a
float divider between any two elements to change the layout.

When a block is collapsed because all its children are floated, you can use a float
divider to expand the block to encompass its floated children. This is an essential
technique explored in the Fluid Layout design pattern.

Tip A float divider can be an inline element as long as you display it as a block
(display:block).

Related to Fluid Layout; Floated Box (Chapter 4); Margin, Border, Padding, Background
(Chapter 6); Float and Clear (Chapter 7); Spacing, Inline Spacer, Linebreak, Inline
Horizontal Rule (Chapter 11); Horizontal Rule, Block Spacer (Chapter 13)

See also www.cssdesignpatterns.com/float-divider

CHAPTER 17 ■ LAYOUTS 381

LA
YO

U
T
S

http://freepdf-books.com

Fluid Layout

HTML

<h1>Fluid Layout</h1>

<div id="main"><div class="oi1"> <h2>main - 100%</h2>
<div id="nav"><div class="oi2"> <h3>nav - 20%</h3> </div></div>

<div id="content"><div class="oi2"> <h3>content - 60%</h3>
 head - 35%
 detail - 65%
</div></div>

<div id="news"><div class="oi2"> <h3>news - 20%</h3> </div></div>

<div class="float-divider"></div></div></div>

CSS

*.float-divider { clear:both; display:block;
height:1px; font-size:1px; line-height:1px; }

*.oi1 { background-color:white; margin:0; padding:5px; }
*.oi2 { background-color:gold; margin:5px; padding:5px; }
*.oi3 { background-color:yellow; margin:5px; padding:5px; }

#main { max-width:700px; }
#nav { float:left; width:20%; min-width:75px; }
#content { float:left; width:60%; min-width:150px; }
#news { float:left; width:20%; min-width:115px; }
#nav *.oi2 { min-height:43px; }
#content *.oi3 { display:block; }
#head { float:left; width:35%; min-width:75px; }
#detail { float:left; width:65%; min-width:75px; }

/* Nonessential rules are not shown. */

CHAPTER 17 ■ LAYOUTS382

LA
YO

U
T
S

http://freepdf-books.com

Fluid Layout

Problem You want to lay out sections in rows and columns that dynamically and fluidly
adapt to the width of the viewport, available fonts, and zoom level. You want
the layout to grow and shrink with the width of the viewport, but you also
want to limit how much it can grow and shrink. You want columns to revert
automatically to rows when the viewport is not wide enough for side-by-side
display. You want to nest layouts within layouts, and you want to predictably
intermingle them with content in the normal flow.

Solution You can nest sections within sections to create multilevel layouts in rows and
columns. A parent section can be floated or nonfloated! The initial section is the
<body> element, which by default stretches to the width of the viewport. You can
set the widths of all other sections to width:PERCENT or width:auto to scale the
entire layout to the width of the viewport.

You can lay out sections in columns by floating them left. Their parent becomes
a row, and you can divide the row’s width among its columns by assigning a
percentage to each column’s width. Column widths in a row normally total 100%.
When a row grows or shrinks, so does its columns.

You can embed an outside-in box within each section so you can size it without
interference from margins, borders, and padding. To reliably select outside-in
boxes at different levels of nested floats, you can assign a class to them that is
unique to each level. In the example, I use three classes, oi1, oi2, and oi3, to
identify outside-in boxes at specific nesting levels. This lets me select level 2
boxes without also selecting descendant level 3 boxes.

You can ensure a section always expands vertically to encompass all its content
by inserting a float divider after the last float in the section. A float divider also
starts the following section in a new row.

Pattern HTML
<div id="SECTION_ID">
<div class="oiLEVEL">
NESTED_SECTIONS_AND_OR_SECTION_CONTENT

<div class="float-divider"></div></div></div>

CSS
#SECTION_ID { float:left; width:PERCENT;
max-width:VALUE; min-width:VALUE; }

#SECTION_ID *.oiLEVEL { min-height:+VALUE; margin:+VALUE;
border:WIDTH STYLE COLOR;
padding:+VALUE; background:STYLES;
display:block; }

*.float-divider { clear:both; display:block;
height:1px; font-size:1px; line-height:1px; }

Location This pattern works anywhere.

Related to Outside-in Box, Floating Section, Float Divider; Floated Box (Chapter 4); Margin,
Border, Padding, Background (Chapter 6); Float and Clear (Chapter 7); Offset
Float (Chapter 8); Blocked (Chapter 11)

See also www.cssdesignpatterns.com/fluid-layout

CHAPTER 17 ■ LAYOUTS 383

LA
YO

U
T
S

http://freepdf-books.com

Opposing Floats

HTML

<div id="header">
<h1 id="title">Opposing Floats</h1>
<div id="search"> <h3>Search:</h3>
<form method="post" action="http://www.tipjar.com/cgi-bin/test">
<input type="text" value="" name="searchtext" id="searchtext" size="32" />
<input type="submit" value="Search" name="find" id="find" /></form>

<p class="message">This right float shrinks no smaller than its minimum width
and grows no larger than its maximum width.</p>

</div>
<div class="float-divider"></div>

</div>

<div id="postheader">
<p class="breadcrumbs">Home » Floating Layout</p>
<p class="post-msg">Postheader message 1</p>
<div class="float-divider"></div>

<p class="breadcrumbs">Home » Floating Layout</p>
<p class="post-msg">Postheader message 2</p>
<div class="float-divider"></div>

</div>

CSS

*.float-divider { clear:both; display:block;
height:1px; font-size:1px; line-height:1px; }

*.breadcrumbs { float:left; max-width:350px; margin-left:10px; }
*.post-msg { float:right; max-width:350px; margin-right:10px; }

#title { float:left; min-width:280px; max-width:350px; margin-left:0; }
#search { float:right; min-width:280px; max-width:350px; margin-right:0; }

/* Nonessential rules are not shown. */

CHAPTER 17 ■ LAYOUTS384

LA
YO

U
T
S

http://freepdf-books.com

Opposing Floats

Problem You want two elements to be positioned at opposite sides of a container. You
want a browser to shrinkwrap each one to fit its content. You want to put
minimum and maximum limits on the width of each one.

Solution You can assign float:left to one sibling element and float:right to the next.
This moves both elements to opposite sides of their parent. It does not matter
which element comes first in document order. This pattern applies only to pairs
of adjacent sibling elements.

The parent of the opposing floats can be floated or nonfloated. You can follow
the floats with a float divider to ensure no subsequent content comes in between
the floats and to ensure the parent expands vertically to encompass the opposing
floats. If you want to float multiple pairs of opposing floats within the same
parent, you can insert a float divider between each pair to prevent them from
stacking next to each other.

You can assign min-width and max-width to each float to set its minimum
width and maximum width. You can assign margin-left to the left float and
margin-right to the right float to adjust their positions.

Pattern HTML
<div id="SECTION_ID">

<ELEMENT id="ID1"> ANY_CONTENT </ELEMENT>
<ELEMENT id="ID2"> ANY_CONTENT </ELEMENT>
<div class="float-divider"></div>

</div>

CSS
#ID1 { float:left; min-width:VALUE; max-width:VALUE;
margin-left:±VALUE; }

#ID2 { float:right; min-width:VALUE; max-width:VALUE;
margin-right:±VALUE; }

*.float-divider { clear:both; display:block;
height:1px; font-size:1px; line-height:1px; }

Location This pattern works anywhere because you can float inline or block elements.

Limitations Internet Explorer 6 does not implement min-width and max-width, but Internet
Explorer 7 does. These properties are not essential to this design.

Tips When floating text to the right, it is often better to omit min-width. This allows a
browser to shrinkwrap the float to the minimum width of the text, which keeps
the text aligned to the right side of the parent. If you want multiple lines of text to
be aligned to the right, you can assign text-align:right to the float.

Related to Fluid Layout, Float Divider; Floated Box (Chapter 4); Margin (Chapter 6); Float
and Clear (Chapter 7); Offset Float (Chapter 8); Blocked (Chapter 11)

See also www.cssdesignpatterns.com/opposing-floats

CHAPTER 17 ■ LAYOUTS 385

LA
YO

U
T
S

http://freepdf-books.com

Event Styling

HTML

<head>
<!-- only script elements are shown -->

<script language="javascript" type="text/javascript" src="yahoo.js"></script>
<script language="javascript" type="text/javascript" src="event.js"></script>
<script language="javascript" type="text/javascript" src="chdp.js"></script>
<script language="javascript" type="text/javascript" src="cssQuery-p.js"></script>
<script language="javascript" type="text/javascript" src="page.js"></script>

</head>

page.js

function initPage() {

assignEvent('click', '*.rollup-trigger',
applyToChildrenOfAncestorWithClass, 'rollup',
toggleClass, 'hidden');

assignEvent('click', '*.rollup-trigger',
applyToThis, null,
toggleClass, 'rolledup');

}

addEvent(window, 'unload', purgeAllEvents);
addEvent(window, 'load', initPage);

/*
The functions addEvent(), assignEvent(), applyToChildrenOfAncestorWithClass(),
applyToThis(), and toggleClass() are in chdp.js.
The source code contains full documentation for each function
plus many more useful functions.

*/

CHAPTER 17 ■ LAYOUTS386

LA
YO

U
T
S

http://freepdf-books.com

Event Styling

Problem You want to attach events to HTML elements without putting JavaScript in
the body of the document. You want to attach events to elements using CSS
selectors so there is a direct connection between how elements are styled and
how they respond to events. You want events to modify element classes so
you can use stylesheets to control how dynamic HTML styles a document. In
other words, you want to completely separate content, style, and JavaScript.
You do not want to put JavaScript or styles in the content, and you do not
want to put styles or content in the JavaScript code.

Solution You can use JavaScript libraries to attach events to elements at runtime. All
you need are a few <script> tags in the document head to load the JavaScript
libraries. This technique completely removes the need to put code in event
attributes, such as <div onclick="someFunction();">.

To attach events to elements at runtime, you can use two free open source
libraries from Yahoo!: event.js and yahoo.js. They have a BSD license. Source
and documentation are at http://developer.yahoo.com/yui/.

To select elements with CSS selectors in JavaScript, you can use a free open
source library from Dean Edwards: cssQuery.js. It is licensed under LGPL 2.1.
Source and documentation are at http://dean.edwards.name/.

To integrate these libraries, I provide an open source library called chdp.js.
It is freely licensed under a BSD license, and is available at
www.cssdesignpatterns.com/event-styling.

You can use these libraries by attaching their JavaScript files to your
document in the order shown in the example. A browser downloads and
executes each JavaScript file in the order it occurs in the document. The last
JavaScript file is typically unique to the current page. It initializes the libraries,
and it assigns event handlers to elements.

In the example, I name this file page.js. There are only two executable
statements in this file, and both are addEvent() functions. A browser quickly
executes these two functions and continues downloading the document.
The code does not slow down the rendering of the document, and it ensures
events are added to elements after they exist.

The first addEvent() function in page.js attaches a generic function called
purgeAllEvents() to the page’s unload event. When the page unloads,
purgeAllEvents() purges all attached events from memory. The second
addEvent() function attaches initPage() to the page’s load event. After the
page loads, initPage() assigns events to elements using assignEvent().

Overall pattern JavaScript in page.js
function initPage() { assignEvent(...); }

addEvent(window, 'unload', purgeAllEvents);
addEvent(window, 'load', initPage);

(Continued)

CHAPTER 17 ■ LAYOUTS 387

LA
YO

U
T
S

http://freepdf-books.com

Event Styling (Continued)

The functions addEvent(), purgeAllEvents(), and assignEvent() are in
chdp.js. They are wrappers around functions in Yahoo!’s event.js. This
makes it easy to replace the Yahoo! event library with another.

The function assignEvent() is unique to chdp.js. Its purpose is to assign
events and event handlers to elements using CSS selectors. This allows you to
use the same CSS selectors to style elements and to attach events to elements!
This conceptually ties the stylesheet into the dynamic HTML.

Detailed pattern JavaScript in page.js
assignEvent('EVENT', 'CSS_SELECTOR',
EVENT_HANDLER_FUNCTION, ARG_TO_EVENT_HANDLER,
EVENT_HELPER_FUNCTION, ARG_TO_EVENT_HELPER);

Using assignEvent(), you can apply multiple event handlers to the same
event and elements. Event handlers are fired in the order they are listed in
the code. In the example, I apply two different handlers to the click event
of elements assigned to the rollup-trigger class. When a user clicks a
rollup-trigger element, the click event fires, and the first event handler is
called followed by the second. By chaining together generic event handlers,
you can create powerful event handlers while writing very little code.

The name of the event goes in the first argument of assignEvent(). It is a
string. The name does not include the “on” prefix. In the example, I used
'click' instead of 'onclick'.

A CSS selector goes in the second argument of assignEvent(). It is a string
that determines which elements get assigned to the event. You can use any
CSS 2.1 selector including child and attribute selectors. This even works in
Internet Explorer 6 because the selection is done using cssQuery.js.

An event handler function goes in the third argument of assignEvent(). The
event handler is called when the event fires. You can use any function. I
supply three generic functions in chdp.js: applyToThis(),
applyToDescendants(), and applyToChildrenOfAncestorWithClass(). These
three functions make it easy to modify the element raising the event, its
descendants, or the children of one of its ancestors. These functions are
generic because they apply a helper function of your choosing to a set of
elements.

applyToThis() applies a helper function to the element that fired the event.
This makes it easy to style an element in response to an event.

applyToDescendants() applies a helper function to each descendant of the
element that fired the event. You can filter which descendants are affected by
supplying a CSS selector in the fourth argument of assignEvent(). Since the
selector can be any CSS 2.1 selector, this is a very useful function! You can use
this function to selectively style descendants based on an event raised by a
parent. For example, you can show some descendants when the user mouses
over the parent and hide some when the user mouses out.

CHAPTER 17 ■ LAYOUTS388

LA
YO

U
T
S

http://freepdf-books.com

Event Styling (Continued)

Explanation applyToChildrenOfAncestorWithClass() searches up the document tree for
the first ancestor that has the class specified in the fourth argument of
assignEvent(). It then applies the helper function to all its children except for
the child containing the element that fired the event. This function allows you
to trigger an event using one element and have the event affect the children of
an ancestor. I use this function to implement the Rollup design pattern.

An optional argument goes in the fourth argument of assignEvent().
It is passed to the event handler when the event is fired. For example,
applyToDescendants() expects this argument to be a string containing a CSS
selector that filters which descendants should be processed by the event
helper. applyToChildrenOfAncestorWithClass() expects this argument to be
a string containing a class name, which it uses to select an ancestor of the
element that fired the event. applyToThis() does not use this argument.

A helper function goes in the fifth argument of assignEvent(). It can be any
function. I supply five helper functions in chdp.js that modify the class
attribute of elements as follows:
addClass() adds a class to an element.
removeClass() removes a class from an element.
replaceClass() replaces an existing class with another one.
toggleClass() adds a class when not present and removes it when present.
swapClasses() swaps out one class for another, and vice versa.

By using event handlers to modify the classes assigned to elements, you can
control how your document responds to events by using a stylesheet! This
keeps content, code, and styles separate, which improves productivity and
reduces maintenance. By simply toggling classes, swapping them in and out,
and adding, removing, or replacing them, you can create just about any effect!

Tips This design pattern is extensible. You can create your own event handler and
helper functions. To make it easy to extend, chdp.js contains additional
utility functions to manipulate strings and elements, and to aid in debugging.

The most commonly used events are onclick, onmouseover, and onmouseout.
Forms often use onsubmit and onreset. Any event handler can affect
accessibility, but the following events require much more effort and testing
to keep a document accessible. Form elements can use onchange, onfocus,
onblur, and onselect. Advanced techniques can use onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove, and onmouseup.

You can combine libraries into a single packed file using a JavaScript
compressor. Compressed JavaScript downloads faster and is parsed faster. A
free JavaScript compressor is located at http://dean.edwards.name/packer/.

Example In the example, when the user clicks a rollup-trigger element, the hidden
class is applied to all children of the rollup element except for the child
containing the rollup trigger. When the user clicks the rollup trigger again,
the hidden class is removed. You can create a rollup effect by styling the
hidden class to hide elements, or you could create some other effect.

Related to Rollup, Tabs, Flyout Menu; Popup Alert (Chapter 20)

See also www.cssdesignpatterns.com/event-styling

CHAPTER 17 ■ LAYOUTS 389

LA
YO

U
T
S

http://freepdf-books.com

Rollup

HTML

<h1>Rollup</h1>

<div id="main" class="rollup">
<h2 class="rollup-trigger">Main</h2>

<div id="faq"><div class="oi rollup">
<h3 class="rollup-trigger">FAQ</h3> Don't roll me up.
<dl class="rollup">
<dt class="rollup-trigger">QUESTION: How do rollups work?</dt>
<dd class="hidden">ANSWER: When the user clicks on a heading or button,

the content rolls up or down. </dd></dl></div></div>

<div id="info"><div class="oi rollup">
<h3 class="rollup-trigger">Info</h3>
<div class="rollup">
<p> List</p>
 list item 1 list item 2</div>

 Roll me up</div></div>
<div class="float-divider"></div></div>

CSS

*.rollup-trigger { cursor:pointer; }
*.rollup-trigger:hover { color:firebrick; }

span.rollup-trigger { font-size:0.65em; padding-left:8px;
background:url("hide.gif") no-repeat left top; }

span.rolledup { background:url("show.gif") no-repeat left top; }

*.hidden { position:absolute; top:-99999px; left:-99999px;
width:1px; height:1px; overflow:hidden; }

/* Nonessential rules are not shown. */

CHAPTER 17 ■ LAYOUTS390

LA
YO

U
T
S

http://freepdf-books.com

Rollup

Problem You want the user to dynamically interact with sections, FAQs, lists, and so
forth by rolling them up to hide information and rolling them down to show
information. You want to do this without adding code to the HTML document.
You want to use styles to control the dynamic behavior.

Solution You can add the rollup class to any parent element. This identifies it as a
container that can roll up its content. You can add the rollup-trigger class
to any child in the rollup container. When the user clicks the rollup-trigger
element, all content in the rollup element rolls up except for the rollup-trigger
element. When the user clicks the rollup-trigger element again, the content
rolls down.

The rollup class is typically assigned to a section’s container, and the
rollup-trigger class is typically assigned to a section’s heading. In the example,
I assigned the rollup class to each section and the rollup-trigger class to each
section heading. You can click a heading to roll up or roll down each section.

The rollup-trigger class can be assigned to any descendant of the rollup
container. In the example, I assign it to the dictionary term, <dt>. Its parent, <dl>,
is its rollup container. You can click the dictionary term to roll up and roll down
the dictionary definition, <dd>.

When you want a child of a rollup container to start out rolled up, you can set it
to the hidden class. In the example, the dictionary definition element is set to
hidden so it starts out rolled up when the page loads.

This design pattern rolls up elements by setting them to hidden. It rolls them
down by removing hidden from their class. The hidden class is styled using the
Screenreader-only design pattern (Chapter 10), which hides elements on the
screen without hiding them from screen readers.

Pattern HTML
<ELEMENT class="rollup">
<ELEMENT class="rollup-trigger">CONTENT</ELEMENT>
<ELEMENT class="hidden"></ELEMENT>

</ELEMENT>

CSS
*.rollup-trigger { cursor:pointer; }
*.rollup-trigger:hover { STYLES }

span.rollup-trigger { font-size:VALUE; padding-left:VALUE;
background:url("FILE.EXT") no-repeat; }

span.rolledup { background:url("FILE.EXT") no-repeat; }

*.hidden { position:absolute;
top:-99999px; left:-99999px;
width:1px; height:1px; overflow:hidden; }

Location This pattern works anywhere.

(Continued)

CHAPTER 17 ■ LAYOUTS 391

LA
YO

U
T
S

http://freepdf-books.com

Rollup (Continued)

HTML Header

<head>
<!-- only script elements are shown -->

<script language="javascript" type="text/javascript" src="yahoo.js"></script>
<script language="javascript" type="text/javascript" src="event.js"></script>
<script language="javascript" type="text/javascript" src="chdp.js"></script>
<script language="javascript" type="text/javascript" src="cssQuery-p.js"></script>
<script language="javascript" type="text/javascript" src="page.js"></script>

</head>

page.js

function initPage() {

assignEvent('click', '*.rollup-trigger',
applyToChildrenOfAncestorWithClass, 'rollup',
toggleClass, 'hidden');

assignEvent('click', '*.rollup-trigger',
applyToThis, null,
toggleClass, 'rolledup');

}

addEvent(window,'unload',purgeAllEvents);
addEvent(window,'load',initPage);

//The functions addEvent() and assignEvent() are in chdp.js.
//Full documentation for each function is found in the source code.

CHAPTER 17 ■ LAYOUTS392

LA
YO

U
T
S

http://freepdf-books.com

Rollup (Continued)

Limitations Text placed directly inside the rollup container is not rolled up. In the example,
the text “Don’t roll me up.” does not get rolled up with the rest of the FAQ. If you
want text to be rolled up, place it inside any element. It does not matter whether
the element is block or inline. Also, this design pattern fails to roll up text when
JavaScript is not available.

Tips You can insert an element specifically to be the rollup trigger, and you can place
it anywhere inside the rollup parent. In the example, I insert two spans and
assign them to the rollup-trigger class. Since these are inline elements, I use
font-size and padding to size their height and width large enough to allow a
background image to show through. This turns the span into a rollup button.
Using this technique, you can put a rollup button in front of any element. (You
can also float it to the right if you want.) When the user clicks a rollup button,
everything in the rollup container rolls up except for the button and its
ancestors.

When the user clicks a rollup trigger, the JavaScript code dynamically adds
or removes the rolledup class to the element. In the example, I use the
span.rolledup selector to change the background image when the parent
is rolled up. This creates a dynamic button effect.

JavaScript The first assignEvent() function applies the onclick event to all elements
that are assigned to the rollup-trigger class. When the onclick event fires,
applyToChildrenOfAncestorWithClass() applies toggleClass() to each child of
the ancestor element that has the rollup class, except to the child that contains
the element that fired the event. The toggleClass() function toggles the
presence of the hidden class. If an element is already assigned to the hidden class,
it is removed. If an element is not assigned to the hidden class, it is added. In the
example, I styled the hidden class to hide an element on screen while leaving it
readable by screen readers.

The second assignEvent() function applies the onclick event to all elements
that are assigned to the rollup-trigger class. When the onclick event fires,
applyToThis() applies toggleClass() to the element that fired the event (the
rollup-trigger element). The toggleClass() function toggles the presence of
the rolledup class. In the example, I styled the rolledup class to change the
background image of any spans assigned to it. This allows a rollup button to
change its image when it is rolled up.

Pattern JavaScript
assignEvent('click', '*.rollup-trigger',
applyToChildrenOfAncestorWithClass, 'rollup',
toggleClass, 'hidden');

assignEvent('click', '*.rollup-trigger',
applyToThis, null,
toggleClass, 'rolledup');

Related to Event Styling; Margin, Padding, Background (Chapter 6); Positioned, Absolute
(Chapter 7); Offset Absolute and Offset Fixed (Chapter 8); Font, Screenreader-
only (Chapter 10)

See also www.cssdesignpatterns.com/rollup

CHAPTER 17 ■ LAYOUTS 393

LA
YO

U
T
S

http://freepdf-books.com

Tab Menu

HTML

<h1>Tab Menu</h1>

<div id="main">
<ul class="tabs">
<li class="selected">
<h3 class="tab-label">Tab 1</h3>

<h3 class="tab-label">Tab 2</h3>
<h3 class="tab-label">Tab 3</h3>
<h3 class="tab-label">Tab 4</h3>

<p>Tab 1 content: A click on one of these tabs loads a new page.</p>

</div>

CSS

ul.tabs a:link, ul.tabs a:visited, ul.tabs a:active
{ text-decoration:none; color:maroon; }

ul.tabs a:hover { text-decoration:underline; color:black; }
ul.tabs a { display:block; }

ul.tabs { float:left; width:100%; padding:0; margin:0;
border-bottom:1px solid gold; margin-bottom:10px; }

ul.tabs li { float:left; width:25%; list-style-type:none; }

ul.tabs *.tab-label { border:1px solid gold; margin:0; cursor:pointer;
padding-bottom:2px; padding-top:2px;
background:white url("g1.jpg") repeat-x left bottom;
font-weight:normal; text-align:center; font-size:1.1em; }

ul.tabs li.selected *.tab-label { position:relative; border-bottom:none;
top:1px; padding-bottom:4px;
padding-top:5px; border-top:2px solid gold; margin-top:-5px;
background:white url("g2.jpg") repeat-x left top; font-weight:bold; }

#main { border:1px solid gold; border-top:none; }

CHAPTER 17 ■ LAYOUTS394

LA
YO

U
T
S

http://freepdf-books.com

Tab Menu

Problem You want to create a menu of links that works like a tabbed user interface. You
want it to adapt reliably and fluidly to different environments.

Solution You can place the list of links in an unordered list () and assign the list to the
tabs class. You can place a hyperlink inside each list item (). Since each link
functions as a tab heading, you can embed the link within a heading element.
This gives the link a higher importance to search engines and makes it easier for
nonsighted users to navigate with screen readers. The heading is also an outside-
in box. This allows you to style the box of each tab without affecting the outer
width of the tab.

When the user clicks a link, you want a browser to replace the current page with
the page referenced by the link. If the new page also contains the same tabbed
menu with the new tab selected, you can create the illusion of switching tabs. To
change the look of selected tabs, you can assign the selected class to the list item
containing the link of the currently displayed page. In the example, the first tab is
selected. Moving the selected class to another list item makes it appear selected.

Pattern HTML
<ul class="tabs">
<li class="selected">
<h3 class="tab-label">
Tab 1</h3>

CSS
ul.tabs a:link, ul.tabs a:visited, ul.tabs a:active { STYLES }
ul.tabs a:hover, ul.tabs a:focus { STYLES }
ul.tabs a { display:block; }

ul.tabs { float:left; width:100%; padding:0; margin:0;
margin-bottom:+VALUE; border-bottom:TAB_BOTTOM STYLE COLOR; }

ul.tabs li { float:left; width:PERCENT; list-style-type:none; }

ul.tabs *.tab-label { border:BORDER_WIDTH STYLE COLOR;
padding-bottom:PADDING_BOTTOM;
padding-top:PADDING_TOP;
margin:0; cursor:pointer;
background:COLOR IMAGE REPEAT_OPTIONS POSITION;
font-weight:normal; text-align:center; }

ul.tabs li.selected *.tab-label
{ position:relative; border-bottom:none; font-weight:bold;
top:TAB_BOTTOM; cursor:auto;
padding-bottom:TAB_BOTTOM+PADDING_BOTTOM+BORDER_WIDTH;
border-top:BORDER_WIDTH+EXTRA_BORDER STYLE COLOR;
padding-top:PADDING_TOP+EXTRA_PADDING;
margin-top:-(TAB_BOTTOM+EXTRA_BORDER+EXTRA_PADDING);
background:COLOR IMAGE REPEAT_OPTIONS POSITION; }

#SECTION { border:WIDTH STYLE COLOR; border-top:none; }

(Continued)

CHAPTER 17 ■ LAYOUTS 395

LA
YO

U
T
S

http://freepdf-books.com

Tab Menu (Continued)

HTML (Same Code Shown Again for Convenience)

<h1>Tab Menu</h1>

<div id="main">
<ul class="tabs">
<li class="selected">
<h3 class="tab-label">Tab 1</h3>

<h3 class="tab-label">Tab 2</h3>
<h3 class="tab-label">Tab 3</h3>
<h3 class="tab-label">Tab 4</h3>

<p>Tab 1 content: A click on one of these tabs loads a new page.</p>

</div>

CSS (Same Code Shown Again for Convenience)

ul.tabs a:link, ul.tabs a:visited, ul.tabs a:active
{ text-decoration:none; color:maroon; }

ul.tabs a:hover, ul.tabs a:focus
{ text-decoration:underline; color:black; }

ul.tabs a { display:block; }

ul.tabs { float:left; width:100%; padding:0; margin:0;
border-bottom:1px solid gold; margin-bottom:10px; }

ul.tabs li { float:left; width:25%; list-style-type:none; }

ul.tabs *.tab-label { border: 1px solid gold; margin:0; cursor:pointer;
padding-bottom:2px; padding-top:2px;
background:white url("g1.jpg") repeat-x left bottom;
font-weight:normal; text-align:center; font-size:1.1em; }

ul.tabs li.selected *.tab-label { position:relative; border-bottom:none;
top:1px; padding-bottom:4px; cursor:auto;
padding-top:5px; border-top:2px solid gold; margin-top:-5px;
background:white url("g2.jpg") repeat-x left top; font-weight:bold; }

#main { border:1px solid gold; border-top:none; }

CHAPTER 17 ■ LAYOUTS396

LA
YO

U
T
S

http://freepdf-books.com

Tab Menu (Continued)

Location This pattern works anywhere a list can be used.

Styles You can style tab links to interact dynamically with the user. The selectors are
ul.tabs a:link, ul.tabs a:visited, ul.tabs a:active, ul.tabs a:hover, and
ul.tabs a:focus. In the example, I hide a tab link’s underline until the user
mouses over it. This keeps the user interface uncluttered. You can render links
as blocks so they will stretch to the width of their tab. This allows the user to
click anywhere inside a tab to activate the link.

You can float the tab menu container so it encompasses its floated tabs. The
selector is ul.tabs. You can make the layout more flexible by setting its width to
100% so it stretches to the width of its container. When using an unordered list,
you need to remove its default margins and padding so they do not interfere with
the position of the tabs. You can use margin-bottom to put distance between the
tab menu and subsequent content. You can also set the bottom border. In the
example, I use a 1-pixel, solid, gold bottom border.

To make list items look like tabs, you can float them to the left. The selector is
ul.tabs li. You can assign a percentage to their width that is the inverse of the
number of tabs, such as 16.66% for six tabs, 14.28% for seven, 12.5% for eight,
11.11% for nine, 10% for ten, and so forth. For percentages to work, the list item
must have no left or right margins, borders, and padding. You can assign list
items to list-style-type:none to hide their bullets.

To style the tab’s box, you can select the element that has the tab-label class.
You can put a border around it, pad its content, and add a background image.
In the example, I use a gradient image that transitions from white to gold going
from top to bottom. Moving from a lighter color at the top to a darker color at the
bottom supports the illusion that the tab is not selected. The reverse makes the
tab look selected. You should set its margins to zero; otherwise, they will break
the tab effect. You can set the cursor to the hand pointer to signal that the tab
can be clicked. You can set font-weight to normal when not selected and bold
when selected. You can align text in the tab label to the center.

To make a tab look selected, you can assign the selected class to it and style
that class. The selector is ul.tabs li.selected *.tab-label. You can use
border-bottom:none to remove its bottom border, and you can increase its
bottom padding to compensate. The selected tab also needs to cover the bottom
border of the tab container ul.tabs. To do so, you can increase its bottom
padding to cover the tab container’s bottom border, and you can relatively
position it to move it over the border. You can add extra thickness to the selected
tab’s top border to make it stand out. You can add extra top padding to raise it
above nonselected tabs. You can use a negative value in margin-top to
compensate for the extra padding and border.

You can put a border around the left, right, and bottom of the section containing
the tab menu to connect the tab menu with the section’s content.

Related to Floated Box (Chapter 4); Width, Sized, Stretched (Chapter 5); Margin, Border,
Padding, Background, Overflow (Chapter 6); Positioned, Relative, Float and
Clear, Relative Float (Chapter 7); Offset Float, Aligned Static Inline (Chapter 8);
Font (Chapter 10); Blocked (Chapter 11); Lists (Chapter 13)

See also www.cssdesignpatterns.com/tab-menu

CHAPTER 17 ■ LAYOUTS 397

LA
YO

U
T
S

http://freepdf-books.com

Tabs

HTML

<h1>Tabs</h1>

<ul class="tabs">
<li class="selected"><h3 class="tab-label">Tab 1</h3>
<div id="section1" class="tab-content"><div class="oi2">
<h4>Tab 1 Content</h4><p>This is the message of tab 1. More message...
</p></div></div>

<h3 class="tab-label">Tab 2</h3>
<div id="section2" class="tab-content"><div class="oi2">
<h4>Tab 2 Content</h4><p>This is the message of tab 2.
</p></div></div>

CSS

/* All rules from the Tab Menu design pattern apply to Tabs.
Only additional rules that apply to this design pattern are shown here. */

ul.tabs { position:relative; }

ul.tabs *.tab-content { position:absolute; width:100%; height:6em;
border:1px solid gold; border-top:none;
left:-99999px; overflow:auto; }

ul.tabs li.selected *.tab-content { left:0; }

ul.tabs li *.oi2 { margin:10px; padding:10px; }

ul.tabs *.tab-label a { display:block; text-decoration:none; color:black; }

ul.tabs *.hover,
ul.tabs *.tab-label:hover { text-decoration:underline; }

/* Nonessential rules are not shown. */

CHAPTER 17 ■ LAYOUTS398

LA
YO

U
T
S

http://freepdf-books.com

Tabs

Problem You want to create a tabbed user interface that displays the contents of tabs
without loading new pages. You want it to adapt reliably and fluidly to different
environments.

Solution You can use the Tab Menu design pattern to turn a list into tabs. Inside each list
item, you can insert a tab-label heading and a tab-content section. You can use
a variation of the Screenreader-only design pattern to remove the section from
the normal flow and hide it offscreen to the left.

The key to this design pattern is relatively positioning the tabs list in place and
absolutely positioning each tab-content element in relation to it. This makes the
tabs list the closest positioned ancestor of each tab-content element. Because of
this, you can use width:100% to stretch the tab content to the width of the tabs
list. Otherwise, the tab-content element would expand to the width of its parent
list item, which has been floated left.

You should leave the tab-content element’s top property set to its default value
of auto so the tab-content element will be automatically positioned at the same
location it would have been if it were not absolutely positioned. This keeps tabs
and their content positioned properly—even if tabs become wrapped.

If you want the height to remain the same for all tabs, you can assign a height to
the tab-content element, or you can leave it at its default value of auto and let a
browser shrinkwrap the height of each tab to its content. If you size it, you can
use overflow:auto to display scrollbars when content overflows.

You can assign the selected class to the list item you want to be displayed when
the page loads.

You can insert a link around each tab-label element to load a fallback page
when the user clicks a tab and JavaScript is not available to switch tabs.

Pattern HTML
<ul class="tabs">
<li class="selected">
<h3 class="tab-label">
 TAB_LABEL </h3>
<div id="SECTION_ID" class="tab-content"><div class="oi2">
TAB CONTENT </div></div>

CSS
ul.tabs { position:relative; }

ul.tabs *.tab-content { position:absolute;
width:100%; height:VALUE;
border:WIDTH STYLE COLOR; border-top:none;
left:-99999px; overflow:auto; }

ul.tabs li.selected *.tab-content { left:0; }
ul.tabs li *.oi2 { margin:VALUE; padding:VALUE; }
ul.tabs *.tab-label a { display:block; text-decoration:none; }
ul.tabs *.hover,
ul.tabs *.tab-label:hover { text-decoration:underline; }

(Continued)

CHAPTER 17 ■ LAYOUTS 399

LA
YO

U
T
S

http://freepdf-books.com

Tabs (Continued)

HTML Header

<head>
<!-- only script elements are shown -->

<script language="javascript" type="text/javascript" src="yahoo.js"></script>
<script language="javascript" type="text/javascript" src="event.js"></script>
<script language="javascript" type="text/javascript" src="chdp.js"></script>
<script language="javascript" type="text/javascript" src="cssQuery-p.js"></script>
<script language="javascript" type="text/javascript" src="page.js"></script>
</head>

page.js

function initPage() {

assignEvent('click', 'ul.tabs li',
applyToChildrenOfAncestorWithClass, 'tabs',
removeClass, 'selected');

assignEvent('click', 'ul.tabs li',
applyToThis, null, addClass, 'selected');

assignEvent('mouseover', 'ul.tabs li *.tab-label',
applyToThis, null, addClass, 'hover');

assignEvent('mouseout', 'ul.tabs li *.tab-label',
applyToThis, null, removeClass, 'hover');

assignEvent('click', 'ul.tabs *.tab-label a',
applyToThis, null, ignoreLink);

}
function ignoreLink(eElement, e, extraInfo) { eElement.blur(); return false; }

addEvent(window, 'unload', purgeAllEvents);
addEvent(window, 'load', initPage);

//The functions addEvent() and assignEvent() are in chdp.js.
//Full documentation for each function is found in the source code.

CHAPTER 17 ■ LAYOUTS400

LA
YO

U
T
S

http://freepdf-books.com

Tabs (Continued)

JavaScript The first assignEvent() function applies the onclick event to all list items inside
the tabs list. When onclick fires, applyToChildrenOfAncestorWithClass() applies
removeClass() to each child of the ancestor element that has the tabs class,
except to the child that contains the element that fired the event. In this case,
the removeClass() function removes the selected class from the element. By
removing this class, the left rule in the ul.tabs *.tab-content selector applies
to the element (instead of the left rule in ul.tabs li.selected *.tab-content)
and moves it far off the left side of the screen where it cannot be seen, but can
still be read by screen readers.

The second assignEvent() function applies the onclick event to all list items
inside the list assigned to the tabs class. When onclick fires, applyToThis()
applies addClass() to the element that fired the event to add the selected class
to the element. In the example, I styled the selected class to override the left
rule in the ul.tabs *.tab-content so that it would move the tab-content
element into the display area so the user can see it.

The third assignEvent() function applies the onmouseover event to all tab-label
elements inside tab list items. When onmouseover fires, applyToThis() applies
addClass() to the element that fired the event to add the hover class to the
element. In the example, I styled the hover class and the hover pseudo class to
underline the element’s text.

The fourth assignEvent() function works like the third, except it applies
removeClass() to the element that fired the event to remove the hover class
from the element so that it is no longer styled as being hovered over.

The fifth assignEvent() function captures clicks on links inside tab-label
elements and executes the ignoreLink() function, which hides the focus
rectangle around the link and cancels the jump. When JavaScript is available,
clicks display tab content without loading new pages; and when JavaScript is
not available, clicks load pages just like the Tab Menu design pattern.

Pattern JavaScript
assignEvent('click', 'ul.tabs li',
applyToChildrenOfAncestorWithClass, 'tabs',
removeClass, 'selected');

assignEvent('click', 'ul.tabs li',
applyToThis, null, addClass, 'selected');

assignEvent('mouseover', 'ul.tabs li *.tab-label',
applyToThis, null, addClass, 'hover');

assignEvent('mouseout', 'ul.tabs li *.tab-label',
applyToThis, null, removeClass, 'hover');

assignEvent('click', 'ul.tabs *.tab-label a',
applyToThis, null, ignoreLink);

Tip The tab-content element can contain any content: blocks, inlines, tables,
images, objects, and so on. This makes the Tabs design pattern a very powerful
technique to make large amounts of information in a document easy and fast to
navigate without compromising accessibility for nonsighted users.

Related to Tab Menu, Event Styling; Absolute Box (Chapter 4); Width, Height, Stretched
(Chapter 5); Margin, Border, Padding, Background, Overflow (Chapter 6);
Positioned, Absolute, Relative (Chapter 7); Offset Absolute and Offset Fixed
(Chapter 8); Left Aligned (Chapter 9); Screenreader-only (Chapter 10); Blocked,
Inline Decoration (Chapter 11); Section (Chapter 13)

See also www.cssdesignpatterns.com/tabs

CHAPTER 17 ■ LAYOUTS 401

LA
YO

U
T
S

http://freepdf-books.com

Flyout Menu

HTML

<div class="menu"><h3>Dropdown</h3>
<ul class="dropdown hidden">
menu item
<li class="separator">menu item
<li class="flyout-trigger"><h4>submenu</h4>
<ul class="submenu hidden">
menu item
menu item</div>

CSS

*.menu { float:left; position:relative; z-index:1; cursor:pointer;
font-size:0.8em; white-space:nowrap; }

*.menu a { text-decoration:none; color:black; }

*.menu h3 { float:left; margin:0; padding:1px 5px;
background:url("g1.jpg") repeat-x left bottom white; }

*.menu h4 { display:inline; margin:0; }
*.menu ul { position:absolute; margin:0; padding:0; padding-bottom:5px;
background:url("g3.jpg") repeat-x left bottom white; }

*.menu li { margin:0; padding:2px 25px; list-style-type:none; color:black; }
*.menu li img { margin-left:-22px; padding-right:5px; }
*.menu li.separator { margin-top:5px; border-top:1px solid gray; padding-top:5px; }
*.menu li.flyout-trigger { background:url("flyout1.gif") no-repeat right center; }
*.menu li.flyout-trigger.hover
{ background:url("flyout2.gif") no-repeat right center firebrick; }

*.menu h3.hover { background:url("g2.jpg") repeat-x left top white; }
*.menu li.hover { background-color:firebrick; color:white; }
*.menu li.hover > a { color:white; }
*.menu ul.dropdown { top:100%; clear:left; }
*.menu ul.submenu { left:100%; margin-top:-1.5em; margin-left:-0.3em; }
*.menu *.hidden { left:-99999px; top:-99999px; }
.menu h3,.menu ul { border-left:1px solid yellow; border-right:1px solid orange;
border-top:1px solid yellow; border-bottom:1px solid orange; }

/* Nonessential rules are not shown. */

CHAPTER 17 ■ LAYOUTS402

LA
YO

U
T
S

http://freepdf-books.com

Flyout Menu

Problem You want to create a flyout menu that can contain nested menus.

Solution You can use a division assigned to the menu class as the overall container for the
menu. You can insert a heading, such as <h3>, as the first child of the division to
be the menu title. You can insert an unordered list assigned to the dropdown class
to be the container for the drop-down menu. You can insert list items to create
menu items. For the content of a menu item, you can insert an image followed
by a link containing the menu item’s text.

To create a nested flyout menu, you can embed another unordered list assigned
to the submenu class inside a menu item assigned to the flyout-trigger class.
When the user mouses over the flyout-trigger menu item, it triggers the display
of the flyout menu. You can use a heading instead of a link to mark up the text of
the flyout-trigger menu item.

To hide menus until the user activates them, you can assign unordered lists to
the hidden class. To put a separator between list items, you can assign the
separator class to them.

Pattern HTML
<div class="menu">
<h3> MENU_TTTLE_CONTENT </h3>
<ul class="dropdown hidden">

 MENU_ITEM_CONTENT </div>

CSS
*.menu { float:left; position:relative; z-index:VALUE;
cursor:pointer; white-space:nowrap; }

*.menu a { LINK_STYLES; }
*.menu h3 { MENU_TITLE_BOX_STYLES; float:left; margin:0; }
*.menu h3.hover { MENU_TITLE_HOVER_BOX_STYLES; }
*.menu ul { MENU_CONTAINER_BOX_STYLES; position:absolute;
margin:0; padding:0; padding-bottom:BUFFER; }

*.menu li { MENU_ITEM_BOX_STYLES; margin:0;
list-style-type:none; padding-left:LEFT_MENU_ITEM_PADDING; }

*.menu li.hover { MENU_ITEM_HOVER_BOX_STYLES; }
*.menu li.hover > a { MENU_ITEM_HOVER_LINK_STYLES; }
*.menu li img { margin-left:-LEFT_MENU_ITEM_PADDING; }
*.menu li.separator { margin-top:+VALUE; padding-top:+VALUE;
border-top:WIDTH STYLE COLOR; }

*.menu li.flyout-trigger { background:FLYOUT_ARROW; }
*.menu li.flyout-trigger.hover { background:HOVER_FLYOUT_ARROW; }

*.menu ul.dropdown { top:100%; clear:left; }
*.menu ul.submenu { left:100%;
margin-top:-1.5em; margin-left:-0.3em; }

*.menu *.hidden { left:-99999px; top:-99999px; }

(Continued)

CHAPTER 17 ■ LAYOUTS 403

LA
YO

U
T
S

http://freepdf-books.com

Flyout Menu (Continued)

HTML Header

<head>
<!-- only script elements are shown -->

<script language="javascript" type="text/javascript" src="yahoo.js"></script>
<script language="javascript" type="text/javascript" src="event.js"></script>
<script language="javascript" type="text/javascript" src="chdp.js"></script>
<script language="javascript" type="text/javascript" src="cssQuery-p.js"></script>
<script language="javascript" type="text/javascript" src="page.js"></script>

</head>

page.js

function initPage() {

assignEvent('click', '*.menu',
applyToDescendants, '*.dropdown', toggleClass, "hidden");

assignEvent('mouseover', '*.menu',
applyToDescendants, '*.dropdown', removeClass, "hidden");

assignEvent('mouseout', '*.menu',
applyToDescendants, '*.dropdown', addClass, "hidden");

assignEvent('mouseover', '*.menu li, *.menu h3',
applyToThis, null, addClass, "hover");

assignEvent('mouseout', '*.menu li, *.menu h3',
applyToThis, null, removeClass, "hover");

assignEvent('mouseover', '*.menu li.flyout-trigger',
applyToDescendants, '> *.submenu', removeClass, "hidden");

assignEvent('mouseout', '*.menu li.flyout-trigger',
applyToDescendants, '> *.submenu', addClass, "hidden");

}

addEvent(window, 'unload', purgeAllEvents);
addEvent(window, 'load', initPage);

//The functions addEvent() and assignEvent() are in chdp.js.
//Full documentation for each function is found in the source code.

CHAPTER 17 ■ LAYOUTS404

LA
YO

U
T
S

http://freepdf-books.com

Flyout Menu (Continued)

Location This pattern works anywhere a list can be used.

Styles You can float the drop-down menu and its title to the left to shrinkwrap the
menu and to stack multiple drop-down menus next to each other. You can
assign position:relative to the drop-down menu so the unordered list can be
absolutely positioned in relation to it. If you have other relatively positioned
content, you can set z-index to a high-enough value to move the menu to the
front. You can use white-space:nowrap to ensure list items are not wrapped
across multiple lines.

You can remove all the default margins and padding on headings, lists, and list
items. You can use list-style-type:none to remove all bullets from list items.
You can create extra left padding inside each list item so you can move images
into this area with a negative left margin. This keeps images and text aligned in
two columns when there is no image in a menu item.

You can position a drop-down menu below its title by setting top to 100%. You
can position a flyout menu to the right of its flyout-trigger element by setting
left to 100%. You can compensate for a flyout menu being positioned lower
than its flyout-trigger by using margin-top:1.5em to raise it. You can use
margin-left:-0.3em to overlap the flyout menu over its parent menu. You should
use em measurements because they scale with the text when the user zooms in.
You can hide menus by moving them off screen.

You can apply box styles to the following menu elements: h3, ul, and li.

JavaScript The first three assignEvent() functions add, remove, or toggle the presence of
the hidden class, which determines whether the drop-down menu is visible or
not. Since the hidden class simply moves the menu off the screen, it is completely
accessible to screen readers.

The next two assignEvent() functions add or remove the hover class from menu
items and the menu title. The hover class can be used to create hover effects. This
is more reliable than the hover pseudo class, which is not fully implemented in
Internet Explorer 6.

The last two assignEvent() functions add or remove the hidden class of submenus
when the user hovers over a menu item assigned to the flyout-trigger class.
Notice that the applyToDescendants selector, '> *.submenu', contains a child
selector to limit the scope to just the child submenu rather than all descendant
submenus. Even though Internet Explorer 6 does not support the child selector,
it works in this code because the JavaScript library cssQuery-p.js supports all
CSS selectors.

Limitations Single-level menus work fine, but nested menus have limitations. Nested menus
do not work well in Opera 9. Since nested menus are absolutely positioned, they
do not adapt to narrow displays. Internet Explorer 6 does not support the child
selector, which is essential for properly styling nested menus. Lastly, menus do
not fly out when JavaScript is not available.

Related to Event Styling; Absolute Box, Floated Box (Chapter 4); Width, Height,
Shrinkwrapped, Stretched (Chapter 5); Margin, Border, Padding, Background,
Overflow (Chapter 6); Positioned, Atomic, Absolute, Relative, Float and Clear,
Relative Float (Chapter 7); Offset Absolute and Offset Fixed, Aligned Outside
(Chapter 8); Left Aligned (Chapter 9); Screenreader-only (Chapter 10); Blocked,
Nowrap, Inline Decoration (Chapter 11); Section, Lists (Chapter 13)

See also www.cssdesignpatterns.com/flyout-menu

CHAPTER 17 ■ LAYOUTS 405

LA
YO

U
T
S

http://freepdf-books.com

Button

HTML

<h1>Button</h1>

<form id="form1" method="post" action="http://www.tipjar.com/cgi-bin/test">
<input type="text" id="search" name="search" class="search" value="Search" />
<input type="submit" id="submit1" name="submit1" value="Submit" />
<input type="submit" id="submit2" name="submit3" value="" />
<input type="submit" id="submit3" name="submit2" class="button" value="Submit" />
<input type="reset" id="reset1" name="reset1" class="button" value="Reset" />

</form>
<input type="button" id="message" name="message" class="button" value="Message" />
<input type="button" id="submit4" name="submit4" class="button" value="J-Submit"/>
<input type="button" id="reset2" name="reset2" class="button" value="J-Reset" />

<button id="change" name="change" class="button">Change Me!</button>
Link

CSS

form { margin:20px 0; }
*.button { margin:0; padding:3px 10px; font-size:1em; color:black;
cursor:pointer; background:url("g1.jpg") repeat-x left bottom;
border-left:1px solid yellow; border-right:1px solid orange;
border-top:1px solid yellow; border-bottom:1px solid orange; }

*.button:hover, *.button.hover
{ background:url("g2.jpg") repeat-x left top;
border-left:1px solid orange; border-right:1px solid yellow;
border-top:1px solid orange; border-bottom:1px solid yellow; }

a.button { padding:5px 10px; line-height:2em; text-decoration:none; }

#submit2 { width:32px; height:32px; border:none; cursor:pointer;
background:url("go.jpg") no-repeat left top; }

#submit2:hover, #submit2.hover { background-position:1px 1px; }

CHAPTER 17 ■ LAYOUTS406

LA
YO

U
T
S

http://freepdf-books.com

Button

Problem You want to use buttons to submit forms and run JavaScript. You want to style
the buttons to fit the look and feel of the document. You want all actions to be
accessible.

Solution You can use the <input type="submit">, <input type="reset">, <input
type="button">, <button>, and <a> elements to create buttons.

To submit form values to a server or to reset form elements to their initial
values, you can use one or more <input type="submit"> and <input
type="reset"> buttons inside a <form> element. These buttons are designed
to be used inside forms. The text displayed in them comes from their value
attribute. When a submit button is clicked, the text in its value attribute is
submitted along with the rest of the form data.

To trigger JavaScript events, you can use <input type="button"> and <button>
elements outside a form. The <button> element allows you to put any content
(including images, inline elements, and block elements) inside the button.
Whatever content you put in the button is displayed inside the button. In the
example, you can click the Change Me! button and literally enter any valid
HTML to change the content it displays.

To trigger JavaScript events, you can use a link, <a>. For example, when a user
clicks an external link, you may want to ask the user whether he or she wants to
submit the form before leaving the page. In the example, I styled the link to look
like a button to make the point that links can look and function like buttons.
From an accessibility point of view, it is better to use button elements for buttons
rather than links, because a screen reader says “button” when it encounters a
button and says “link” for a link.

Pattern HTML
<form id="ID" method="post" action="URL">
<input type="submit" id="NAME" name="NAME" value="TEXT" />
<input type="reset" id="NAME" name="NAME" value="TEXT" />

</form>

<input type="button" id="NAME" name="NAME" value="TEXT" />
<button id="NAME" name="NAME"> TEXT </button>
 TEXT

Location This pattern works anywhere inline elements work.

Styling You can apply styles to the various types of button elements to replace
proprietary styles supplied by the browser, but your results may vary in different
browsers and operating systems. The example embeds three submit buttons and
one reset button in a form. The first submit button is left unstyled, which renders
it as a button, but the exact look varies in different browsers and operating
systems. The second submit button, #submit2, displays a background image. I
removed all text in the value attribute to prevent it from being displayed over the
image. When this button is clicked, the form data is submitted, but there is no
button value to submit. This is only a problem when you have multiple submit
buttons in a form and want to take different actions depending on which one
was clicked.

(Continued)

CHAPTER 17 ■ LAYOUTS 407

LA
YO

U
T
S

http://freepdf-books.com

Button (Continued)

HTML Header

<head>
<!-- only script elements are shown -->

<script language="javascript" type="text/javascript" src="yahoo.js"></script>
<script language="javascript" type="text/javascript" src="event.js"></script>
<script language="javascript" type="text/javascript" src="chdp.js"></script>
<script language="javascript" type="text/javascript" src="cssQuery-p.js"></script>
<script language="javascript" type="text/javascript" src="page.js"></script>

</head>

page.js

function initPage() {

assignEvent('submit','#form1', applyToThis, null, confirmIt, 'Are you sure?');
assignEvent('click', '#message', applyToThis, null, showIt, 'Hi There');
assignEvent('click', '#button', applyToThis, null, showIt, 'Hi There');
assignEvent('click', '#link', applyToThis, null, confirmIt, 'Jump here?');
assignEvent('click', '#change', applyToThis, null, changeIt, 'Enter content:');
assignEvent('click', '#submit4', applyToThis, null, submitForm, 'form1');
assignEvent('click', '#reset2', applyToThis, null, resetForm, 'form1');

assignEvent('mouseover', '*.button, #submit2', applyToThis, null,
addClass, "hover");

assignEvent('mouseout', '*.button, #submit2', applyToThis, null,
removeClass, "hover");

}

function confirmIt(eElement, e, extraInfo) { return confirm(extraInfo); }
function showIt (eElement, e, extraInfo) { alert(extraInfo); }

function changeIt (eElement, e, extraInfo) {
try{ var result = prompt(extraInfo, eElement.innerHTML);
if (result) eElement.innerHTML = result; } catch (ex) { return false; }

}

function submitForm(eElement, e, extraInfo) {
document.getElementById(extraInfo).submit();

}

function resetForm(eElement, e, extraInfo) {
document.getElementById(extraInfo).reset();

}

addEvent(window,'unload',purgeAllEvents);
addEvent(window,'load',initPage);

CHAPTER 17 ■ LAYOUTS408

LA
YO

U
T
S

http://freepdf-books.com

Button (Continued)

Styling (continued) I further styled the second submit button by removing its border and
setting it to the exact height and width of its background image. When the
button is hovered over, the #submit2:hover rule moves the background
image down and right by 1 pixel to make it look like it is being depressed.
The remaining buttons in the example are styled by the button class.

I use the button class to normalize the display of all buttons by setting
margin, padding, and font-size. This is important because browsers use
different default values. I set the mouse pointer to cursor:pointer to
further signal that the button is clickable.

You can use any box styles to style a button. In the example, I set the
background to a horizontally tiled gradient image that is lighter at the top
and darker at the bottom to create a raised button effect. When the mouse
hovers over the button, I change the background to a gradient image that
is darker at the top and lighter at the bottom to create a depressed button
effect. Likewise, I use lighter top-left borders and darker bottom-right
borders when not hovered over and the reverse when hovered over.

Limitations The <input type="image"> submits the coordinates of where its image is
clicked. I do not recommend using it to process coordinates because
nonsighted users cannot see to click different areas of its image. A client-
side image map is an accessible solution (see Image Map in Chapter 14).

Because Internet Explorer 6 only responds to a:hover, I also use the .hover
class and JavaScript to simulate :hover. Internet Explorer 7 and the other
major browsers do not need this JavaScript workaround.

If you omit the name attribute of a submit button, its value will not be
submitted along with the rest of the form. For consistency, you can set
a button’s id attribute to the same value as its name attribute.

The name and id attribute must not be the same name as a DOM element
method because this prevents you from executing the method. For
example, if you give a submit button a name or id of “submit”, you will not
be able to execute document.getElementById("submit").submit(), which
prevents you from submitting the form using JavaScript. The same applies
to “reset”.

JavaScript In the example, I use each button’s unique ID to assign event handlers. For
example, I assign the onclick event to the #change button so that it will run
the changeIt() function when the button is clicked. changeIt() prompts
the user for content that it then uses to replace the element’s content. I
also assign the onsubmit event to the #form1 form so that it will run the
confirmIt() function prior to submitting the form. This function is called
no matter which submit button is clicked. I also add event handlers to
add and remove the hover class when the mouse mouses over button
elements.

This example shows how easy it is to extend the Event Styling framework
with your own custom functions.

Related to Event Styling; Inline Elements (Chapter 2)

See also www.cssdesignpatterns.com/button

CHAPTER 17 ■ LAYOUTS 409

LA
YO

U
T
S

http://freepdf-books.com

Layout Links

HTML

<h1>Layout Links</h1>

<div id="preheader">Skip to main content</div>
<div id="header"><h2>header</h2></div>

<div id="postheader">
<div class="breadcrumbs">Home » Layout Links
» Breadcrumbs
« Previous | Next »</div></div>

<div id="body"><h2>body</h2>
<p>Main content goes here. External Link</p>
<p class="morelink">» More Info </p></div>

<div id="footer"><h2>footer Topˆ</h2>
Last Updated on... Copyright © 2007
License Privacy Policy
About Us Disclaimers

<div class="float-divider"></div></div>

CSS

a:link, a:visited, a:active { text-decoration:none; color:maroon; }
a:hover { color:black; text-decoration:underline; }

*.morelink { font-size:0.8em; font-weight:bold; text-align:right; }
*.toplink { font-size:0.7em; font-weight:normal; vertical-align:top; }
*.outlink { padding-right:15px; font-style:italic;
background:url("external.gif") no-repeat top right; }

/* Nonessential rules are not shown. */

CHAPTER 17 ■ LAYOUTS410

LA
YO

U
T
S

http://freepdf-books.com

Layout Links

Problem You want to enhance navigation within a document and to other documents
using specially styled links including skip-to-main-content, breadcrumb,
sequential, more-info, top, external, and footer links.

Solutions Section links allow you to link to any section in a document. You can assign each
section to a unique ID. The ID is an anchor that can be linked to by internal and
external links. Using the section ID as a selector, you can uniquely style the
section and its elements. There are five common sections: preheader, header,
postheader, body, and footer. (The terms preheader and postheader are my
own.) Different types of links occur in each of these sections.

Skip-to-main-content links allow users to jump directly to the main content of
a document. This link is useful for nonsighted users and users reading the
document on small devices. It occurs in the preheader and should be the first
item in the document other than perhaps the document heading.

Breadcrumb links are a series of links that lead back to the home page. They
typically occur in the postheader or header. To identify them as breadcrumbs,
you can separate them with a right-pointing arrow symbol.

Sequential links link to previous and next documents in a series. They typically
have names like “previous” and “next,” the former often preceded by a left-
pointing arrow and the latter followed by a right-pointing arrow.

More-info links allow content in a section to be abbreviated to make it easier to
read online. If users want more information, they can click a link to read more
about it. The link is often labeled some variation of “more info.” You can visually
set apart more-info links by making them the last item in a section, embedding
them in their own paragraph, aligning them to the right, and preceding them
with a right-pointing arrow symbol.

Top links allow users to jump to the top of a section or document. They typically
occur in the header of a section when they link back to the top of the document.
They also occur as the last item in a section when they link back to the top of the
section. They are often raised above the baseline and are followed by an up-
pointing arrow symbol.

External links are styled to show that they lead to an external web site. This
helps users decide whether or not they want to go to another web site. You can
create a rule that adds right padding to a link and displays a background image
of an up-right-pointing arrow in this padding.

Footer links occur in the footer section and link to information about the
copyright, licensing, privacy, company, disclaimers, affiliates, and so forth.

Pattern HTML
 LINK_CONTENT

CSS
*.LINK_TYPE { STYLES }

Related to Inline Elements (Chapter 2); Lists (Chapter 13)

Location This pattern works anywhere.

See also www.cssdesignpatterns.com/layout-links

CHAPTER 17 ■ LAYOUTS 411

LA
YO

U
T
S

http://freepdf-books.com

Layout Example

HTML Structural Elements

<div id="preheader"></div>
<div id="header">
<div id="title"><h1>Layout Example</h1></div>
<div id="search"><h3>Search:</h3></div></div>

<div id="postheader"></div>
<div id="body">
<div id="nav">
<div id="site-map"><h3>Site Map</h3></div>
<div id="links"><h3>Links</h3></div></div>

<div id="main"></div>
<div id="extras">
<div id="news"><h3>News</h3></div>
<div id="about-us"><h3>About us</h3></div></div></div>

<div id="footer"></div>

CSS Structural Styles

#preheader *.part1 { float:left; margin-left:10px; }
#preheader *.part2 { float:right; margin-right:10px; }
#header { float:left; width:100%; }
#title { float:left; width:50%; margin-top:7px; }
#search { float:right; margin-top:2px; }
#postheader *.breadcrumbs { float:left; margin-left:10px; }
#postheader *.sequential { float:right; margin-right:10px; }
#body { float:left; width:100%; }
#nav { float:left; width:25%; min-width:160px; }
#main { float:left; width:50%; min-width:300px; }
#extras { float:left; width:25%; min-width:160px; }
#footer { clear:both; padding-top:40px; }

CHAPTER 17 ■ LAYOUTS412

LA
YO

U
T
S

http://freepdf-books.com

Layout Example

Example This example combines the design patterns in this chapter. It shows how these
design patterns can be nested and combined to create an unlimited variety of
layouts.

There are five layout rows in the example corresponding to five typical sections:
preheader, header, postheader, body, and footer. I created these sections using
the Fluid Layout design pattern. This makes each section modular so its layout
can be easily reorganized with confidence when floated or positioned.

The preheader section uses the Opposing Floats design pattern to move the
skip-to-main-content link and the preheader message to opposite sides of the
document. Placing information on opposite sides puts put more information in
half the vertical space without overwhelming the reader. A user automatically
separates content aligned to the left from content aligned to the right. Being
floated allows the position of the breadcrumbs and preheader message to be
adjusted automatically and dynamically to different viewport widths and zoom
factors.

The header section contains two subsections: title and search, which are also
floated to opposite sides using the Opposing Floats design pattern. This keeps
the search section aligned to the right. The search button is styled with a custom
background image using the Button design pattern.

The title section contains a heading and two flyout menus. A float divider moves
the menus below the heading. You can create each menu using the Flyout Menu
design pattern. You can stack together and nest as many menus as you like by
adding more unordered lists and list items to the document. A float divider
occurs before the end of the header to expand the section around its floated
children—as specified in the Fluid Layout design pattern.

The postheader section (like the preheader and header) floats breadcrumbs and
sequential links to opposite sides. This organizes the entire heading area into
three rows and two columns aligned to opposite sides.

The body section contains three subsections: nav, main, and extras. Each is
floated left using the Fluid Layout design pattern. This divides the body section
into three columns.

The main section contains three tabs created using the Tabs design pattern.
By using tabs, you can put more information in a smaller space. This is called
information hiding. It hides information in the page and displays it as needed.
Since the information is downloaded with the page, it can be displayed without
having to fetch another page from the server.

The nav and extra sections each contain two subsections, which are rendered in
normal flow. I applied the Rollup design pattern to them so that they will roll up
and down when you click their headings. Each of these sections also contains a
more-info link. These are all additional information hiding techniques.

The footer section contains standard footer links.

(Continued)

CHAPTER 17 ■ LAYOUTS 413

LA
YO

U
T
S

http://freepdf-books.com

Layout Example (Continued)

Figure 17-1. Layout example displayed in a narrow viewport and displayed without a stylesheet

CHAPTER 17 ■ LAYOUTS414

LA
YO

U
T
S

http://freepdf-books.com

Layout Example (Continued)

This example demonstrates how layout design patterns are modular, reusable,
customizable, fluid, interactive, and accessible.

These layouts are modular and reusable. This example is created entirely using
layout design patterns. I copied each design pattern’s HTML structure into
example.html and changed its content as desired. For each instance of the design
pattern, I repeated this process. I then copied and pasted the CSS rules for each
design pattern into page.css, and copied and pasted the JavaScript for each
design pattern into page.js. The CSS styles and JavaScript code of a design
pattern only need to be copied once into a page’s stylesheet and script. For
maximum reusability, you can place all layout design patterns in a site’s
stylesheet and script file to make them available to all pages. This works because
HTML, CSS, and JavaScript are located in separate files, which makes them more
reusable and interchangeable. On the other hand, for maximum performance,
you may want to include only those styles and JavaScript that apply to the
current page.

These layouts are customizable. If you want to tweak the styles of a design
pattern for all instances of the pattern, you can directly change the pattern’s
rules. If you want to tweak the styles of a design pattern for a specific section,
you can copy the rule and prefix the copied selector with a section selector. For
example, if you want to change what a selected tab looks like in the nav section,
you can copy the selector, ul.tabs li.selected *.tab-label, and create a new
one prefixed with #nav, as in #nav ul.tabs li.selected *.tab-label. Because
selectors containing an ID override those that do not, this selector overrides the
standard selector. If you want to change just one instance of a design pattern,
you can wrap it in a division set to a unique ID, copy the desired rule, and prefix
its selector with the unique ID.

These layouts are fluid. They adapt nicely to devices with different widths and
zoom factors. Figure 17-1 shows the same page rendered in a narrow viewport.
Notice how side-by-side columns automatically reflow into a single column to
fit the viewport. This allows the page to work well on handheld devices.
Furthermore, if a browser does not support stylesheets, each section renders
as nicely structured HTML (see Figure 17-1).

These layouts are interactive, allowing a user to collapse and expand sections,
drop-down menus, and select tabs. Notice in Figure 17-1 how the News section is
rolled up, which makes room to show other sections.

These layouts are accessible. Interactive elements such as rollups and drop-
down menus play nicely with screen readers because content is never set to
visibility:hidden or display:none; instead, hidden content is positioned
offscreen and moved onscreen when it is made visible. Because all content is
present in the document, search engines can index it. For browsers that do not
support JavaScript or have disabled JavaScript, you should include an alternative
version that does not rely on JavaScript.

Related to All design patterns in this chapter and the majority of design patterns in
the book

See also www.cssdesignpatterns.com/layout-example

CHAPTER 17 ■ LAYOUTS 415

LA
YO

U
T
S

http://freepdf-books.com

http://freepdf-books.com

Drop Caps

This chapter discusses design patterns that create drop caps. A drop cap dramatically styles
the first letter of a document to signal that it is the beginning of a document. Sometimes it is
used at the beginning of a major section of a longer document. Sometimes it styles a word
instead of just the first letter.

Typically, the drop cap enlarges the first letter and lowers it so that the top of the letter is
aligned to the top of the following text, but there is no limit to how the drop cap can be styled.

The design patterns in this chapter are organized from simplest to most complex.

Chapter Outline

• Aligned Drop Cap shows how to create a simple drop cap by enlarging it and vertically
aligning it.

• First-letter Drop Cap shows how to create a drop cap without inserting extra markup.

• Hanging Drop Cap shows how to use a hanging indent to create a drop cap.

• Padded Graphical Drop Cap shows how to add left padding to the drop cap to make
room for a background image showing a banner, a grabber, or a decoration.

• Floating Drop Cap shows how to float the drop cap to the left so that text below the
drop cap wraps back under the drop cap.

• Floating Graphical Drop Cap shows how to display a graphic on top of the dropcap
text. It works great for screen readers, and it shows a styled text version of the drop cap
when the image is unavailable. This is the best Graphical Drop Cap design pattern for
allowing text below the drop cap to wrap back under the drop cap.

• Marginal Drop Cap shows how to use absolute positioning to move the drop cap into
the left margin of a block. All lines of the block are indented.

• Marginal Graphical Drop Cap shows how to display a graphic on top of the dropcap
text. It works great for screen readers, and it shows a styled text version of the drop cap
when the image is unavailable. This is the best Graphical Drop Cap design pattern for
preventing text below the drop cap from wrapping back under the drop cap.

417

C H A P T E R 1 8

http://freepdf-books.com

Aligned Drop Cap

HTML

<p>Aligned Drop Cap Variation 1. Text is
large, bold, and aligned at the baseline. Subsequent lines are not indented.</p>

<p>Aligned Drop Cap Variation 2. The
drop cap is aligned to the middle of the text. Subsequent lines are not indented.
The drop cap pushes down the second line a little bit.</p>

<p>Aligned Drop Cap Variation 3. The
drop cap is offset to the top of the text. Subsequent lines are not indented.
The drop cap pushes down the second line quite a bit.</p>

CSS

*.aligned-dropcap1 { font-size:40px; line-height:normal; font-weight:bold;
vertical-align:baseline; }

*.aligned-dropcap2 { font-size:40px; line-height:0.8em; font-weight:bold;
vertical-align:middle; background-color:gold; padding:0 2px; }

*.aligned-dropcap3 { font-size:40px; line-height:normal; font-weight:bold;
font-style:italic; vertical-align:-0.45em; color:white;

background-color:black; background-image:url("marble.jpg");

padding:0 4px; border:1px solid black; }

CHAPTER 18 ■ DROP CAPS418

D
R

O
P

C
A

P
S

http://freepdf-books.com

Aligned Drop Cap

Problem You want to display the first letter of a block as a drop cap. An aligned drop cap is
a letter that has a larger font size than the following text. Its baseline is typically
dropped lower than the baseline of the following text. It may also be styled with a
different font, weight, case, and so on.

In general terms, you want to style a section of text and align it to other text.

Solution You can mark up the first letter or letters of a terminal block element using an
inline element. Assigning this element to a class, such as "aligned-dropcap",
makes it easy to style. You can use font-size to increase the height of the text.
You can use a negative value in vertical-align to lower the text below the
baseline. You can use a positive value in vertical-align to raise the text above
the baseline. You can use line-height to fine-tune how all this affects the height
of the line. You can use line-height:normal to ensure the drop cap does not
overlap neighboring lines. You can use a value slightly smaller than 1em in
line-height to tighten up the space between the lines.

Pattern HTML
<INLINE class="aligned-dropcap"> CONTENT </INLINE>

CSS
*.aligned-dropcap { vertical-align:±VALUE;
font-size:+VALUE;
line-height:VALUE; }

Location This pattern works anywhere you can use an inline element.

Limitations Using text with different fonts and font sizes increases the height of a line.
Furthermore, offset text increases the height of a line. Thus, an aligned drop
cap puts extra space between the first and second lines. The lower you place
the drop cap, the more space you put between the lines.

Related to Hanging Drop Cap, Floating Drop Cap; Vertical-aligned Content, Vertical-offset
Content (Chapter 12); Font (Chapter 10); Spacing (Chapter 11)

See also www.cssdesignpatterns.com/aligned-drop-cap

CHAPTER 18 ■ DROP CAPS 419

D
R

O
P

C
A

P
S

http://freepdf-books.com

First-letter Drop Cap

HTML

<p class="dropcap1"><code>first-letter</code> can create an aligned drop cap.
The problem is that browsers have a hard time aligning pseudo elements.</p>

<p class="dropcap2"><code>first-letter</code> can be used to create a floating
drop cap. The problem is that the drop cap cannot be positioned up or down.</p>

<p class="dropcap3">first-letter can be used to create a hanging drop cap in the
margin. The drop cap can even be replaced by a background image.
The problem is that the drop cap cannot be positioned up or down.</p>

CSS

*.dropcap1:first-letter { font-size:60px; vertical-align:0px; font-weight:bold; }

*.dropcap2:first-letter { float:left; margin-left:-3px; margin-right:3px;
position:relative; top:-2000px; /* DOES NOT WORK */

font-size:60px; line-height:normal; font-weight:bold; }

*.dropcap3 { padding-left:105px; text-indent:-104px; margin-top:50px; }

*.dropcap3:first-letter { padding:40px 50px; font-size:1px; line-height:1px;
color:white; background-image:url("f.jpg");
background-position:center center; }

CHAPTER 18 ■ DROP CAPS420

D
R

O
P

C
A

P
S

http://freepdf-books.com

First-letter Drop Cap

Problem You want to display the first letter of a block as a drop cap without adding
elements to the HTML document.

In general terms, you want to style the first letter of a terminal block element,
such as a paragraph.

Solution first-letter is a design pattern built into the CSS language. first-letter is
called a pseudo-element selector because it selects a subset of content in an
element rather than all the content in an element.

You can tag a terminal block element with a class or ID of your choosing. You can
combine the first-line pseudo selector with classes, IDs, and types of your
choosing. Make sure the first-line selector is the last item in the selector.

Pattern CSS
*.CLASS:first-letter { STYLES }
or
#ID:first-letter { STYLES }
or
ELEMENT:first-letter { STYLES }

Location first-letter works just like first-line. It only works on terminal block
elements. It does not work on structural block elements or inline elements.
first-letter is not inherited by child elements.

Limitations The first-letter selector works best with font and text properties. Browsers
cannot position pseudo-elements and have trouble aligning them. This means
you may not be able to control the vertical placement of the drop cap. Notice
that the second drop cap in the example has been relatively positioned and
offset 2000 pixels. This should move the drop cap off the screen, but as the
example demonstrates, the text selected by first-letter does not respond to
positioning.

Browsers also have exceptional cases where they may not select the first letter or
may select more than the first letter. For example, Opera 9 does not select the
first letter of table cells, and in a list item Internet Explorer 7 selects the list
marker along with the first letter. No major browser selects the first letter when
an image or object precedes it. first-letter brings out bugs in browsers.

Internet Explorer 6 positions a first-letter background image differently from
Internet Explorer 7, and both position it differently from the other major
browsers. As shown in the source code for the example, you can solve this
problem by loading different stylesheets for Internet Explorer versions 6 and 7
and using background-position to adjust the position of the background.

Related to Pseudo-element Selectors (Chapter 3)

See also www.cssdesignpatterns.com/first-letter-drop-cap

CHAPTER 18 ■ DROP CAPS 421

D
R

O
P

C
A

P
S

http://freepdf-books.com

Hanging Drop Cap

HTML

<p class="hanging-indent">Hanging

Drop Cap. This drop cap hangs in the margin. No text flows back under
the backdrop when it flows past the bottom of the drop cap.
The drop cap can be lowered and raised without affecting the line height.
Using <code>top</code> and <code>left</code>,
you can adjust the position of the drop cap and the position of the text
next to the drop cap.</p>

CSS

*.hanging-indent { padding-left:50px;
text-indent:-50px;
margin-top:-25px; }

*.hanging-dropcap { position:relative;
top:0.55em;
left:-3px;
font-size:60px;
line-height:60px;
font-weight:bold; }

CHAPTER 18 ■ DROP CAPS422

D
R

O
P

C
A

P
S

http://freepdf-books.com

Hanging Drop Cap

Problem You want to display the first letter of a block as a drop cap without increasing the
height of the first line. You also want to position the drop cap higher or lower and
control its distance from neighboring text. You also want all text in all lines in a
block element to stay to the right of the drop cap.

In general terms, you want to move text or an image to the left and to move text
to the right while controlling the position of both.

Solution Mark up the first letter or letters of a terminal block element using an inline
element assigned to the "hanging-dropcap" class. Also tag the terminal block
element with the "hanging-indent" class.

Style the "hanging-dropcap" class as follows:

- Use position:relative to prepare the drop cap for positioning.

- Use top to move the drop cap up or down.

- Assign a negative value to left to put space between drop cap and text.

- Assign line-height to the same value as font-size to prevent the large
font-size of the drop cap from expanding the height of the first line.

Style the "hanging-indent" class as follows:

- Assign a positive value to padding-left to move text to the right of the drop cap.
The value should be larger than the width of the drop cap.

- Assign a negative value to text-indent to move the drop cap to the left of the
text. The value should be equal to or less than the width of the drop cap.

- Assign a positive value to margin-top to make room for a drop cap that extends
above the line, or a negative value when a drop cap is lowered.

Pattern HTML
<BLOCK class="hanging-indent">
<INLINE class="hanging-dropcap"> TEXT </INLINE>

</BLOCK>

CSS
*.hanging-indent { padding-left:+VALUE;
text-indent:-VALUE;
margin-top:±VALUE; }

*.hanging-dropcap { position:relative;
top:±VALUE; left:-VALUE;
font-size:+SIZE; line-height:+SIZE; }

Location The drop cap must be the first item in a terminal block element.

Limitations Internet Explorer 6 and Opera 9 position background images differently behind
text that has been moved using text-indent. For this reason, a graphical hanging
drop cap is unfeasible.

Variations You can style the "hanging-dropcap" class using properties such as font, color,
background-color, background-image, padding, border, and so forth.

Related to Aligned Drop Cap, Floating Drop Cap; Margin, Padding (Chapter 6); Relative
(Chapter 7); Offset Relative (Chapter 8); Font (Chapter 10); Spacing (Chapter 11)

See also www.cssdesignpatterns.com/hanging-drop-cap

CHAPTER 18 ■ DROP CAPS 423

D
R

O
P

C
A

P
S

http://freepdf-books.com

Padded Graphical Drop Cap

HTML

<h1>Padded Drop Cap</h1>

<p>Padded Aligned Drop Cap. Text is
large, bold, and aligned at the baseline. Subsequent lines are not indented.</p>

<p>Padded Floating Drop Cap. The
drop cap is floated to the left and then offset to the right using
<code>padding-left</code>. It has a background image rendered in the
padding area. Subsequent lines are indented for as long as the drop cap is on
their left.</p>

CSS

*.padded-dropcap1 { padding-left:39%; font-size:80px; line-height:normal;
font-weight:bold; vertical-align:middle;
background:url("rose.jpg") no-repeat -65px 0 white; }

*.padded-dropcap2 { padding-left:275px; padding-right:10px; float:left;

position:relative; top:-0.25em; margin-bottom:-0.2em;
margin-left:-3px; margin-right:3px; color:black;
background:url("grabber.jpg") no-repeat 5px 20px white;
font-size:84px; line-height:normal; font-weight:bold; }

CHAPTER 18 ■ DROP CAPS424

D
R

O
P

C
A

P
S

http://freepdf-books.com

Padded Graphical Drop Cap

Problem You want to indent or center a drop cap and style its background from the
beginning of the line through the drop cap. Behind the padding, you want to put
a background image, such as a banner, an ad, or a grabber, to draw the reader
into the text.

In general terms, you want to pad the starting position of an inline element.

Solution A padded drop cap is indented using padding. You can use padding to center a
drop cap or to indent it by a fixed amount. The background color or background
image shows through the padding.

To create a padded drop cap, you can mark up the first letter or letters of a
terminal block element using an inline element. Assigning this element to a
class, such as "padded-dropcap", makes it easy to style. You can use padding-left
to move the drop cap to the right. You can center the drop cap by using a value
for padding-left that is slightly less than 50%. Lower the percentage as needed
to compensate for the width of the content in the drop cap. You can use
margin-left to put transparent space on the left of the drop cap. You can use
padding-right to put padding between the drop cap and the following text. You
can also use margin-right to put transparent space between the drop cap and
the following text.

Pattern HTML
<INLINE class="padded-dropcap"> CONTENT </INLINE>

CSS
*.padded-dropcap { padding-left:+VALUE;
padding-right:+VALUE;
margin-left:+VALUE;
margin-right:+VALUE;
background:url("FILE.EXT") REPEAT HORIZONTAL VERTICAL COLOR; }

Location This pattern works anywhere you can use an inline element.

Limitations If you are centering the drop cap and the width of the drop cap’s parent is
variable, the position of the drop cap will be close to center, but may not always
remain perfectly centered as the parent’s width changes. If you need it to be
precisely centered, you need to set the width of the drop cap’s parent to a fixed
value.

As you extend the padding on the left, you extend the background on the left.
This is part of the design of this type of drop cap. If you have a background
behind the drop cap, but you do not want to show the background on the left,
you can use margin-left instead of padding-left to indent the drop cap.

Tip You can combine this pattern with other Drop Cap design patterns.

Related to Aligned Drop Cap, First-letter Drop Cap, Hanging Drop Cap, Floating Graphical
Drop Cap; Margin, Padding, Background (Chapter 6)

See also www.cssdesignpatterns.com/padded-graphical-drop-cap

CHAPTER 18 ■ DROP CAPS 425

D
R

O
P

C
A

P
S

http://freepdf-books.com

Floating Drop Cap

HTML

<h1>Floating Drop Cap</h1>
<p>Floated Drop Cap Variation 1. This
drop cap is lowered without affecting the height of the line.
Using <code>top</code>, <code>margin-left</code>, <code>margin-right</code>,
and <code>margin-bottom</code>, you can adjust the position of the drop cap
and the position of the text next to the drop cap.</p>

<p>Floated Drop Cap Variation 2.
Notice how the drop cap has been moved up and to the right, and the text
has moved to the right.</p>

CSS

*.floating-dropcap1 { float:left; position:relative; top:-0.25em;

margin-left:-3px; margin-right:3px; margin-bottom:-0.6em;

font-size:80px; line-height:normal; font-weight:bold; }

*.floating-dropcap2 { float:left; position:relative; top:-0.35em;

margin-left:20px; margin-right:5px; margin-bottom:-0.7em;

font-size:80px; line-height:normal; font-weight:bold;
color:white; background-color:black; padding:0 20px;
background-image:url("marble.jpg");
border-left:2px groove black; border-right:2px ridge black;
border-top:2px groove black; border-bottom:2px ridge black; }

CHAPTER 18 ■ DROP CAPS426

D
R

O
P

C
A

P
S

http://freepdf-books.com

Floating Drop Cap

Problem You want to display the first letter of a block as a drop cap without increasing the
height of the first line. You also need to position the drop cap higher or lower and
control its distance from neighboring text.

Solution In general, you can float a drop cap to the left and use margins and relative
positioning to fine-tune its position. Specifically, you can mark up the first letter
or letters of a terminal block element using an inline element. Assigning this
element to a class, such as "floating-dropcap", makes it easy to style. You can
use float:left to float the drop cap to the left. You can use position:relative to
prepare the drop cap for positioning. You can use top to move the drop cap up or
down—negative values move it up, and positive values move it down. You can
use margin-left to move the drop cap left or right—negative values move it to
the left, and positive values move it to the right. You can use margin-right to
change the space between the drop cap and text—positive values increase the
space, and negative values shrink it. You can use margin-bottom to extend or
shrink the transparent area below the drop cap. By using positive values in
margin-bottom, you can extend down the influence of the float so that text
continues to indent on its right.

Pattern HTML
<INLINE class="floating-dropcap"> TEXT </INLINE>

CSS
*.floating-dropcap { float:left;
position:relative;
top:±VALUE;
margin-left:±VALUE;
margin-right:±VALUE;
margin-bottom:±VALUE; }

Location This pattern works anywhere you can use an inline element.

Limitations If other elements in the same line are also floated left, they will be stacked
between the drop cap and the text. This breaks the dropcap effect. Floats
sometimes trigger bugs in browsers.

Advantages The floating drop cap is simple to position, and is one of the most flexible to
position and style. It allows text to wrap around the bottom of the float, which
is the most common dropcap style.

Tips To compensate for the extra empty space that occurs on the left of large
fonts, you can shift the drop cap to the left by assigning a negative value to
margin-left.

To compensate for the extra empty space below a drop cap that is created by a
negative value in top, you can assign a negative value to margin-bottom.

Related to Floating Graphical Drop Cap; Margin (Chapter 6); Relative, Float and Clear
(Chapter 7); Offset Float, Offset Relative (Chapter 8)

See also www.cssdesignpatterns.com/floating-drop-cap

CHAPTER 18 ■ DROP CAPS 427

D
R

O
P

C
A

P
S

http://freepdf-books.com

Floating Graphical Drop Cap

HTML

<h1>Floating Graphical Drop Cap</h1>

<p>Floating
Graphical Drop Cap. The letter F has been covered by the dropcap image.
Screen readers read the text and visual users see the image.
If the browser cannot display the dropcap image, the text becomes visible.
The text can be styled so that it looks good if it ever becomes visible.
Because the drop cap is floated, the text wraps around the bottom of the drop cap
when it clears the drop cap's bottom margin.</p>

CSS

*.floating-dropcap { float:left; position:relative; top:5px;
margin-left:80px; margin-right:12px; margin-bottom:0px;
width:100px; height:90px;

line-height:80px; text-align:right;
font-size:100px; font-weight:bold;
color:black; background-color:white; }

*.floating-dropcap span { position:absolute;

width:100px; height:90px; left:0; top:0; margin:0;

background-image:url("f.jpg");

background-repeat:no-repeat; }

CHAPTER 18 ■ DROP CAPS428

D
R

O
P

C
A

P
S

http://freepdf-books.com

Floating Graphical Drop Cap

Problem You want to create a floating drop cap where the dropcap text is replaced by a
graphic.

Solution Combine the Floating Drop Cap pattern with the Text Replacement pattern.

To use the Floating Drop Cap design pattern, tag the dropcap text in a
terminal block element with an inline element assigned to the "floating-
dropcap" class. Position the drop cap using float:left, position:relative,
top, margin-left, margin-right, and margin-bottom. See Floating Drop Cap
for details.

To add in the Text Replacement design pattern, you can use width and height
to size the float to the exact size of the dropcap image. You can also embed an
empty span inside the float and use background-image to display the dropcap
image as its background. You can style the embedded span to cover the text
in the dropcap span using position:absolute, left:0, top:0, and margin:0.
See Text Replacement in Chapter 10 for details.

Pattern HTML
<INLINE class="floating-dropcap"> TEXT </INLINE>

CSS
*.floating-dropcap { float:left;
position:relative; top:-VALUE;
margin-left:±VALUE; margin-right:±VALUE;
margin-bottom:±VALUE;
width:IMAGE_WIDTH; height:IMAGE_HEIGHT; }

*.floating-dropcap span { position:absolute;
width:IMAGE_WIDTH; height:IMAGE_HEIGHT;
left:0; top:0; margin:0;
background-image:url("FILE.EXT");
background-repeat:no-repeat; }

Location This pattern works anywhere you can use an inline element.

Advantages The graphical floating drop cap is simple to position. It degrades gracefully
when the graphic cannot be displayed because the dropcap text is displayed
in its place. You can style the dropcap text so that it looks good whenever the
browser cannot display the background image. Lastly, screen readers can read
the dropcap text without any problem, while sighted users see the image in its
place. A border around the terminal block containing the drop cap includes
the drop cap.

Disadvantages It has the disadvantages of a float, such as triggering browser bugs and
interacting with other floats.

Related to Padded Graphical Drop Cap, Floating Drop Cap, Marginal Graphical Drop
Cap; Width, Height, Sized (Chapter 5); Margin, Background (Chapter 6);
Positioned, Closest Positioned Ancestor, Absolute, Relative, Float and Clear
(Chapter 7); Offset Float, Offset Relative, Aligned and Offset Absolute
(Chapter 8); Text Replacement (Chapter 10)

See also www.cssdesignpatterns.com/floating-graphical-drop-cap

CHAPTER 18 ■ DROP CAPS 429

D
R

O
P

C
A

P
S

http://freepdf-books.com

Marginal Drop Cap

HTML

<h1>Marginal Drop Cap</h1>

<p class="indent">Marginal Drop Cap.
The marginal drop cap indents the text to the right and uses absolute
positioning to move the drop cap into the margin created by the indent. All
text stays to the right of the drop cap. In other words, text does not wrap
back under the drop cap when it extends below the drop cap.</p>

CSS

*.indent { position:relative; margin-left:72px; margin-top:20px; }

*.marginal-dropcap { position:absolute; left:-77px; top:-16px;

font-size:80px; font-weight:bold;
color:black; background-color:white; }

CHAPTER 18 ■ DROP CAPS430

D
R

O
P

C
A

P
S

http://freepdf-books.com

Marginal Drop Cap

Problem You want to display the first letter of a block as a drop cap in the block’s
margin. You do not want the text to wrap back under the drop cap when it
flows below the drop cap.

Solution Use the Indented design pattern (Chapter 8) to create a left margin in the
block and use absolute positioning to move the drop cap into the left margin.
Use margin-left to indent the block element to make room for the drop cap
in the left margin. Optionally, use margin-top:+VALUE to insert additional
space above the block to make room for the drop cap. Assign position:
relative, position:absolute, or position:fixed to the block so that the drop
cap can be absolutely positioned relative to it. Tag the dropcap text with a
span assigned to the marginal-dropcap class (or another class of your
choosing). Use position:absolute and left:-INDENT to move the drop cap
into the block’s margin. The negative indent assigned to the drop cap is
typically the negative of the indent assigned to the block. Occasionally, you
may want to make it a few pixels larger than the block’s indent because larger
fonts have extra whitespace on their left. Use top:±VALUE to move the drop
cap up or down.

Pattern HTML
<BLOCK class="indent">
<INLINE class="marginal-dropcap"> TEXT </INLINE>

</BLOCK>

CSS
*.indent { position:relative;
margin-left:+INDENT;
margin-top:±VALUE; }

*.marginal-dropcap { position:absolute;
left:-INDENT;
top:±VALUE; }

Location This pattern works anywhere you can have a terminal block element.

Advantages The marginal drop cap is simple to position, but it requires manually playing
with the size of the margin and the size of the indent to accommodate the size
of the drop cap’s font.

Disadvantages A border around the block containing the drop cap will not include the
drop cap. This happens because the pattern uses margin-left instead of
padding-left to create the indent. This avoids a positioning bug in Internet
Explorer 6, but excludes the drop cap from being within the border around
the block.

Related to Margin (Chapter 6); Indented (Chapter 8); Positioned, Closest Positioned
Ancestor, Absolute, Relative (Chapter 7); Indented, Offset Absolute, Aligned
and Offset Absolute (Chapter 8); Left Marginal (Chapter 13)

See also www.cssdesignpatterns.com/marginal-drop-cap

CHAPTER 18 ■ DROP CAPS 431

D
R

O
P

C
A

P
S

http://freepdf-books.com

Marginal Graphical Drop Cap

HTML

<h1>Marginal Graphical Drop Cap</h1>

<p class="indent">Marginal

Graphical Drop Cap. The letter M has been covered by the dropcap image.
Screen readers read the text and visual users see the image.
If the browser cannot display the dropcap image,
the text becomes visible.</p>

CSS

*.indent { position:relative; margin-left:120px; margin-top:20px; }

*.graphic-dropcap { position:absolute; left:-120px; top:6px;

width:100px; height:90px;

line-height:70px; padding-left:16px; text-align:right;

font-size:80px; font-weight:bold;
color:black; background-color:white; }

*.graphic-dropcap span { position:absolute;

width:100px; height:90px; left:0; top:0; margin:0;

background-image:url("g.jpg");

background-repeat:no-repeat; }

CHAPTER 18 ■ DROP CAPS432

D
R

O
P

C
A

P
S

http://freepdf-books.com

Marginal Graphical Drop Cap

Problem You want to display the first letter of a paragraph as an image in a marginal drop
cap. If the browser cannot display the image, you want the dropcap text to be
visible. You want screenreader software to read the drop cap properly.

Solution Combine the Marginal Drop Cap design pattern, the Text Replacement design
pattern (Chapter 10), and the Top-offset Sized Absolute Element design pattern.

Indent a terminal block element to make room for the drop cap. Make the block
positioned so the drop cap can be absolutely positioned relative to it. Tag the
dropcap text with a span and use absolute positioning to move it into the block’s
indent. Embed a span into the drop cap to display the dropcap graphic as its
background image. Absolutely position the embedded span to cover the dropcap
text so that it is hidden behind it.

Pattern HTML
<BLOCK class="indent">
<INLINE class="graphic-dropcap"> TEXT </INLINE>

</BLOCK>

CSS
*.indent { position:relative;
margin-left:+INDENT;
margin-top:±VALUE; }

*.graphic-dropcap { position:absolute;
left:-INDENT;
top:±VALUE;
width:IMAGE_WIDTH;
height:IMAGE_HEIGHT;
line-height:+VALUE;
padding-left:+VALUE;
text-align:right; }

*.graphic-dropcap span { position:absolute;
width:IMAGE_WIDTH;
height:IMAGE_HEIGHT;
margin:0;
left:0;
top:0;
background-image:url("FILE.EXT");
background-repeat:no-repeat; }

(Continued)

CHAPTER 18 ■ DROP CAPS 433

D
R

O
P

C
A

P
S

http://freepdf-books.com

Marginal Graphical Drop Cap (Continued)

Figure 18-1. What the Marginal Graphical Drop Cap example looks like when the browser cannot

load or display the image

CHAPTER 18 ■ DROP CAPS434

D
R

O
P

C
A

P
S

http://freepdf-books.com

Marginal Graphical Drop Cap (Continued)

Solution details To make room for the drop cap, you can indent the terminal block element
containing the drop cap using margin-left:+VALUE. Because of a bug in
Internet Explorer 6, you should use margin-left instead of padding. The
indent should be as large as or larger than the width of the dropcap image.
The larger the indent, the more space you can put between the drop cap
and the text. To move the drop cap above the block, you can use margin-top:
+VALUE to make room for it. Because the drop cap is positioned relative to the
block, you need to position the block using position:relative. You could also
use position:absolute or position:fixed to make the block positioned.

You can tag the dropcap text with a span and assign it to the graphic-dropcap
class. To move the drop cap into the space created by the indent, you can use
position:absolute, and you can set left to the negative of the indent you
assigned to margin-left. You can use top to move the drop cap up or down in
relation to the block. You need to use width and height to size the drop cap to
the exact size of the image. This ensures the dropcap text will be completely
covered by the dropcap image.

In case the image cannot be displayed (see Figure 18-1), you can use font
properties to style the dropcap text. You can use line-height to move the
dropcap text up or down. You can use text-align:right to move the dropcap
text next to the block and padding-left:+VALUE to move it even closer to the
block.

To display the dropcap image over the top of the dropcap text, you can embed
a span in the graphical dropcap span and use background-image to display the
dropcap image in it. To hide the dropcap text behind the image, the image
should not have a transparent background. To position the dropcap image
over the dropcap text, you can use position:absolute, left:0, top:0, and
margin:0. You need to use width and height to size the span to the image.

Location This pattern works anywhere you can have a terminal block element.

Advantages The graphical drop cap is simple to position. It degrades gracefully when
the graphic cannot be displayed because the dropcap text is displayed in
its place. You can style the dropcap text so that it looks good whenever the
browser cannot display the background image. Lastly, screen readers can
read the dropcap text without any problem, while sighted users see the
image in its place.

Disadvantages Like all marginal design patterns, a border around the terminal block
containing the drop cap will not include the drop cap.

Related to Floating Graphical Drop Cap, Padded Graphical Drop Cap; Margin (Chapter 6);
Positioned, Closest Positioned Ancestor, Absolute, Relative (Chapter 7);
Indented, Offset Absolute, Aligned and Offset Absolute (Chapter 8); Top-offset
Sized Absolute Element (Chapter 9); Text Replacement (Chapter 10),
Horizontal-aligned Content (Chapter 12); Left Marginal (Chapter 13)

See also www.cssdesignpatterns.com/marginal-graphical-drop-cap

CHAPTER 18 ■ DROP CAPS 435

D
R

O
P

C
A

P
S

http://freepdf-books.com

http://freepdf-books.com

Callouts and Quotes

This chapter discusses design patterns that create callouts and quotes.
A callout is a key point pulled out of the document to grab a reader’s attention so he or

she will read the document and remember the point after having read it. A callout is repeated
twice in a document: once as part of the body of the document and once again for display as
a callout. A callout is displayed prominently so the reader cannot miss it. Because a callout is
extracted from a document’s text, it is often an inline element, although it could be a block
element.

I have grouped callouts and quotes together because they are closely related. Callouts are
also known as pull quotes because they are quotes pulled from the document. There are dif-
ferences between pull quotes and quotes. A pull quote (or callout) requires the same text to be
repeated twice within a document, whereas a quote occurs only once. Also, a quote typically
includes a citation, whereas a pull quote does not. Lastly, quotes belong visually and semanti-
cally as part of the content, whereas callouts are visually and semantically set apart from the
content and are often moved to the left or right sides or margins of a document. In the rest of
this chapter, I will refer to pull quotes as callouts to avoid confusing them with regular quotes.

Chapter Outline

• Left Floating Callout shows how to create a callout and float it to the left.

• Right Floating Callout shows how to create a callout and float it to the right.

• Center Callout shows how to create a callout and center it.

• Left Marginal Callout shows how to create a callout in the left margin using the
marginal design pattern.

• Right Marginal Callout shows how to create a callout in the right margin using the right
marginal design pattern.

• Block Quote shows how to create a block quote with a citation that is automatically
centered and styled with graphical background quotes.

• Inline Block Quote shows how to render an inline quote as a block quote.

• Inline Quote shows how to create an inline quote with a citation.

437

C H A P T E R 1 9

http://freepdf-books.com

Left Floating Callout

HTML

<h1>Left Floating Callout</h1>

<p>A callout makes the key point stand out to the reader.

Makes the key point stand out

You can float a callout to the left using <code>float:left</code>.
You can use <code>width</code> to set the callout's width.
You can use <code>margin</code> to put distance between the callout and
text outside the callout. You can use <code>padding</code> to put space
between the callout's internal text and its borders. You can use
<code>position:relative</code> and <code>top</code> to adjust the vertical
position of the callout.</p>

CSS

*.callout-left { float:left; width:200px; padding:6px;

margin:10px 40px 10px 30px;

position:relative; top:10px;

font-size:22px; line-height:normal; font-weight:bold;
text-align:center; color:black; background-color:gold;
border-left:1px solid black; border-right:1px solid black;
border-top:6px solid black; border-bottom:6px solid black; }

CHAPTER 19 ■ CALLOUTS AND QUOTES438

C
A

LL
O

U
T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Left Floating Callout

Problem You want to remove content from the flow and display it prominently to the
reader on the left side.

In general terms, you want to pull content out of the flow to emphasize it.

Solution A callout is removed from the normal flow and styled to make its content stand
out to the user. It usually has a larger font, margins, borders, and background
around the outside to set it apart from surrounding content. Callouts can include
all kinds of content, such as quotes, key phrases, attention getters, and so on.

You can assign an inline element to the callout class. You can use float:left
to float the callout to the left. You can use padding to put distance between the
callout’s content and its border. You can use position:relative to position the
callout so you can move it. You can use top to move the callout up or down. You
can use margin-left to move the callout to the right. You can use margin-right
to put distance between the callout’s right border and external text. You can use
margin-top and margin-bottom to put distance between the callout’s top and
bottom borders and external text.

Pattern HTML
<INLINE class="callout"> CONTENT </INLINE>

CSS
*.callout { float:left; position:relative;
width:+VALUE;
padding:+VALUE;
margin-top:+VALUE; margin-bottom:+VALUE;
margin-left:±VALUE; margin-right:+VALUE;
top:±VALUE; }

Location This pattern works on any element.

Limitations If you left-float any other elements close to where the callout is floated, they may
stack next to each other. This would likely detract from the callout effect. Floats
tend to bring out bugs in browsers.

Tips A callout should be positioned in the text where it makes sense if it were read as
part of the text. A screen reader will read it where it occurs, and a browser that
does not support absolute positioning will display it inline where it occurs. I
recommend placing the callout’s markup immediately after the text it is quoting.
Screen readers will read it twice, which emphasizes the callout aurally through
repetition just like it is emphasized visually.

Related to Right Floating Callout, Center Callout; Floated Box (Chapter 4); Width (Chapter 5);
Margin, Padding (Chapter 6); Float and Clear, Relative Float (Chapter 7); Offset
Float (Chapter 8)

See also www.cssdesignpatterns.com/left-floating-callout

CHAPTER 19 ■ CALLOUTS AND QUOTES 439

C
A

LLO
U

T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Right Floating Callout

HTML

<h1>Right Floating Callout</h1>

<p>The main feature of the floating callout is that text can wrap
under and over it because it is a float.

Wraps under and over

You can float a callout to the right using <code>float:right</code>.
You can use <code>width</code> to set the callout's width.
You can use <code>margin</code> to put distance between the callout and
text outside the callout. You can use <code>padding</code> to put space
between the callout's internal text and its borders. You can use
<code>position:relative</code> and <code>top</code> to adjust the vertical
position of the callout.</p>

CSS

*.callout { float:right; width:200px; padding:6px;

margin:10px 30px 10px 40px;

position:relative; top:10px;

font-size:22px; line-height:normal; font-weight:bold;
text-align:center; color:black; background-color:gold;
border-left:1px solid black; border-right:1px solid black;
border-top:6px solid black; border-bottom:6px solid black; }

CHAPTER 19 ■ CALLOUTS AND QUOTES440

C
A

LL
O

U
T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Right Floating Callout

Problem You want to remove content from the flow and display it prominently to the
reader on the right side.

In general terms, you want to pull content out of the flow to emphasize it.

Solution A callout is removed from the normal flow and styled to make its content stand
out to the user. It usually has a larger font, margins, borders, and background
around the outside to set it apart from surrounding content. Callouts can include
all kinds of content, such as quotes, key phrases, attention getters, and so on.

You can assign an inline element to the callout class. You can use float:right
to float the inline element to the right content edge of its parent terminal block
element. You can use padding to put distance between the callout’s content and
its border. You can use position:relative to position the callout so you can
move it. You can use top to move the callout up or down. You can use margin-left
to put distance between the callout’s left border and external text. You can use
margin-right to move the callout to the left. You can use margin-top and
margin-bottom to put distance between the callout’s top and bottom borders
and external text.

Pattern HTML
<INLINE class="callout"> CONTENT </INLINE>

CSS
*.callout { float:right; position:relative;
width:+VALUE;
padding:+VALUE;
margin-top:+VALUE; margin-bottom:+VALUE;
margin-left:+VALUE; margin-right:±VALUE;
top:±VALUE; }

Location This pattern works on any element.

Limitations If you right-float any other elements close to where the callout is floated, they
may stack next to each other. This would likely detract from the callout effect.
Floats tend to bring out bugs in browsers.

Tip A callout should be positioned in the text where it makes sense if it were read as
part of the text.

Related to Left Floating Callout, Center Callout; Floated Box (Chapter 4); Width (Chapter 5);
Margin, Padding (Chapter 6); Float and Clear, Relative Float (Chapter 7); Offset
Float (Chapter 8)

See also www.cssdesignpatterns.com/right-floating-callout

CHAPTER 19 ■ CALLOUTS AND QUOTES 441

C
A

LLO
U

T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Center Callout

HTML

<h1>Center Callout</h1>

<p><code>display:block</code> clears text on each side of the callout. <code>
width</code> sets the callout's width. <code>margin-top</code> and <code>
margin-bottom</code> set the distance above and below the center callout.

Centered Callout!

<code>margin-left:auto</code> and <code>margin-right:auto</code> center the
callout in its parent terminal block element.<code>position:relative</code>
and <code>left</code> adjust the horizontal position of the callout
away from center.</p>

CSS

*.callout { display:block; width:300px; margin:20px auto; padding:6px;

position:relative; left:0%;

font-size:22px; line-height:normal; font-weight:bold;
text-align:center; color:black; background-color:gold;
border-left:1px solid black; border-right:1px solid black;
border-top:6px solid black; border-bottom:6px solid black; }

CHAPTER 19 ■ CALLOUTS AND QUOTES442

C
A

LL
O

U
T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Center Callout

Problem You want to remove content from the flow and display it prominently to the
reader in the center of the text with no content flowing to its left or right.

In general terms, you want an inline element to be rendered like a block element.

Solution A callout is removed from the normal flow and styled to make its content stand
out to the user. It usually has a larger font, margins, borders, and background to
set it apart from surrounding content. Callouts can include all kinds of content,
such as quotes, key phrases, attention getters, and so forth.

You can assign an inline element to the callout class. You can use display:block
to display the inline element as a block element. You can use width to set the
callout’s width. If content is wider than the width, a browser wraps the content
and extends the height of the callout. You can use margin-left:auto and
margin-right:auto to center the callout. You can use margin-top and
margin-bottom to put space above the callout’s top border and below its bottom
border. You can use padding to put distance between the callout’s content and
its border. You can use position:relative and left to move it to the left or right
of center. Using a percentage in left is convenient because it is a percentage of
the callout container’s width.

Pattern HTML
<INLINE class="callout"> CONTENT </INLINE>

CSS
*.callout { display:block; position:relative;
width:+VALUE;
margin-top:+VALUE; margin-bottom:+VALUE;
left:±VALUE%; padding:+VALUE;
margin-left:auto; margin-right:auto; }

Location This pattern works on any element.

Limitations CSS 2.1 provides no automatic way to flow content on the left or right of a
centered callout. Thus, a centered callout extends across the entire width of
its parent.

Tips A callout should be positioned in the text where it makes sense if it were read as
part of the text.

Related to Left Floating Callout, Right Floating Callout; Display, Block Box (Chapter 4);
Width (Chapter 5); Margin, Padding (Chapter 6); Relative (Chapter 7); Offset
Relative (Chapter 8); Center Aligned (Chapter 9); Blocked (Chapter 11)

See also www.cssdesignpatterns.com/center-callout

CHAPTER 19 ■ CALLOUTS AND QUOTES 443

C
A

LLO
U

T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Left Marginal Callout

HTML

<h1>Left Marginal Callout</h1>

<p class="left-marginal">

Text does not wrap under...

The main feature of the marginal callout is that text does not wrap
under or over the callout because the callout is in the margin.
You can indent the block to make room for the callout on the left.
You can use absolute positioning to pull the callout out of the text
and move it into the left margin.</p>

CSS

*.left-marginal { position:relative; width:470px; margin-left:230px; }

*.callout { position:absolute; left:-220px; width:160px; margin-top:5px;

line-height:normal; text-align:center; padding:5px 0;
font-size:22px; font-weight:bold;
color:black; background-color:gold;
border-left:1px solid black; border-right:1px solid black;
border-top:6px solid black; border-bottom:6px solid black; }

CHAPTER 19 ■ CALLOUTS AND QUOTES444

C
A

LL
O

U
T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Left Marginal Callout

Problem You want to excerpt text out of the normal flow and move it into the left margin
as a callout. You want items in the margin to be positioned vertically where they
would have been in the flow. You do not mind using fixed widths. You do not use
many callouts, so the risk of overlap is minimal.

Solution You can indent text to create a margin on the left and then use absolute
positioning to remove content from the normal flow into the margin.

You can use margin-left to indent the terminal block. You can use
position:relative to position the block so its inline children can be positioned
relative to its margin. You can use margin-right:auto and width to fix the width
of the terminal block so that the content does not reflow. Without a fixed width,
content reflows when the viewport resizes, and reflow may change the vertical
location of callouts, causing them to overlap.

You can assign an inline element to the callout class. You can use position:
absolute to remove the inline element from the flow. You can use width to size
the inline element to fit into the margin. You can assign a negative value to left
to move the inline element into the left margin. You can use margin-top to move
the inline element up or down.

Pattern HTML
<TERMINAL_BLOCK class="left-marginal">
TEXT
<INLINE_TEXT class="callout"> CALLOUT TEXT </INLINE_TEXT>
TEXT

</TERMINAL_BLOCK>

CSS
*.left-marginal { position:relative; width:+VALUE;
margin-left:+VALUE; margin-right:auto; }

*.callout { position:absolute;
left:-VALUE;
width:+VALUE;
margin-top:±VALUE; }

Location This pattern works only on inline elements inside terminal block elements.

Caution The layout created by this pattern does not protect content from overlapping.
It is very easy to move callouts into the margin and to have them overlap each
other and other content moved into the margin.

Tips A callout should be positioned in the text where it makes sense if it were read as
part of the text.

You can combine this pattern with Right Marginal Callout.

This pattern is visually similar to HTML tables, but the markup is more flexible.
You can pull out any inline content and move it into the margin.

Related to Right Marginal Callout; Left Marginal (Chapter 13)

See also www.cssdesignpatterns.com/left-marginal-callout

CHAPTER 19 ■ CALLOUTS AND QUOTES 445

C
A

LLO
U

T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Right Marginal Callout

HTML

<h1>Right Marginal Callout</h1>

<p class="right-marginal">

Text does not wrap under...

The main feature of the marginal callout is that text does not wrap
under or over the callout because the callout is in the margin.
You can indent the block to make room for the callout on the right.
You can use absolute positioning to pull the callout out of the text
and move it into the right margin.</p>

CSS

*.right-marginal { position:relative; width:490px; margin-right:230px; }

*.callout { position:absolute; right:-200px; width:160px; margin-top:5px;

line-height:normal; text-align:center; padding:5px 0;
font-size:22px; font-weight:bold;
color:black; background-color:gold;
border-left:1px solid black; border-right:1px solid black;
border-top:6px solid black; border-bottom:6px solid black; }

CHAPTER 19 ■ CALLOUTS AND QUOTES446

C
A

LL
O

U
T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Right Marginal Callout

Problem You want to excerpt text out of the normal flow and move it into the right margin
as a callout. You want items in the margin to be positioned vertically where they
would have been in the flow. You do not mind using fixed widths. You do not use
many callouts, so the risk of overlap is minimal.

Solution You can indent text to create a margin on the right and then use absolute
positioning to remove content from the normal flow into the margin.

You can use margin-right to indent the terminal block. You can use position:
relative to position the block so its inline children can be positioned relative
to its margin. You can use margin-left:auto and width to fix the width of the
terminal block so that the content does not reflow. Without a fixed width,
content reflows when the viewport resizes, and reflow may change the vertical
location of callouts, causing them to overlap.

You can assign an inline element to the callout class. You can use position:
absolute to remove the inline element from the flow. You can use width to size
the inline element to fit into the margin. You can assign a negative value to left
to move the inline element into the left margin. You can use margin-top to move
the inline element up or down.

Pattern HTML
<TERMINAL_BLOCK class="right-marginal">
TEXT
<INLINE_TEXT class="callout"> CALLOUT TEXT </INLINE_TEXT>
TEXT

</TERMINAL_BLOCK>

CSS
*.right-marginal { position:relative; width:+VALUE;
margin-right:+VALUE; margin-left:auto; }

*.callout { position:absolute;
right:-VALUE;
width:+VALUE;
margin-top:±VALUE; }

Location This pattern works only on inline elements inside terminal block elements.

Caution The layout created by this pattern does not protect content from overlapping.
It is very easy to move callouts into the margin and to have them overlap each
other and other content moved into the margin.

Tips A callout should be positioned in the text where it makes sense if it were read as
part of the text.

You can combine this pattern with Left Marginal Callout.

This pattern is visually similar to HTML tables, but the markup is more flexible.
You can pull out any inline content and move it into the margin.

Related to Left Marginal Callout; Right Marginal (Chapter 13)

See also www.cssdesignpatterns.com/right-marginal-callout

CHAPTER 19 ■ CALLOUTS AND QUOTES 447

C
A

LLO
U

T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Block Quote

HTML

<h1>Block Quote</h1>

<blockquote><div>

<p>A block quote contains one or more paragraphs, and a citation.
A block quote is not repeated twice in the document like a callout.</p>

<p>This example includes an embedded, decorative division so it can display
a graphical closing quote.</p>

<cite>
cssDesignPatterns.com</cite>

</div></blockquote>

CSS

blockquote { width:500px; margin:10px auto;

position:relative; left:0%; text-align:justify;
line-height:1.3em; color:black;
padding-top:40px; padding-left:40px;
background:url("dq1.jpg") no-repeat top left; }

blockquote div { padding-bottom:10px; padding-right:40px;
background:url("dq2.jpg") no-repeat bottom right; }

blockquote p { margin:0; margin-bottom:10px; }

blockquote cite { display:block; text-align:right; font-size:0.9em; }

CHAPTER 19 ■ CALLOUTS AND QUOTES448

C
A

LL
O

U
T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Block Quote

Problem You want to create a block quote. You want to set a quote apart from the rest of
the content and make it easily recognizable as a block quote. You want the block
quote to include one or more paragraphs and a citation. You want it to be styled
with graphical opening and closing quotes.

Solution Like a center callout, a block quote usually has a different font, margins, borders,
and background to set it apart from surrounding content.

You can embed the block quote in the <blockquote> element. You can use width
to set its width. You can use margin-left:auto and margin-right:auto to center
it. You can use margin-top and margin-bottom to put space above and below it.
You can use position:relative and left to move it to the left or right of center.

You can use background to apply a background image to the block quote. You can
use padding-top and padding-left to put space between the image and the block
quote’s text. You can also embed a division immediately inside the block quote
to display a second background image. You can use padding-bottom and
padding-right to put space between its image and the block quote’s text.

You can use the <cite> element to place a citation following the block quote.
You can place any inline content in <cite>. A citation commonly contains a
description of the source embedded in a hyperlink to the source.

Pattern HTML
<blockquote><div>
<p> QUOTE </p> <p> MORE QUOTE </p>
<cite> CITATION </cite>

</div></blockquote>

CSS
blockquote { width:+VALUE; margin:+VALUE;
position:relative; left:±VALUE%;
padding-top:+VALUE; padding-left:+VALUE;
background:url("FILE.EXT") no-repeat top left; }

blockquote div { padding-bottom:+VALUE; padding-right:+VALUE;
background:url("FILE.EXT") no-repeat bottom right; }

blockquote p { STYLING_PARAGRAPHS_IN_A_BLOCKQUOTE }

blockquote cite { STYLING_CITATIONS_IN_A_BLOCKQUOTE }

Location This pattern works only inside block containers because <blockquote> is a block.
See Inline Block Quote when you need the block quote to be inline.

Tip A block quote can contain any inline content, including images and objects.

Related to Center Callout, Inline Block Quote, Inline Quote; Display, Block Box (Chapter 4);
Width (Chapter 5); Margin, Padding, Background (Chapter 6); Relative (Chapter 7);
Offset Relative (Chapter 8)

See also www.cssdesignpatterns.com/block-quote

CHAPTER 19 ■ CALLOUTS AND QUOTES 449

C
A

LLO
U

T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Inline Block Quote

HTML

<h1>Inline Block Quote</h1>

<p>This quote is embedded in a paragraph, but looks like a block quote.

An inline block quote is marked up with inline elements, but looks like a
block quote because its elements are rendered using <code>display:block</code>.

I embedded a decorative span in this example to display
a graphical closing quote.

<cite>
cssDesignPatterns.com</cite> </p>

CSS

*.blockquote { display:block; width:500px; margin:10px auto;
position:relative; left:0%; text-align:justify;
line-height:1.3em; color:black;
padding-top:40px; padding-left:40px;
background:url("dq1.jpg") no-repeat top left white; }

*.blockquote span { display:block;
padding-bottom:20px; padding-right:40px;
background:url("dq2.jpg") no-repeat bottom right; }

*.blockquote cite { display:block; text-align:right; font-size:0.9em; }

CHAPTER 19 ■ CALLOUTS AND QUOTES450

C
A

LL
O

U
T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Inline Block Quote

Problem You want to create a block quote inside a paragraph.

You cannot use <blockquote> because it cannot be embedded in a paragraph
since it is a block element. You should not use the <q> element, for the reasons
cited in the discussion of the Inline Quote design pattern.

Solution You can embed the block quote in instead of
<blockquote> or <q>. You can use display:block on the span and all child
elements to display them as blocks. This is the key ingredient of this design
pattern. Once all the elements are displayed as blocks, the rest of the rules
work like the Block Quote design pattern.

Pattern HTML

QUOTE

 MORE QUOTE
<cite> CITATION </cite>

CSS
*.blockquote { display:block;
width:+VALUE; margin:+VALUE;
position:relative; left:±VALUE%;
padding-top:+VALUE; padding-left:+VALUE;
background:url("FILE.EXT") no-repeat top left; }

*.blockquote span { display:block;
padding-bottom:+VALUE; padding-right:+VALUE;
background:url("FILE.EXT") no-repeat bottom right; }

*.blockquote cite { display:block; }

Location This pattern works in any inline context.

Tips You can insert line breaks to simulate separate paragraphs within the quote.

It is better to use <blockquote> for block quotes because search engines and
document processors understand the meaning of <blockquote>. Search engines
give greater importance to content in <blockquote> and <cite>.

Related to Center Callout, Block Quote, Inline Quote; Display, Block Box (Chapter 4); Width
(Chapter 5); Margin, Padding, Background (Chapter 6); Relative (Chapter 7);
Offset Relative (Chapter 8); Blocked (Chapter 11)

See also www.cssdesignpatterns.com/inline-block-quote

CHAPTER 19 ■ CALLOUTS AND QUOTES 451

C
A

LLO
U

T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Inline Quote

HTML

<h1>Inline Quote</h1>

<p>
"A quote should be followed by a citation."
(<cite>
cssDesignPatterns.com</cite>)</p>

<p><q> <!-- Do not use <q>. -->

"If you embed a quote inside <code><q></code> most browsers
will automatically insert double quotes — whether or not you want them!"
(<cite>
cssDesignPatterns.com</cite>)</q></p>

CSS

*.quote { letter-spacing:0.07em; }
*.quote cite { font-size:0.9em; }

CHAPTER 19 ■ CALLOUTS AND QUOTES452

C
A

LL
O

U
T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

Inline Quote

Problem You want to create an inline quote.

You cannot use <blockquote> because it is a block element.

You should not use the <q> element, even though it was designed for inline
quotes, because most browsers automatically insert English-style double quotes
around the contents of <q>. This is a problem because there are over 23 different
types of international quotation marks and many ways these can be combined
to indicate quotes in different languages, dialects, and writing styles. Because of
this complexity, only an author can make the choice of quotation marks. It is
unfortunate that the HTML specification requires browsers to automatically
insert quotes around the contents of <q>. Internet Explorer does not insert
quotes, and other browsers should follow its lead.

Solution You can enclose an inline quote in to identify it as a quote.
You can include a citation following the text of the quote and before the end tag
of the . A citation is typically placed within parentheses and is enclosed
in the <cite> element. You can place any inline content in <cite>. A citation
commonly contains a description of the source of the quote, which is commonly
embedded in a hyperlink to the actual source.

The double quote marks shown in the following pattern can be replaced by any
type of quote marks.

Pattern HTML

"QUOTE" (<cite> SOURCE </cite>)

CSS
*.quote { STYLES }
*.quote cite { STYLES }

Location This pattern works on any element.

Tips Because it is natural to put linebreaks between elements like <cite> and <a>, it
is easy to introduce undesirable whitespace between the parentheses and the
contents of the citation. The obvious solution is not to put whitespace between
these elements. If that is not an option, you can put a linebreak inside a tag
instead of between tags. In my example, I put a linebreak inside the <a> tags
just before the closing greater-than sign.

Example Notice how Firefox added quotation marks around the second example because
it was embedded in <q> instead of .

Related to Inline Block Quote; Inline Elements (Chapter 2)

See also www.cssdesignpatterns.com/inline-quote

CHAPTER 19 ■ CALLOUTS AND QUOTES 453

C
A

LLO
U

T
S

A
N

D
Q

U
O

T
E

S

http://freepdf-books.com

http://freepdf-books.com

Alerts

This chapter discusses design patterns that create an alert. An alert points out important
information to the reader by separating it from the content. There are two basic types of alerts:
dynamic and static. The first three design patterns in this chapter are dynamic alerts, which
dynamically display information as a user interacts with the document. The remaining alerts
in this chapter are static alerts, which are always displayed in a document. The Alert design
pattern is an HTML pattern, which is basically a heading followed by the alert’s message. The
design patterns following Alert combine it with other design patterns, demonstrating how you
can combine existing design patterns to create new design patterns.

Chapter Outline

• JavaScript Alert shows how to dynamically pop up an alert based on an event.

• Tooltip Alert shows how to create a tooltip to show the user extra information.

• Popup Alert shows how to pop up an alert to show the user extra information.

• Alert shows the basic HTML structure of an alert.

• Inline Alert shows how to make an alert using an inline element.

• Hanging Alert shows how to move the alert’s heading to the left side and the content to
the right side by using a hanging indent that does not require extra markup.

• Graphical Alert shows how to move the alert’s heading to the left side and the content
to the right side and replace the heading with an image.

• Run-in Alert shows how to run the alert’s heading into the first line of the content.

• Floating Alert shows how to float an alert to the left or the right of the content with its
heading on the left and its content on the right.

• Left Marginal Alert shows how to move an alert into the left margin using absolute
positioning.

• Right Marginal Alert shows how to move an alert into the right margin using absolute
positioning.

455

C H A P T E R 2 0

http://freepdf-books.com

JavaScript Alert

HTML

<h1>JavaScript Alert</h1>

<p>A JavaScript alert pops up a dialog box when the user clicks on it.
Its presence can be signalled by a small image<img class="alert-image"
onclick="alert('Alert text goes here.');" src="help.gif" alt="alert" />

or specially styled text, such as a
<em class="alert" onclick="alert('Alert text goes here.');">

dotted underline.
</p>

CSS

*.alert-image { cursor:pointer; margin-left:3px; }

*.alert { cursor:pointer; border-bottom:1px dotted;

font-style:normal; font-size:0.8em; }

CHAPTER 20 ■ ALERTS456

A
LE

R
T
S

http://freepdf-books.com

JavaScript Alert

Problem You want to insert helpful, yet nonessential messages into your document,
such as tips or help. You do not want the alert to be visible unless the reader
clicks it. You want an unobtrusive way to show the reader that the alert is
present. You also want the alert to be accessible to nonsighted users.

Solution To signal the presence of the alert, you can insert a small image following the
text for which you want to supply extra information, or you can style the text.
A dotted underline is the traditional signal that text has extra information
associated with it. The image or styled text signals the presence of an alert.
You can put the text of the alert in the JavaScript alert() function and put the
alert function in the image’s onclick attribute. A browser displays the alert in
a popup dialog box when the user clicks the image. Screen readers recognize
the onclick attribute and read its contents to the user.

Patterns HTML
<img class="alert-image" src="FILE.EXT"
onclick="alert('ALERT TEXT');" alt="alert" />

or
<em class="alert" onclick="alert('ALERT TEXT');"> TEXT

CSS
*.alert-image { cursor:pointer; }
*.alert { cursor:pointer; border-bottom:1px dotted; }

Location This pattern works on any element.

Limitations onclick is the only event that all major screen readers recognize and handle
properly. Other events require testing for compatibility with screen readers.

Advantages JavaScript alerts can contain several paragraphs of text and stay open as long
as the user wants. This is a significant advantage over the Tooltip Alert design
pattern.

Disadvantages Normally putting JavaScript directly in markup is a poor practice. This case
is an exception, because the script is content (a message to the user) and
belongs in the content. For this reason, screen readers are designed to read
the contents of onclick attributes.

Popup dialog boxes annoy users because they interrupt the workflow. For
example, the dialog box usually opens in the middle of the browser window,
taking the user’s eyes away from where he or she was reading. After having to
click the OK button to close the dialog box, the user has to rescan the text to
find the place where he or she was reading.

The dialog box is unpleasant to look at. Its contents cannot be styled, and the
dialog box cannot be styled. And unlike a web page, a user cannot zoom in to
make the dialog box’s small text easier to read.

Related to Alert, Inline Alert; Image, Replaced Text (Chapter 14); Event Styling (Chap-
ter 17)

See also www.cssdesignpatterns.com/javascript-alert

CHAPTER 20 ■ ALERTS 457

A
LE

R
T
S

http://freepdf-books.com

Tooltip Alert

HTML

<h1>Tooltip Alert</h1>

<p>A tooltip alert slips right into the flow of text. It is usually signalled
by a small image<img class="imagetip" src="alert.gif"
title="Tooltip text goes here."

alt="Tooltip text goes here." />

or some type of text decoration, such as a
<em class="texttip" title="Tooltip text goes here.">

dotted underline.

</p>

CSS

*.tooltip-image { cursor:help; margin-left:3px; }

*.tooltip { cursor:help; border-bottom:1px dotted;
font-style:normal; font-size:0.8em; }

CHAPTER 20 ■ ALERTS458

A
LE

R
T
S

http://freepdf-books.com

Tooltip Alert

Problem You want to insert brief, helpful, nonessential tips into your document. You do
not want it to be visible unless the reader moves the mouse over it. You want an
unobtrusive way to show the reader that the tip is present. You also want it to be
accessible to nonsighted users. You do not want to use JavaScript in any way.

Solution You can insert a small image following the text for which you want to supply
extra information. This image signals the presence of a tip. You can put the tip in
its title and alt attributes. A browser automatically displays the title text when
the user mouses over the image, and a screen reader automatically reads the alt
text of the image.

If you do not want to use an image, you can style text to signal the presence of a
tip. A dotted underline is the traditional signal that text has extra information.
To make the tip accessible, you can insert a transparent, 1-pixel image with an
alt tag set to the tip’s text.

Patterns HTML
<img class="tooltip-image" src="FILE.EXT"
title="TOOLTIP TEXT" alt="TOOLTIP TEXT" />

or
<em class="tooltip" title="TOOLTIP TEXT">
 TEXT

CSS
*.tooltip-image { cursor:help; }
*.tooltip { cursor:help; border-bottom:1px dotted; }

Location This pattern works inline.

Limitations Screen readers do not read title attributes, but they do read the alt attributes of
images. That is why this design pattern requires the use of an image, even if you
do not want sighted users to see it.

Tooltips cannot be styled and displayed in tiny text, which can be hard to read.
Tooltips are displayed after a one-second delay, which annoys users in a hurry,
but appropriately prevents tips from popping up when the user unintentionally
passes over them with the mouse. Lastly, tooltips disappear after six seconds,
which limits the readable length to a brief sentence.

Firefox 2 only displays the first 75 characters of the title in a tooltip. Other
browsers display all the text in a title.

Tips The most natural and accessible place to put a tooltip image is after the text for
which it provides help. Screen readers always read the image’s alt text, and if the
image cannot be displayed, a browser displays the alt text. It makes most sense
for the user to read or hear a tip after reading or hearing the text for which it pro-
vides extra information.

Related to Alert, Inline Alert; Inline Elements (Chapter 2); Border (Chapter 6); Image,
Replaced Text (Chapter 14)

See also www.cssdesignpatterns.com/tooltip-alert

CHAPTER 20 ■ ALERTS 459

A
LE

R
T
S

http://freepdf-books.com

Popup Alert

HTML

<h1>Popup Alert</h1>
<div>
<p>A popup can show tips and help.

Popup help goes here.

A popup can show the definition of a
<dfn class="popup-trigger" id="pt2">word.
Popup definition goes here.</dfn>

A popup can preview the target of a
<a class="popup-trigger" id="pt3"

href="http://www.cssdesignpatterns.com">link
<img class="popup border" src="css-design-patterns-preview.jpg"
alt="cssDesignPatterns.com preview" />.</p></div>

CSS

*.popup-trigger { position:relative; }

*.popup { position:absolute; left:0; top:1em; z-index:1;
padding:5px; text-align:center; }

*.popup-trigger *.popup { visibility:hidden; }

/* Nonessential rules are not shown */

CHAPTER 20 ■ ALERTS460

A
LE

R
T
S

http://freepdf-books.com

Popup Alert

Problem You want to insert a popup to show helpful information to the reader. You want
the popup to be hidden until the reader moves the mouse over it or clicks it.
You want the browser to show the popup automatically like a tooltip, and you
want it to remain showing until the user clicks it or moves the mouse away from
it. You want an unobtrusive way to show the reader that the popup is present.
You also want it to be accessible to nonsighted users. You want complete control
over the style of the popup box, the position of the popup box, and the style of its
contents. You do not want to insert any JavaScript into the document body.

Solution You can insert an inline element with the popup-trigger class into your docu-
ment. In the example, I used , <dfn>, and <a> elements. When the user
mouses over or clicks the contents of the popup-trigger element, this triggers the
browser to display the popup. You can style the popup trigger with
position:relative so you can position the popup relative to it.

Inside the popup-trigger element you can insert an inline element to hold the
popup content. In the example, I use and elements. You can assign
this element to the popup class. You can absolutely position the popup element to
remove it out of the normal flow. You can use left:0 and top:1em to position the
popup immediately below the popup trigger. You can use z-index:1 to make sure
popups are displayed in front of popup triggers.

You can use JavaScript libraries to dynamically assign events to popup-trigger
elements. This keeps the markup in the body completely free from JavaScript.
See the next page for details.

Pattern HTML
<INLINE class="popup-trigger"> TRIGGER CONTENTS
<INLINE class="popup"> POPUP CONTENT </INLINE>

</INLINE>

CSS
*.popup-trigger { position:relative; }
*.popup { position:absolute; left:0; top:1em; z-index:1; }

Location This pattern works inline.

Limitations Internet Explorer 7 (and earlier versions) display popup triggers in front of pop-
ups. You can solve this problem by laying out your page so that popup triggers
are displayed on one side and popups are displayed on the other. You can also
solve this problem by assigning a unique ID to each popup trigger and styling
each one so that it displays behind the previous one. In the example, I condition-
ally loaded a stylesheet just for Internet Explorer containing

#pt1 { z-index:3; }
#pt2 { z-index:2; }
#pt3 { z-index:1; }

(Continued)

CHAPTER 20 ■ ALERTS 461

A
LE

R
T
S

http://freepdf-books.com

Popup Alert (Continued)

HTML Header

<head>
<!-- only script elements are shown -->

<script language="javascript" type="text/javascript" src="yahoo.js"></script>
<script language="javascript" type="text/javascript" src="event.js"></script>
<script language="javascript" type="text/javascript" src="chdp.js"></script>
<script language="javascript" type="text/javascript" src="cssQuery-p.js"></script>
<script language="javascript" type="text/javascript" src="page.js"></script>

</head>

page.js

function initPage() {
assignEvent('click', '*.popup-trigger',
applyToDescendants, '*.popup', toggleVisibility);

assignEvent('mouseover', '*.popup-trigger',
applyToDescendants, '*.popup', showElement);

assignEvent('mouseout', '*.popup-trigger',
applyToDescendants, '*.popup', hideElement);

}

addEvent(window, 'unload', purgeAllEvents);
addEvent(window, 'load', initPage);

//The functions addEvent() and assignEvents() are in chdp.js.
//Full documentation for each function is found in the source code.

CHAPTER 20 ■ ALERTS462

A
LE

R
T
S

http://freepdf-books.com

Popup Alert (Continued)

Problem To implement popups, you need a way to attach events to HTML elements
without coding them into the markup.

Solution Using open source JavaScript libraries, you can dynamically attach events to
elements. This eliminates event code within markup.

There are several open source JavaScript libraries that you can use for this
purpose. I chose two free libraries from Yahoo! that are licensed under a BSD
license: yahoo.js and event.js. They are available at http://developer.
yahoo.com/yui/.

I also use an open source JavaScript library called cssQuery.js from Dean
Edwards located at http://dean.edwards.name/. It is freely licensed under
LGPL 2.1. It allows you to select elements in JavaScript using CSS selectors.

I also provide an open source library called chdp.js freely licensed under a BSD
license. It provides functions that integrate these other libraries.

You can use these libraries by attaching each one to your document in the order
shown in the example.

You can attach your own JavaScript file to execute code specific to your docu-
ment. The example names this file page.js and shows its code. The browser
executes the two addEvent() functions first. The first addEvent() function
attaches a generic function called purgeAllEvents() to the page’s unload event.
When the page unloads, purgeAllEvents() purges all attached events from
memory. The second addEvent() function attaches initPage() to the page’s
load event. After the page loads, initPage() assigns events to elements using
assignEvent().

It is easy to use assignEvent() to assign an event to elements. The name of the
event goes in the first argument (without the “on” prefix). A CSS selector in the
second argument determines which elements get assigned to the event. You
can use any CSS 2.1 selector. applyToDescendants() goes in the third argument.
The CSS selector in the fourth argument selects which descendants of the
element that generated the event are affected by the helper function in the
fifth argument. In the example, I use showElement(), hideElement(), and
toggleVisibility() from chdp.js as helper functions to show, hide, and toggle
the display of popup elements.

Tips This is a flexible framework. You can use CSS selectors to apply any event to any
element, and you can supply your own functions to handle events.

You could use the Event Styling design pattern in Chapter 17 to change class
names instead of using showElement(), hideElement(), and toggleVisibility().
Unfortunately, Opera 9 has trouble rendering absolute elements when you add
and remove class names. To avoid this problem, this design pattern directly
modifies an element’s visibility using the DOM.

Example The first assignEvents() function in the example assigns the onclick event to all
popup-trigger elements. When the onclick event fires, applyToDescendants()
applies toggleVisibility() to each popup descendant of the element that fired
the event. toggleVisibility() hides an element when it is visible and shows it
when it is hidden.

Related to Alert, Inline Alert; Positioned, Closest Positioned Ancestor, Atomic, Absolute,
Relative (Chapter 7); Left Offset, Top Offset (Chapter 9); Image, Replaced Text
(Chapter 14); Event Styling, Rollup, Flyout Menu (Chapter 17)

See also www.cssdesignpatterns.com/popup-alert

CHAPTER 20 ■ ALERTS 463

A
LE

R
T
S

http://freepdf-books.com

Alert

HTML

<h1>Alert</h1>
<p>Text above the alert.</p>

<div class="alert tip">

<h3>Alert Heading</h3>
<p>This is the content of the alert. It contains important information
you want to point out to the reader.

</p>
</div>

<p>Text below the alert.</p>

CSS

*.alert { margin:40px;
padding-left:20px; padding-right:20px;
border-top:1px solid black; border-bottom:1px solid black;
background-color:gold; }

*.alert h3 { font-size:1.3em; }
*.alert p { letter-spacing:1.5px; line-height:1.5em; }
*.alert.tip h3 { text-transform:uppercase; }

CHAPTER 20 ■ ALERTS464

A
LE

R
T
S

http://freepdf-books.com

Alert

Problem You want to insert an alert into your document to point out important informa-
tion to the reader. You want to separate the alert from surrounding text to make it
stand out. You want to identify the purpose of the alert to the user and make the
alert’s purpose stand out in contrast to its content.

Solution An alert consists of a heading and content packaged inside of a division. The
heading identifies the purpose of the alert as a tip, note, caution, warning, and so
forth. The content contains the alert’s message. You can make the alert stand out
by using whitespace, borders, backgrounds, and fonts.

You can use <div class="alert TYPE"> to identify the division as an alert and to
identify the type of alert. For example, <div class="alert tip"> identifies the
division as an alert and identifies the type of alert as a tip. You can use any type
of block element instead of the division. You can use *.alert to select the entire
alert for styling. You can chain together class selectors to style specific types of
alerts, such as *.alert.tip{}.

You can use <h3> to identify the alert’s heading. Since alerts are not as important
as a main heading or topic headings, you may want to give them a low-level
heading, such as <h3>. The heading signals to search engines that the alert’s con-
tent is important. The heading typically contains one word, such as “Note,” “Tip,”
or “Caution.” You can use *.alert h3{} to select the heading for styling.

You can use <p> to identify the alert’s content. You can use *.alert p{} to select
the heading for styling.

Pattern HTML
<div class="alert TYPE">
<h3> ALERT HEADING </h3>
<p> ALERT TEXT </p>

</div>

CSS
*.alert { STYLES }
*.alert h3 { STYLES }
*.alert p { STYLES }
*.alert.TYPE { STYLES }
*.alert.TYPE h3 { STYLES }
*.alert.TYPE p { STYLES }

Location This pattern works anywhere you can use a block element.

Options You can use other types of block elements to mark up the alert.

Tip If you want to add even more emphasis to the alert, you can embed or
 inside the paragraph or heading.

Related to All design patterns in this chapter; Terminal Block Elements, Multi-purpose
Block Elements (Chapter 2); Subclass Selector (Chapter 3); Margin, Border,
Padding, Background (Chapter 6); Font (Chapter 10); Spacing, Inline Decoration
(Chapter 11); Section (Chapter 13)

See also www.cssdesignpatterns.com/alert

CHAPTER 20 ■ ALERTS 465

A
LE

R
T
S

http://freepdf-books.com

Inline Alert

HTML

<h1>Inline Alert</h1>

<p>An inline alert slips right into the flow of text.
As such it can be broken across lines.

<strong class="heading">Alert:
<em class="content">brief message.

You can keep the alert's message brief and you can use
<code>white-space:nowrap</code> to prevent it from breaking across lines.
It is also important to make the line height large enough to prevent the
alert's padding and border from overlapping neighboring lines. </p>

CSS

*.alert { white-space:nowrap; line-height:2.3em;
margin:0 20px; padding:8px 20px 5px 20px;
border-top:1px solid black; border-bottom:1px solid black;
background-color:gold; }

*.alert *.heading { font-weight:bold; font-size:1.3em; }

*.alert *.content { letter-spacing:1.5px; font-style:normal; }

*.alert.tip *.heading { text-transform:uppercase; }

CHAPTER 20 ■ ALERTS466

A
LE

R
T
S

http://freepdf-books.com

Inline Alert

Problem You want to insert an alert into the inline flow of your document. You also want
the inline alert to work just like a block alert.

Solution An inline alert consists of an inline heading and inline content packaged inside a
span. The inline heading identifies the purpose of the alert as a tip, note, caution,
warning, and so on. The inline content contains the alert’s message. The inline
alert works just like the Alert design pattern; the only difference is elements are
inline. You can make the alert stand out by displaying it as a block, and using
whitespace, borders, backgrounds, and fonts.

You can use to identify the span element as an
alert and to identify the type of alert. For example,
identifies the span as an alert and identifies the type of alert as a tip. This works
just like the Alert design pattern except we are using a span instead of a division.
You can use *.alert to select the entire alert for styling. You can chain together
class selectors to style specific types of alerts, such as *.alert.tip{}.

You can use <strong class="heading"> to identify the alert’s heading. Heading
elements cannot be used inline because they are block elements. is a
good substitute because it indicates strongly emphasized text. The heading text
is typically one word, such as “Note,” “Tip,” or “Caution.” You can use *.alert
*.heading{} to select the heading for styling.

You can use <em class="content"> to identify the alert’s content. You can use
*.alert *.content{} to select the heading for styling.

Pattern HTML

<strong class="heading"> ALERT HEADING:
<em class="content"> ALERT TEXT

CSS
*.alert { white-space:nowrap; line-height:+VALUE; }

*.alert *.heading { STYLES }
*.alert *.content { STYLES }

*.alert.TYPE { STYLES }
*.alert.TYPE *.heading { STYLES }
*.alert.TYPE *.content { STYLES }

Location This pattern works anywhere you can use an inline element, and it can be reli-
ably floated and positioned.

Options You can use display:block to render an inline alert exactly as if it were a block
alert. This is useful when you have to mark up an alert within an inline context,
but want it to look like a block alert.

Related to Alert, JavaScript Alert, Tooltip Alert, Popup Alert; Inline Elements (Chapter 2);
Subclass Selector (Chapter 3); Inline Box (Chapter 4); Spacing, Nowrap
(Chapter 11)

See also www.cssdesignpatterns.com/inline-alert

CHAPTER 20 ■ ALERTS 467

A
LE

R
T
S

http://freepdf-books.com

Hanging Alert

HTML

<h1>Hanging Alert</h1>
<p>Text above the alert.</p>

<div class="alert tip">

<h3> Tip</h3>

<p>The Hanging Alert uses the Hanging Indent design pattern to hang the
heading to the left and pad the content to the right. The Inline Decoration
design pattern optionally decorates the Alert's heading.</p>

</div>
<p>Text below the alert.</p>

CSS

*.alert { padding-right:20px; padding-top:10px; padding-bottom:10px;
border-top:1px solid black; border-bottom:1px solid black; margin:40px; }

*.alert h3 { display:inline; font-size:1.3em; text-transform:uppercase; }

*.alert.tip { text-indent:-80px; padding-left:80px; }

*.alert.note { text-indent:-110px; padding-left:110px; }
*.alert.caution { text-indent:-160px; padding-left:160px; }

*.alert.tip p { display:inline; margin-left:18px; }

*.alert.note p { display:inline; margin-left:20px; }
*.alert.caution p { display:inline; margin-left:20px; }

*.alert *.decoration { border-left:15px solid gold; margin-right:-10px;
font-size:0.7em; vertical-align:2px; }

CHAPTER 20 ■ ALERTS468

A
LE

R
T
S

http://freepdf-books.com

Hanging Alert

Problem You want to insert a hanging alert into your document. You want its heading
to be moved to the left and its content to the right. You want to adjust the
indent to fit different types of alerts. You do not want to insert extra markup.

Solution You can use the Alert design pattern to mark up the alert. You can style
the alert using the Hanging Indent design pattern (Chapter 12). You can
optionally use the Inline Decoration design pattern (Chapter 11) to decorate
the alert’s heading.

To create a hanging indent, the alert’s heading and paragraph need to be
displayed as inline blocks. This puts them in the same inline formatting
context. You can then use a positive value in padding-left to indent all the
text in the heading and the paragraph to the right. You can use a negative
value in text-indent to move the first line into the left padding area by an
equal amount. For example, if you use padding-left:100px, you should use
text-indent:-100px. Lastly, the first line of the paragraph needs to be moved
to the right so that it lines up with the left indentation of the rest of its lines.
You can select the paragraph and use margin-left to move the first line into
alignment. Because the paragraph is displayed inline, margin-left only
affects the beginning of the paragraph’s first line.

Pattern HTML
<div class="alert TYPE">
<h3> ALERT HEADING </h3>
<p> ALERT TEXT </p>

</div>

CSS
*.alert { ANY_STYLES }
*.alert h3 { display:inline; }

*.alert.TYPE { display:inline;
text-indent: -INDENT;
padding-left:+INDENT; }

*.alert.TYPE p { display:inline; margin-left:+VALUE; }

Location This pattern works anywhere you can use a block element, and it can be reli-
ably floated and positioned.

Advantages Because the properties used by this pattern are simple, they are well sup-
ported by every major browser.

Disadvantages You have to play with margin-left until you are satisfied it aligns the para-
graph’s text. The exact value depends mainly on the heading’s font.

Example The example shows how you can use different selectors to adjust the hanging
indent for different types of alerts. When you change the type of alert, the
hanging indent changes too.

Related to Alert; Offset Static (Chapter 8); Inline Decoration (Chapter 11); Hanging
Indent (Chapter 12); Inlined (Chapter 13)

See also www.cssdesignpatterns.com/hanging-alert

CHAPTER 20 ■ ALERTS 469

A
LE

R
T
S

http://freepdf-books.com

Graphical Alert

HTML

<h1>Graphical Alert</h1>
<p>Text above the alert.</p>

<div class="alert tip">

<h3>Tip</h3>
<p>The Graphical Alert design pattern combines the Left Marginal design pattern
and the Text Replacement design pattern to display a graphic
on top of the heading.</p></div>

<p>Text below the alert.</p>

CSS

*.alert { position:relative; margin:20px 0 20px 120px; }
*.alert h3 { margin:10px 0; font-weight:bold; font-size:1.3em;
text-transform:uppercase; }

*.alert p { margin:10px 0; }

*.alert.tip p { color:green; border:4px ridge green; padding:20px; }

*.alert.tip h3 { position:absolute; left:-100px; top:-15px;
width:71px; height:117px; padding:0; overflow:hidden; }

*.alert.tip h3 em { position:absolute; left:20px; top:25px; }

*.alert.tip span { position:absolute; left:0; top:0; margin:0;
width:71px; height:117px; background:url("tip.jpg") no-repeat; }

CHAPTER 20 ■ ALERTS470

A
LE

R
T
S

http://freepdf-books.com

Graphical Alert

Problem You want to insert an alert into your document with a graphical heading on the
left and content on the right. You want the heading text to be shown in case the
browser cannot display the image. You want screen readers to read the heading
text. You do not want to embed an image in the HTML because the image is style,
not content.

Solution You can combine the Left Marginal design pattern with the Text Replacement
design pattern (Chapter 10) to create the graphical alert.

You can insert an empty span into the alert’s heading. You can add the rules
from the Text Replacement design pattern using the selectors shown in the pat-
tern that follows. You can replace TYPE in the pattern with the class name
that identifies the type of alert, such as tip, note, or caution. This allows you to
use different images for different types of alerts. For example, you could use a
star image for a tip and an exclamation image for a caution. You can replace
IMAGE_WIDTH and IMAGE_HEIGHT in the pattern with the width and height of the
image. You can replace FILE.EXT in the pattern with the file name of the image.

You can optionally select the embedded to position the heading. This allows
you to control exactly where the heading is positioned independent from the
graphic. If the graphic cannot be displayed, the heading will be right where you
want it. You can choose any position as long as the graphic is large enough to
cover up the heading in this position.

Pattern HTML
<div class="alert TYPE">
<h3> ALERT HEADING </h3>
<p> ALERT TEXT </p>

</div>

CSS
Use the same selectors and styles as the Alert design pattern plus the following:

*.alert.TYPE h3 em { position:absolute; left:20px; top:25px; }

*.alert.TYPE h3 { position:absolute; left:-VALUE; top:±VALUE;
width:IMAGE_WIDTH; height:IMAGE_HEIGHT;
padding:0; overflow:hidden; }

*.alert.TYPE span { position:absolute; left:0; top:0; margin:0;
width:IMAGE_WIDTH; height:IMAGE_HEIGHT;
background:url("FILE.EXT") no-repeat; }

Location This pattern works anywhere you can use a block element.

Related to Width, Height, Sized (Chapter 5); Margin, Border, Padding, Background, Over-
flow (Chapter 6); Positioned, Closest Positioned Ancestor, Absolute, Relative
(Chapter 7); Text Replacement (Chapter 10); Left Marginal (Chapter 13)

See also www.cssdesignpatterns.com/graphical-alert

CHAPTER 20 ■ ALERTS 471

A
LE

R
T
S

http://freepdf-books.com

Run-in Alert

HTML

<h1>Run-in Alert</h1>
<p>Text above the alert.</p>

<div class="alert caution">

<h3> Caution</h3>
<p>The Run-in Alert runs the alert's heading into the text using
<code>display:inline</code> on both the heading and the paragraph.</p>

</div>

<p>Text below the alert.</p>

CSS

*.alert { padding-right:20px; padding-top:10px; padding-bottom:10px;
border-top:1px solid black; border-bottom:1px solid black; margin:40px; }

*.alert h3 { display:inline; font-size:1.3em; text-transform:uppercase; }

*.alert p { display:inline; margin-left:10px; letter-spacing:-0.8px }

*.alert.caution { color:red;
border-top:3px double red; border-bottom:3px double red; }

*.alert *.decoration { border-left:15px solid gold;
margin-right:-11px; font-size:0.7em; vertical-align:2px; }

CHAPTER 20 ■ ALERTS472

A
LE

R
T
S

http://freepdf-books.com

Run-in Alert

Problem You want to insert an alert into your document where the alert’s heading runs
into the alert’s paragraph.

Solution You can use the Alert design pattern to mark up the alert. You can use the Run-in
design pattern to get the heading to run into the paragraph by styling the head-
ing and the paragraph with display:inline. As pointed out in the Run-in design
pattern discussion in Chapter 13, CSS provides the rule display:run-in for this
purpose, but only Opera, Safari, and Konquerer support it. Thus, we have to use
the Run-in design pattern instead. Lastly, you can optionally use the Inline Deco-
ration design pattern (Chapter 11) to decorate the alert’s heading.

Pattern HTML
<div class="alert TYPE">
<h3> ALERT HEADING </h3>
<p> ALERT TEXT </p>
</div>

CSS
*.alert { ANY_STYLES }
*.alert h3 { display:inline; }
*.alert p { display:inline; }

Location This pattern works anywhere you can use a block element, and it can be reliably
floated and positioned.

Advantages Because the properties used by this pattern are simple, they are well supported
by every major browser.

This pattern is closely related to the Inline Alert design pattern because it dis-
plays the heading and paragraph inline. If you want the Inline Alert design
pattern to be styled like the Run-in pattern, simply do not assign display:block
to its and elements. The main
advantage of the Run-in Alert over the Inline Alert design pattern is that <h3> and
<p> have more semantic meaning than spans.

Example In the example, I used the selector *.alert.caution to turn the text and borders
red when the class of the alert is caution. I also inserted the Inline Decoration
design pattern into the heading to give it more emphasis. In this case, the Inline
Decoration consists of the styled
with a gold left border.

Related to Inline Alert; Inline Decoration (Chapter 11); Inlined, Run-in (Chapter 13)

See also www.cssdesignpatterns.com/run-in-alert

CHAPTER 20 ■ ALERTS 473

A
LE

R
T
S

http://freepdf-books.com

Floating Alert

HTML

<h1>Floating Alert</h1>
<p>Text above the alert.</p>

<div class="alert note">

<h3> Note</h3>
<p>The Floating Alert design pattern floats the entire alert. Internally it also
floats the alert's heading to the left and its paragraph to the right.</p>

</div>
<p>Text below the alert.</p>
<p>Notice how the alert is removed from the flow. Also notice how the browser
automatically shrinks the right margin of this text so that it does not
collide with the left margin of the floated alert.</p>

CSS

*.alert { float:right; width:350px; margin-left:20px;
border-top:1px solid black; border-bottom:1px solid black; }

*.alert h3 { float:left; width:50px; margin:10px 0;

font-size:1.3em; text-transform:uppercase; }

*.alert p { float:right; width:250px; margin:10px 0; }

*.alert.note { color:blue;
border-top:2px groove blue; border-bottom:2px ridge blue; }

*.alert *.decoration { border-left:15px solid gold;
margin-right:-11px; font-size:0.7em; vertical-align:2px; }

CHAPTER 20 ■ ALERTS474

A
LE

R
T
S

http://freepdf-books.com

Floating Alert

Problem You want to insert a floating alert into your document.

Solution You can use the Alert design pattern to mark up the alert. You can use the
Float and Clear design pattern (Chapter 7) to float the alert. You can use the
Opposing Floats design pattern (Chapter 17) to float the alert’s heading to
the left and its paragraph to the right.

Pattern HTML
<div class="alert TYPE">
<h3> ALERT HEADING </h3>
<p> ALERT TEXT </p>

</div>

CSS
*.alert { float:LEFT_OR_RIGHT; width:+VALUE; margin:+VALUE; }
*.alert h3 { float:left; width:+VALUE; margin:+VALUE; }
*.alert p { float:right; width:+VALUE; margin:+VALUE; }

Location This pattern works anywhere you can float a block element.

Advantages The browser automatically calculates the positions of floats, dynamically
sizes their height, and dynamically moves text and other floats out of the way.
When the display is narrow, floats get pushed down. This makes the layout
very flexible and adaptive to the user’s environment. It is easy to control the
general position of a float by floating it left or right and by placing margins
around it. If you need finer control, you can also relatively position a float
and offset it using left, right, bottom, and top.

Disadvantages The main disadvantage to this design pattern is that you cannot float the
heading and paragraph without floating the division as well. The browser
removes floats from the normal flow. If you float a child, you also have to
float its parent if you want to keep them together.

Floats trigger bugs in browsers and are not well supported in minor browsers.
It is difficult to control the precise position of a float. Its vertical position is
roughly located at its nonfloated vertical position in the flow. Its horizontal
position is the inner-left or inner-right side of its parent’s container, or
stacked next to or below a previously floated element.

Example In the example, I used the selector *.alert.note to turn the text and borders
blue when the class of the alert is note. I also inserted the Inline Decoration
design pattern (Chapter 11) into the heading to give it more emphasis. In
this case, the inline decoration consists of the
 styled with a gold left border.

Options You can easily float an inline alert following these same techniques.

Related to Alert; Inline Alert; Float and Clear (Chapter 7); Offset Float (Chapter 8);
Inline Decoration (Chapter 11); Opposing Floats (Chapter 17)

See also www.cssdesignpatterns.com/floating-alert

CHAPTER 20 ■ ALERTS 475

A
LE

R
T
S

http://freepdf-books.com

Left Marginal Alert

HTML

<h1>Left Marginal Alert</h1>

<div class="main">

<p>Text above the alert.</p>
<div class="alert tip">

<h3> Tip</h3>
<p>The Left Marginal Alert design pattern moves the entire alert into the

left margin. Inside the alert itself, its heading is absolutely positioned
to the left and its paragraph to the right.</p>

</div>
<p>Text below the alert.</p>
<p>Notice how the alert is removed from the flow and moves into the margin.
Unlike the Floating Alert, you have to size the right or left margin
to make room for the marginal alert.</p>

</div>

CSS

*.main { position:relative; margin-left:400px; }

*.alert { position:absolute; width:350px; left:-400px; height:190px;

border-top:1px solid black; border-bottom:1px solid black; }
*.alert h3 { position:absolute; left:0; top:15px; margin:0;

font-size:1.3em; text-transform:uppercase; }
*.alert p { position:absolute; left:80px; top:15px; margin:0; }

*.alert.tip { color:green;
border-top:4px groove green; border-bottom:4px ridge green; }

*.alert *.decoration { border-left:15px solid gold;
margin-right:-11px; font-size:0.7em; vertical-align:2px; }

CHAPTER 20 ■ ALERTS476

A
LE

R
T
S

http://freepdf-books.com

Left Marginal Alert

Problem You want to insert an alert into the left margin of your document.

Solution You need to create a wide margin on the left in which to put the alert. You
can use the Alert design pattern to mark up the alert. You can use the Left
Marginal design pattern (Chapter 13) to move the alert into the margin. You
can use the Offset Absolute and Offset Fixed design pattern (Chapter 8) to
vertically position the alert and the Left Aligned design pattern (Chapter 9)
to horizontally position the alert. You can use the Left Offset and Top Offset
design patterns (Chapter 9) to position the heading and the paragraph.

Pattern HTML
<div class="main">
<div class="alert TYPE">
<h3> ALERT HEADING </h3>
<p> ALERT TEXT </p>

</div>
</div>

CSS
*.main { position:relative; margin-left:MARGIN; }

*.alert { position:absolute; width:+A_WIDTH; left:-A_WIDTH;
height:+VALUE; }

*.alert h3 { position:absolute; left:0; top:TOP_OFFSET;
margin:0; }

*.alert p { position:absolute; left:+VALUE top:TOP_OFFSET;
margin:0; }

- Use margin-left:MARGIN to create a left margin in the main block element
that contains the alert and use position relative to position it.
- Set the alert, its heading, and its paragraph to position:absolute.
- Set width:A_WIDTH to less than MARGIN so the alert will fit in the margin.
- Optionally set height:+VALUE to the height you want the alert to be. This is
only necessary if you are using border-bottom to render a bottom border.
- Move the alert into the margin by setting left to the negative of A_WIDTH.
- Use left:0 to move the heading to the left side of the alert.
- Use left:+VALUE to offset the paragraph to the right of the heading.
- Use top:TOP_OFFSET to offset the top of the heading and paragraph from the
top of the alert.
- Use margin:0 to clear the default heading and paragraph margins.
- Note that the paragraph defaults to width:auto, which automatically sizes
the paragraph to fit within the width of the alert.

Location This pattern works anywhere you have a wide left margin.

Advantages You have complete control over the positioning of the alert. Also, the alert is
placed outside the border of its parent. See Right Marginal Alert to place the
alert inside the border.

Disadvantages You need to ensure there is enough vertical space between marginal elements
to prevent them from overlapping. Absolute positioning does not adapt as
well to various devices as does the Fluid Layout design pattern (Chapter 17).

Related to Alert, Inline Alert, Right Marginal Alert; Offset Absolute and Offset Fixed
(Chapter 8); Left Aligned, Left Offset, Top Offset (Chapter 9); Inline Decora-
tion (Chapter 11); Left Marginal (Chapter 13)

See also www.cssdesignpatterns.com/left-marginal-alert

CHAPTER 20 ■ ALERTS 477

A
LE

R
T
S

http://freepdf-books.com

Right Marginal Alert

HTML

<div class="main">

<p>Text above the alert.</p>

<div class="alert tip">

<h3> Tip</h3>
<p>The Right Marginal Alert design pattern moves the entire alert into the

right margin. Inside the alert itself, its heading is absolutely positioned
to the left and its paragraph to the right.</p>

</div>

<p>Text below the alert.</p>
<p>Notice how the alert is removed from the flow and moves into the margin.
Unlike the Floating Alert, you have to size the right or left margin
to make room for the marginal alert.</p>

</div>

CSS

*.main { position:relative; padding-right:400px; }

*.alert { position:absolute; width:350px; right:0; height:190px;

border-top:1px solid black; border-bottom:1px solid black; }
*.alert h3 { position:absolute; left:0; top:15px; margin:0;

font-size:1.3em; text-transform:uppercase; }
*.alert p { position:absolute; left:80px; top:15px; margin:0; }

*.alert.tip { color:green;
border-top:4px groove green; border-bottom:4px ridge green; }

*.alert *.decoration { border-left:15px solid gold;
margin-right:-11px; font-size:0.7em; vertical-align:2px; }

CHAPTER 20 ■ ALERTS478

A
LE

R
T
S

http://freepdf-books.com

Right Marginal Alert

Problem You want to insert an alert into the right margin of your document.

Solution You need to create a wide margin on the right in which to put the alert. You
can use the Alert design pattern to mark up the alert. You can use the Right
Marginal design pattern to move the alert into the right margin. You can use
the Offset Absolute and Offset Fixed design pattern (Chapter 8) to vertically
position the alert and the Right Aligned design pattern (Chapter 9) to hori-
zontally position the alert. You can use the Left Offset and Top Offset design
patterns (Chapter 9) to position the heading and the paragraph.

Pattern HTML
<div class="main">
<div class="alert TYPE">
<h3> ALERT HEADING </h3>
<p> ALERT TEXT </p>

</div>
</div>

CSS
*.main { position:relative; padding-right:MARGIN; }

*.alert { position:absolute; width:A_WIDTH; right:0;
height:+VALUE; }

*.alert h3 { position:absolute; left:0; top:TOP_OFFSET;
margin:0; }

*.alert p { position:absolute; left:+VALUE top:TOP_OFFSET;
margin:0; }

- Use padding-right:MARGIN to create a right “margin” in the main block ele-
ment that contains the alert and use position relative to position it.
- Set the alert, its heading, and its paragraph to position:absolute.
- Set width:A_WIDTH to less than MARGIN so the alert will fit in the “margin.”
- Optionally set height:+VALUE to the height you want the alert to be. This is
only necessary if you are using border-bottom to render a bottom border.
- Use right:0 to move the alert into the “margin” of the main block.
- Use left:0 to move the heading to the left side of the alert.
- Use left:+VALUE to offset the paragraph to the right of the heading.
- Use top:TOP_OFFSET to offset the top of the heading and paragraph from the
top of the alert.
- Use margin:0 to clear the default heading and paragraph margins.
- Note that the paragraph defaults to width:auto, which automatically sizes
the paragraph to fit within the width of the alert.

Location This pattern works anywhere you have a wide right padding.

Advantages You have complete control over the positioning of the alert. Also, the alert is
placed within the border of its parent. See Left Marginal Alert to place the
alert outside the border.

Disadvantages You need to ensure there is enough vertical space between marginal elements
to prevent them from overlapping. Absolute positioning does not adapt as
well to various devices as does the Fluid Layout design pattern (Chapter 17).

Related to Alert, Inline Alert, Left Marginal Alert; Offset Absolute and Offset Fixed (Chap-
ter 8); Left Offset, Right Aligned, Top Offset (Chapter 9); Inline Decoration
(Chapter 11); Right Marginal (Chapter 13)

See also www.cssdesignpatterns.com/right-marginal-alert

CHAPTER 20 ■ ALERTS 479

A
LE

R
T
S

http://freepdf-books.com

http://freepdf-books.com

Symbols
\ (backslash), 9
{} (curly braces), 9
@import statement, 7
; (semicolon), 9
* (universal selector), 14, 61

A
<a> element, 407
Absolute Box design pattern, 90–91
absolute boxes

positioning, 123
stretching, 97–99

Absolute design pattern, 3–4
absolute elements, 91

aligned and offset, 166–167
aligned outside, 171
aligned-center, 168–169
margins, 109
sizing, 101, 185, 195, 197

absolute positioning model, 123–125,
136–137

Accessible Tables design pattern, 317
addClass() function, 389, 401
addEvent() function, 387–388, 463
<address> element, 49
Alert design pattern, 455, 464–465
alert() function, 457
alerts, 455

basic, 464–465
floating, 474–475
graphical, 470–471
hanging, 468–469
inline, 466–467
JavaScript, 456–457
left marginal, 476–477
popup, 460–463
right marginal, 478–479
run-in, 472–473
tooltip, 458–459

Aligned and Offset Absolute design pattern,
166–167

Aligned and Offset Static Block design
pattern, 162–163

Aligned and Offset Static Table design
pattern, 164–165

Aligned Drop Cap design pattern, 417–419
Aligned Outside design pattern, 170–171
Aligned Static Inline design pattern, 160–161
Aligned-Center Absolute design pattern,

168–169
alignment, 147

advanced example, 252–253
bottom-aligned, 190–191
center-aligned, 182–183
contexts, 245, 251
hanging indents, 240
horizontal-aligned, 242–243
images, 285
indenting text, 238–239
left-aligned, 174–175
middle-aligned, 194–195
nested, 250–251
outside, 170–171
right-aligned, 178–179
static inline, 160–161
top-aligned, 186–187
vertical offset, 246–247
vertical-aligned, 244–245

almost-standards mode, 41
alt attribute, 285
alt text, 37
alternate stylesheets, 43
ancestors, stacking context and, 131
applyToChildrenOfAncestorWithClass()

function, 389, 393, 401
applyToDescendants() function, 388–389
applyToThis() function, 388–389, 393, 401
area elements, 287
assignEvent() function, 387–389, 393, 401,

405, 463
Atomic design pattern, 123, 132–133
attribute existence selector, 65
attribute selectors, 14, 64–67
attribute value selector, 65
attribute word selector, 65
auto-width columns, 344

Index

481

http://freepdf-books.com

B
background-image:url(), 12
Background Bulleted design pattern, 255,

264–265
background color, 115, 201–203
Background design pattern, 107, 114–115
background images

as bullets, 255, 264–265
combining multiple, 298–301
fade-out, 288–289
gradient, 289
highlighting, 203
placing text on top of, 296–297
rounded corners, 310–313
semi-transparent, 290–291
styling alternate row, 337
table, 321

background property, 3, 81, 319
background-color property, 75, 115
background-color:rgb() property, 11
background-color:white property, 11
background-color:WindowInfoBackground,

11
background-image property, 75, 115, 205
background-position property, 115
background-repeat property, 12
backslash (\), 9
baseline stylesheet, 28–29
Basic Shadowed Image design pattern, 283,

302–303
bitcons, 300
block boxes, 86–87, 97
Block Quote design pattern, 437, 448
block quotes, 49
Block Space Remover design pattern, 255,

276–277
Block Spacer design pattern, 255, 274–275
Blocked design pattern, 215, 218–219
blocked padded content, 227
blocks, 37, 255

aligned and offset static, 162–163
block spacer between, 274–275
bulleted lists, 264–265
changing space between, 259, 276–277
collapsed margins between, 268–269
content in, 51
defining structure with, 256–259
displayed as inline elements, 266–267
displaying inline elements as, 218–219
floating, 143
horizontal rules between, 272–273

left marginal, 278–279
lists, 262–263
normal flow of, 87
overflow, 87
rendering as tables, rows, and columns,

338–339
right marginal, 280–281
run-in, 270–271
sections, 260–261
static. see static blocks
terminal, 87
for visual structure, 258–259

<body> element, 37, 129
Border design pattern, 107, 110–111
border property, 12

boxes, 81–93, 107, 110–111
tables, 319, 325
for underlines and overlines, 205

border-collapse property, 81, 89, 327
borders

between tables and cells, 324–325
collapsed, 326–329
fixed measurements for, 377
merged, 329

Bottom Aligned design pattern, 190–191
Bottom Offset design pattern, 192–193
bottom property, 91, 127
Box Model design pattern, 77, 80–81

absolute box, 90–91
block box, 86–87
extents, 95–105
floated box, 92–93
height property, 98–99
inline box, 82–83
inline-block box, 84–85
shrinkwrapped, 102–103
sized elements, 100–101
stretched, 99, 104–105
table box, 88–89
width property, 96–97

Box Model properties, 81, 107–121
background, 107, 114–115
border, 107, 110–111
margin, 107–109
overflow, 107, 116–117
padding, 107, 112–113
page break, 107, 120–121
visibility, 107, 118–119

boxes. See also Box Model design pattern
outside-in, 374–377
rounded corners, 310–313
shrinkwrapping, 97–99

■INDEX482

http://freepdf-books.com

stacking, 123
types of, 77, 81

 element, 233
breadcrumb links, 411–413
breaks, structural, 259
browsers

floats and bugs in, 155
implementation of CSS rules by, 1
use of DOCTYPE by, 41

bulleted lists, 263–265
bullets

background images as, 255, 264–265
placement of list, 264–265

button class, 409
Button design pattern, 406–409
<button> element, 407

C
cached files, to boost performance, 28
callout class, 439
callouts, 437

center, 442–443
left floating, 438–439
left marginal, 444–445
right floating, 440–441
right marginal, 446–449

<caption> element, 49
cascading rules, 14–17
Cascading Style Sheets. See CSS
case attribute, 201
case sensitivity, 9, 39, 61
cell property, 23
cells

borders between, 324–325
collapsed borders between, 326–327
hidden and removed, 330–331
padding, 89
selecting, 322–323
style inheritance by, 321
type of width assigned to, 344
vertically-aligned data in, 334–335
width of, 347

cellspacing attribute, 325, 327
Center Aligned design pattern, 182–183
Center Callout design pattern, 437, 442–443
Center Offset design pattern, 184–185
chained classes, 71
changeIt() function, 409
chdp.js, 387–389, 463
child elements

relation to parent elements, 47
visual inheritance, 75

child selector, 63
class selectors, 14, 60–61
classes

assigning multiple, 9, 61
attributes, 54–55, 71
chained, 71
names, 9, 61

classid attribute, 37
clear positioning model, 142–143
clear property, 22
clear:both property, 381
closest positioned ancestor, 128–129
cm (centimeters), 24
<code> element, 225
Code design pattern, 215, 224–225
<col> element, 47, 321
<colgroup> element, 47, 321
Collapsed Borders Design pattern, 317,

326–327
Collapsed Margins design pattern, 255,

268–269
color

attribute, 201
background, 115, 201, 203
highlight, 203

color property, 12, 201
color:black property, 11
colspan attribute, 319
Column Width design pattern, 344, 346–347
columns/column layouts

algorithms for sizing, 344
auto-width, 344
content-proportioned, 352–353
equal content-sized, 360–361
equal-sized, 362–363
flex, 366–367
fluid layout, 373
grouping, 320–321
inverse-proportioned, 358–359
mixed column layouts, 368–369
percentage-proportioned, 356–357
removed and hidden, 332–333
rendering regular elements as, 338–339
selecting, 322–323
shrinkwrapped, 348–349
sized, 350–351
size-proportioned, 354–355
types of, 343–344
undersized, 364–365
using, 344
width, 344–347

comments, syntax for, 10

■INDEX 483

Fin
d

it
faster

at
h

ttp
://su

p
e
rin

d
ex.a

p
re

ss.co
m

/

http://freepdf-books.com

competing rules, cascading order, 14–17
computer code, 224–225
conditional stylesheet, 44–45
confirmIt() function, 409
constant values, 9
content

aligning, 160–161. see also alignment
within blocks, 51
center-aligned, 183
horizontal-aligned, 242–243
horizontal spacing, 228–229
inline, 133, 158–159
left-aligned, 175
over images, 283, 294–297
overflows, 116–117
padding, 226–227
right-aligned, 179
separating from style, 387
spacing, 216–217
vertical-aligned, 244–245

content layout property, 22
Content over Background Image design

pattern, 283, 296–297
Content over Image design pattern, 283,

294–295
content type, vs. DOCTYPE, 40
Content-proportioned Columns design

pattern, 344–345, 352–353
controls, 53
CSS (Cascading Style Sheets)

case sensitivity, 9
comments, 10
learning, 1
polymorphism, 1
reusability, 415
rule implementation, 1
syntax, 8–14
troubleshooting, 26–27
whitespace in, 10

CSS properties, 19
common, 20–21
content, 21
layout, 22
specialized, 23

CSS selectors, 371, 387
adding events to elements using, 388–389
attribute, 64–67
class, 60–61
group, 62–63
ID, 60–61
overrides, 61
position, 62–63

pseudo-class, 68–69
pseudo-element, 66
selecting elements in JavaScript using,

463
subclass, 70–71
type, 60–61

CSS Sprite design pattern, 283, 298–301
cssQuery.js, 387, 463
curly braces {}, 9

D
data

nontabular, 373
relational, 257

data-entry forms, 51
<dd> element, 47, 51
decorations, inserting into line, 230–231
default styles, inline elements, 53
definition lists, 47
definition terms, 49
definitions, 51
descendant selector, 63
design patterns. See also specific patterns

combining, 3–7
purpose of, 2
using, 2–7

display property, 77–81
display:-moz-inline-box, 85
display:block, 79, 467
display:inline, 79, 267, 271, 473
display:inline-block, 79, 85
display:list-item, 79, 263
display:none, 79, 273, 331, 333
display:run-in, 271, 473
display:table, 339
display:table-cell, 339
display:table-row, 339
<div class=“alert TYPE”>, 465
<div> element, 47, 51, 55
dividers/divisions, 47, 51, 261

float, 380–381
hierarchy of, 257

<dl> element, 47
DOCTYPE, 40–41

vs. content type, 40
XHTML, 39

document structure. See structure
Document Type Definition (DTD), 41
documents

linking stylesheets to, 43
page breaks in, 107, 120–121

■INDEX484

http://freepdf-books.com

drop caps, 417
aligned, 418–419
first-letter, 420–421
floating, 426–427
floating graphical, 428–429
hanging, 422–423
marginal, 430–431
marginal graphical, 432–435
padded graphical, 424–425

<dt> element, 47, 49
dynamic alerts, 455

E
element selectors, rule priority and, 14
elements

absolute, 91, 136–137, 185, 195, 197
aligned outside, 170–171
assigning multiple classes to, 9, 61
attaching events to, 386–389, 463
background, 107, 114–115
changing browser rendering of, 79
closest positioned ancestor, 128–129
fixed-position, 139
fixed-width, 97
flow, 53
hiding, 107, 118–119
inline. see inline elements
indenting, 148–149
layering, 75
moving to left margin, 278–279
moving to right margin, 280–281
names, 9
offset. see offset elements
positioned, 126–127
positioning in normal flow, 135
relative, 141, 159
removing from normal flow, 143
replaced, 53, 85, 101
setting height of, 99
setting width of, 97
shrinkwrapped, 102–103, 175, 179, 187,

191
sized, 97–101, 109, 175, 179, 183, 185, 187,

191, 195, 197
stacking context, 130–131
stacking order of, 141, 159
static, 131, 150–151, 160–161
stretched, 97–99, 104–105, 109, 175, 179,

183, 185, 187, 191, 195–197
styling class of, 71
unpositioning, 127

<em class=“content”>, 467

 element, 24, 53
em measurements, 203
<embed> element, 37
end tags, 39
Equal Content-sized Columns design

pattern, 345, 360–361
Equal-sized Columns design pattern,

344–345, 362–363
event handlers, 389
Event Styling design pattern, 386–389, 463
event.js, 387–388
events, assigning to elements, 387–389, 463
ex, 24
exceptions, styling, 258
external links, 411

F
Fade-out design pattern, 283, 288–289
filter:shadow property, 207
first-child selector, 63
First-letter Drop Cap design pattern, 417,

420–421
first-letter selector, 67
first-line selector, 67
fixed positioning model, 123, 125, 138–139
fixed tables, 341–344
fixed-width columns, 344
fixed-layout tables, 365
fixed-position elements, 139
fixed-width elements, 97
Flex Columns design pattern, 344–345,

366–367
Float Divider design pattern, 380–381
float positioning model, 123, 125, 142–143
float property, 22, 81
float:left property, 77
float:right property, 77
Floated Box design pattern, 77, 92–93
Floating Alert design pattern, 455, 474–475
Floating Drop Cap design pattern, 417,

426–427
Floating Graphical Drop Cap design pattern,

417, 428–429
Floating Section design pattern, 378–379
floats, 143

dividers between, 380–381
margins, 109
offset, 154–155
opposing, 384–385
relative, 144–145
sizing, 101
spacing between, 155

■INDEX 485

Fin
d

it
faster

at
h

ttp
://su

p
e
rin

d
ex.a

p
re

ss.co
m

/

http://freepdf-books.com

stacking order of, 141
stretching, 105

flow elements, 53
flow-control elements, 53
Fluid Layout design pattern, 372–373,

382–383, 413
fluid layouts

fixed margins in, 377
outside-in box, 375

Flyout Menu design pattern, 402–405, 413
flyout-trigger class, 403
Font design pattern, 200–201
font-family property, 11, 201
font-size property, 25, 201, 251
font-size:20px, 11
font-style:italic, 11
font-weight property, 12
footer links, 411
<form> element, 51
forms, 51, 407–409

G
GIF images, 284–285
gradient images, 289
gradient masks, 289
Graphical Alert design pattern, 455, 470–471
Greenbar design pattern, 337
group selectors, 62–63

H
Hanging Alert design pattern, 455, 468–469
Hanging Drop Cap design pattern, 417,

422–423
Hanging Indent design pattern, 237, 240
hasLayout property, 133
<head> element, 37
header elements, 42–43
heading elements, 49, 261
height property, 22

boxes, 81–95, 98–99
shrinkwrapped elements, 103
sized elements, 101
stretched elements, 105
tables, 319

height:+VALUE, 99
height:100%, 99, 105
height:auto, 99, 105
Hidden and Removed Cells design pattern,

317, 330–331
hidden class, 391–393, 405
hierarchies, 257
Highlight design pattern, 202–203

horizontal margins, 22
horizontal rule, inline, 234–235
Horizontal Rule design pattern, 255,

272–273, 381
horizontal spacer, 228–229
Horizontal-aligned Content design pattern,

237, 242–243
hover class, 405, 409
<hr /> element, 259, 273
<html> element, 37, 131
HTML design patterns, 31. See also specific

patterns
block elements, 37
class and id attributes, 54–55
conditional stylesheet, 44–45
header elements, 42–43
inline elements, 37, 52–53
multi-purpose block elements, 50–51
structural block elements, 46–47
terminal block elements, 48–49
whitespace, 56–57

HTML documents, linking stylesheets to, 8
HTML structure, 32–37
HTML validators, mixed content and, 51
hyperlinks. See links

I
id attributes, 54–55
IDs

names, 61
selectors, 14, 60–61
syntax for, 9

ignoreLink() function, 401
Image design pattern, 283–285
Image Map design pattern, 283, 286–287
 element, 285
images

alignment of, 285
alt text for, 37
background, 115, 203

as bullets, 255, 264–265
combining multiple, 298–301
fade-out, 288–289
gradient, 289
highlighting, 203
placing text on top of, 296–297
rounded corners, 310–313
semi-transparent, 290–291
styling alternate row, 337
table, 321

examples, 314–315
fade-out, 288–289

■INDEX486

http://freepdf-books.com

GIF, 284–285
gradient, 289
indentor, 305
inserting into documents, 284–285
JPEG, 284–285
as list markers, 263
placing text on, 294–295
PNG, 284–285, 289
replacing text with, 209, 292–293
semi-transparent, 290–291
setting height and width of, 285
shadowed, 302–309
sprites, 298–301
tooltip, 459
using multiple, 298–301
zooming, 293

!important rules, 14
!important selector, 17
in, 24
indentation, 147

hanging indents, 240
text, 238–239

Indented design pattern, 148–149
Indented Static Table design pattern,

152–153
indentor images, 305
information hiding, 413
inheritance, 59, 72–73

cells and, 321
simulating, 73
visual, 74–75

initPage() function, 387, 463
Inline Alert design pattern, 455, 466–467
Inline Block Quote design pattern, 437,

450–451
inline blocks, stretching, 105
inline boxes, 82–83
inline content

atomic rendering of, 133
offset relative, 158–159

Inline Decoration design pattern, 215,
230–231

Inline design pattern, 255, 266–267
inline elements, 37, 52–53

advanced alignment example, 252–253
blocks displayed as, 266–267
center-offset, 185
displaying as block elements, 218–219
margins, 109
middle-aligned, 195
rendering as tables, rows, and columns,

338–339

static, 135
vertical-aligned, 245
vertically offset, 247

inline formatting context, 83
Inline Horizontal Rule design pattern, 215,

234–235
inline padded content, 227
inline property, 23
Inline Quote design pattern, 437, 452–453
Inline Spacer design pattern, 215, 228–229
inline-block boxes, 79, 84–85
inner boxes, 81, 101
<input type=“button”>, 407
<input type=“image”>, 409
<input type=“reset”>, 407
<input type=“submit”>, 407
inside-out design, vs. outside-in design, 377
Inverse-proportioned Columns design

pattern, 345, 358–359
Invisible Text design pattern, 210–211

J
JavaScript

attaching events to elements with, 463
buttons for triggering, 407
libraries, attaching to events at runtime,

387
reusability, 415
separating from content, 387

JavaScript Alert design pattern, 455–457
JPG images, 284–285

L
latency delays, 299, 301, 303
layering, 75
Layout Links design pattern, 410–411
layouts, 371

accessible, 415
buttons, 406–409
column. see columns/column layouts
customizable, 415
event styling, 386–389
example, 412–415
float dividers, 380–381
floating sections, 378–379
fluid, 372–373, 382–383, 415
flyout menu, 402–405
opposing floats, 384–385
outside-in box, 374–377
outside-in vs. inside-out designs, 377
reusability, 415
rollup, 390–393

■INDEX 487

Fin
d

it
faster

at
h

ttp
://su

p
e
rin

d
ex.a

p
re

ss.co
m

/

http://freepdf-books.com

tab menu, 394–397
tabs, 398–401

Left Aligned design pattern, 174–175
Left Floating Callout design pattern, 437–439
Left Marginal Alert design pattern, 455,

476–477
Left Marginal Callout design pattern, 437,

444–445
Left Marginal design pattern, 5–6, 255,

278–279
Left Offset design pattern, 176–177
left property, 91, 127
 element, 47, 51, 263
line-height property, 11, 81, 83
line-throughs, 205
linebreaks, 235
Linebreak design pattern, 215, 232–233
<link> element, 7–8
links

breadcrumb, 411
external, 411
footer, 411
menu of, 395, 397
more-info, 411
navigation, 410–411
section, 411
sequential, 411
skip-to-main-content, 411
styling, 69
top, 411

list items, 51, 397
list property, 23
list-item property, 77
list-style-image property, 263
list-style-position property, 263
list-style-type property, 79, 263
lists

bullet, 263–265
definition, 47
faux markers for, 263
hierarchy, 257
numbered, 263
ordered, 47, 263
unordered, 47, 263

Lists design pattern, 255, 262–263
logical inches, 24

M
map elements, 287
maps, image, 286–287
Margin design pattern, 107–109
margin property, 11–12, 81–93, 109, 127, 319

margin-bottom property, 151
margin-left property, 151, 157, 163
margin-right property, 151, 163
margin-top property, 151, 157
margin:auto property, 109
Marginal Drop cap design pattern, 417,

430–431
Marginal Graphical Drop Cap design

pattern, 6–7, 417, 432–435
margins

aligned and offset absolute, 166–167
aligned and offset static blocks, 163
aligned and offset static table, 164–165
aligned-center absolute, 168–169
collapsed, 268–269
indenting and outdenting, 149
indenting tables, 153
left, 278–279
negative, 101
offset, 157
offset float, 154–155
offset static, 151
offsetting tables, 153
right, 280–281
table, 89
vertical, 22, 69

Maximum-width Sized Columns design
pattern, 351

measurement units
fixed, 24
flexible, 24
ratios between, 25

menus
flyout, 402–405, 413
nested, 405
tab, 394–397

merged borders, 329
metadata, 41–43
Middle Aligned design pattern, 194–195
Middle Offset design pattern, 196–197
MIME content type, vs. DOCTYPE, 40
minimum content width, 347
Minimum-width Sized Columns design

pattern, 351
Mixed Column Layouts design pattern, 345,

368–369
mixed content, 51–53
mm (millimeters), 24
more-info links, 411
multi-purpose block elements, 50–51
multiple classes, assigning to element, 9, 61

■INDEX488

http://freepdf-books.com

N
negative margins, 149, 153
nested alignment contexts, 251
Nested Alignment design pattern, 237,

250–251
nested flyout menus, 403
nested menus, 405
nontabular data, 344, 373
normal flow of blocks, 87
normalized stylesheet, 28–29
<noscript> element, 51
Nowrap design pattern, 215, 220–221
numbered lists, 263

O
<object> element, 37
Offset Absolute design pattern, 156–157
offset elements, 147

absolute, 156–157
bottom offset, 192–193
center offset, 184–185
fixed, 156–157
float, 154–155
left offset, 176–177
middle offset, 196–197
relative, 158–159
right offset, 180–181
sprite, 300
static, 150–153
top offset, 188–189

Offset Fixed design pattern, 156–157
Offset Float design pattern, 154–155
Offset Relative design pattern, 158–159
Offset Static design pattern, 150–151
Offset Static Table design pattern, 152–153
 element, 47, 263
onclick attribute, 457
onclick event, 389, 393, 401
onmouseout event, 389
onmouseover event, 389, 401
onreset event, 389
onsubmit event, 389
Opposing Floats design pattern, 384–385,

413
ordered lists, 47, 263
ordered sets, 257
outdenting, 147, 149
outer boxes, 101, 105
outer width, 377
Outside-in Box design pattern, 374–377
outside-in design, vs. inside-out design, 377

Overflow design pattern, 107, 116–117
overflow property, 81–89, 319
overflow:scroll property, 133
overlined text, 205

P
<p> element, 49
Padded Content design pattern, 215,

226–227
Padded Graphical Drop Cap design pattern,

417, 424–425
Padding design pattern, 107, 112–113
padding property, 12, 81–93, 319
Page Break design pattern, 107, 120–121
page loading, speed of, 28
page property, 23
paragraphs, 49
<param> element, 37
parent elements

relation to child elements, 47
rendering, 79

pc (picas), 24
percentage width columns, 344
Percentage-proportioned Columns design

pattern, 344–345, 356–357
percentages, 109
performance issues, 28
pixels, 24
PNG images, 284–285, 289
Popup Alert design pattern, 455, 460–463
popup-trigger class, 461
position property, 81, 123, 126–127
position selectors, 62–63
position:absolute property, 77, 127, 129,

136–137, 157
position:fixed property, 77, 127, 129,

138–139, 157
position:relative property, 127, 129, 141, 145
position:static property, 127, 135
positional styling, 258
Positioned design pattern, 126–127
positioned elements. See also positioning

aligning, 129
atomic, 133
stacking contexts, 130–131

positioned property, 22
positioning/positioning models, 123–145

absolute, 125, 136–137
align static inline, 160–161
aligned and offset absolute, 166–167
aligned and offset static block, 162–163
aligned and offset static table, 164–165

■INDEX 489

Fin
d

it
faster

at
h

ttp
://su

p
e
rin

d
ex.a

p
re

ss.co
m

/

http://freepdf-books.com

aligned outside, 170–171
aligned-center absolute, 168–169
atomic, 123, 132–133
bottom-aligned, 190–191
bottom offset, 192–193
center-aligned, 182–183
center offset, 184–185
clear, 142–143
closest positioned ancestor, 128–129
fixed, 125, 138–139
float, 125, 142–143
indents, 148–149
left-aligned, 174–175
left offset, 176–177
middle-aligned, 194–195
middle offset, 196–197
offset absolute, 156–157
offset fixed, 156–157
offset float, 154–155
offset or indented static table, 152–153
offset relative, 158–159
offset static, 151
properties of, 125
relative, 125, 140–141
relative-float, 125, 144–145
right-aligned, 178–179
right offset, 180–181
stacking context, 130–131
static, 125, 134–135
top-aligned, 186–187
top offset, 188–189

positive margins, 149, 153
<pre> element, 223
Preserved design pattern, 215, 222–223
properties, 8, 19. See also specific properties

common, 20–21
content, 21
disabling, 12
layout, 22
specialized, 23

property values, 11–12
pseudo selectors, rule priority and, 14
pseudo-class selectors, 68–69
pseudo-element selectors, 66
pseudo-elements, positioning, 421
pt (point), 24
pull quotes, 437. See also callouts
purgeAllEvents() function, 387–388, 463
px (pixels), 24

Q
quirks mode, 41
quotes, 437

block, 448
inline, 452–453
inline block, 450–451
pull, 437
with values, 9

R
reference points, 127
relational data, 257
relative elements, 141, 159
relative float positioning model, 123, 125,

144–145
relative positioning model, 123, 125, 140–141
removeClass() function, 389, 401
Removed and Hidden Rows and Columns

design pattern, 317, 332–333
rendering, speed of, 28
replaceClass() function, 389
replaced elements, 53, 85, 101
Replaced Text design pattern, 283, 292–293
Right Aligned design pattern, 178–179
Right Floating callout design pattern, 437,

440–441
Right Marginal Alert design pattern, 455,

478–479
Right Marginal Callout design pattern, 437,

446–447, 449
Right Marginal design pattern, 255, 280–281
Right Offset design pattern, 180–181
right property, 91, 127
rolledup class, 393
rollup class, 391
Rollup design pattern, 390–393, 413
rollup-trigger class, 391, 393
rollup-trigger element, 391
Rounded Corners design pattern, 283,

310–313
Row and Column Groups design pattern,

317, 320–321
rows

fluid layout, 373
grouping, 320–321
removed and hidden, 332–333
rendering regular elements as, 338–339
selecting, 322–323
styling alternate, 336–337

rowspan attribute, 319

■INDEX490

http://freepdf-books.com

rules, 8
cascading order, 14–15, 17
disabling, 12
location of, and priority order, 15

rulesets, creating, 9
Run-in Alert design pattern, 455, 472–473
Run-in design pattern, 255, 270–271

S
Screenreader-only design pattern, 212–213
Section design pattern, 255, 260–261
<section> element, 261
section links, 411
sections, 261

floating, 378–379
fluid layout for, 383

selector design patterns, 8, 23
attribute selectors, 64–65, 67
cascade order and, 14–17
class selector, 60–61
group, 62–63
ID selector, 60–61
position, 62–63
pseudo-class selectors, 68–69
pseudo-element selectors, 66
subclass selector, 70–71
type selector, 60–61

self-contained layouts, 129
semantic elements, 53
Semi-transparent design pattern, 283,

290–291
semicolons (;), 9
Separated Borders design pattern, 317,

324–325
sequential links, 411, 413
sets, 257
Shadowed Image design pattern, 283,

304–309
shadowed images, 302–309
Shrinkwrapped Columns design pattern,

344, 348–349
ShrinkWrapped design pattern, 102–103
shrinkwrapped elements, 102–103

bottom-aligned, 191
left-aligned, 175
right-aligned, 179
top-aligned, 187

shrinkwrapped property, 95
shrinkwrapped tables, 103, 153, 165, 341, 343
shrinkwrapping, 97–99
sibling selector, 63
siblings, stacking context and, 131

Size-proportioned Columns design pattern,
344–345, 354–355

sized absolute elements
center-offset, 185
middle-aligned, 195
middle-offset, 197

sized blocks, aligned and offset, 163
Sized Columns design pattern, 344–345,

350–351
Sized design pattern, 100–101
sized elements, 97–101

bottom-aligned, 191
center-aligned, 183
center-offset, 185
left-aligned, 175
margins, 109
middle-aligned, 195
middle-offset, 197
right-aligned, 179
top-aligned, 187

sized property, 95
sized tables, 153, 341, 343
skip-to-main-content links, 411
space entities, 57
spacer blocks, 258–259, 274–277
spacing. See also indentation

changing between blocks, 259
horizontal spacer, 228–229

Spacing design pattern, 215–217
, 467
 element, 53, 55, 233, 293
sprites, CSS, 298–301
stacking context, 130–131
stacking order, controlling, 141, 159
standards mode, 41
start tags, 39
static alerts, 455
static blocks

alignment, 162–163
atomic rendering of content in, 133
offsetting, 162–163
sizing, 101
width of, 163

static elements
aligning, 160–161
spacing of, 150–151
stacking, 131

static positioning model, 123, 125, 134–135
static tables, aligned and offset, 164–165
stretched absolute elements, middle-

aligned, 195–197
Stretched design pattern, 104–105

■INDEX 491

Fin
d

it
faster

at
h

ttp
://su

p
e
rin

d
ex.a

p
re

ss.co
m

/

http://freepdf-books.com

stretched elements
bottom-aligned, 191
center-aligned, 183
center-offset, 185
left-aligned, 175
margins, 109
right-aligned, 179
top-aligned, 187

stretched property, 95
stretched tables, 97, 99, 105, 153, 341, 343
stretching boxes, with width:auto, 97
strict DOCTYPE, 41
strings, syntax, 9
Striped Tables design pattern, 317, 336–337
<strong class=“heading”>, 467
 element, 53
structural elements, 37, 46–47
Structural Meaning design pattern, 255–257
structure

block, 256–257
hierarchies, 257
lists, 262–263
sections, 260–261
separating from content, 387
sets, 257
visual, 258–259

<style> element, 7–8, 43
style, separating from content, 387
style attribute, 7–8, 14
Styled Collapsed Borders design pattern,

317, 328–329
styles, 8, 43
stylesheets. See also CSS

alternate, 43
in cascade order, 17
conditional, 44–45
linking to documents, 8, 43
location of, 8
naming, 8
normalized, 28–29
troubleshooting, 26–27
using, 7–8

<sub> tag, 249
<sup> tag, 249
subclass selector, 70–71
subclasses, styling, 71
Subscript and Superscript design pattern,

237, 248–249
superscript, 248–249
swapClasses() function, 389
syntax, CSS, 8–12, 14

T
tab links, dynamic, 397
Tab Menu design pattern, 394–397, 399
tab-content element, 399, 401
tab-label element, 399, 401
<table> element, 47
table borders, 101
Table Box model, 88–89
table captions, 49
table cells, 51
Table design pattern, 317–319
Table Layout design pattern, 317, 340–341
table property, 23
Table Selectors design pattern, 317, 322–323
table-cell property, 77
table-layout property, 81, 89, 341
Tabled, Rowed, and Celled design pattern,

338–339
tables

accessible, 317
aligned and offset static, 164–165
backgrounds, 321
borders between, 324–325
cells

hidden and removed, 330–331
vertically-aligned data in, 334–335

collapsed borders between, 326–327
columns. see columns/column layouts
creation of simple, 318–319
fixed, 343–344
fixed-layout, 365
indenting, 152–153
introduction, 317
layout of, 340–341
offsetting, 152–153
properties of, 319
relational data in, 257
rendering regular elements as, 338–339
rows

fluid layout, 373
grouping, 320–321
removed and hidden, 332–333
rendering regular elements as, 338–339
selecting, 322–323
styling alternate, 336–337

selectors, 322–323
shrinkwrapped, 103, 153, 165, 343
sized, 153, 341, 343
static, aligned and offset, 164–165
stretched, 97, 99, 105, 153, 341, 343
styled collapsed borders, 328–329
types of, 343–344

■INDEX492

http://freepdf-books.com

Tables, Rowed, and Celled design pattern,
317

tabs, 397
tabs class, 395
Tabs design pattern, 398–401, 413
tabular data, column layouts for. See

columns/column layouts
tabular data structures, 47
<tbody> element, 47
<td> element, 47, 51
terminal blocks, 48–49, 87
text. See also text styling

atomic rendering of, 133
computer code, 224–225
horizontal-aligned, 242–243
horizontal spacing, 228–229
padding, 226–227
placing on top of background images,

296–297
placing on top of images, 294–295
preserving whitespace in, 222–223
preventing from wrapping across lines,

220–221
replacing with image, 292–293
spacing, 216–217
styling as block element, 219
subscript, 248–249
superscript, 248–249
underlined, 205
vertical-aligned, 244–245

Text Decoration design pattern, 204–205
Text Indent design pattern, 237–239
Text Replacement design pattern, 4–5,

208–209
Text Shadow design pattern, 206–207
text styling

Font design pattern, 200–201
Highlight design pattern, 202–203
Invisible Text design pattern, 210–211
Screenreader-only design pattern,

212–213
Text Decoration design pattern, 204–205
Text Replacement design pattern, 208–209
Text Shadow design pattern, 206–207

text-align property, 161, 243, 319
text-indent property, 239, 241
<tfoot> element, 47, 321
<th> element, 47, 51
<thead> element, 47, 321
toggleClass() function, 389, 393
Tooltip Alert design pattern, 455, 458–459
Top Aligned design pattern, 186–187

top links, 411
Top Offset design pattern, 188–189
top property, 91, 127
<tr> element, 47
transitional DOCTYPE, 41
translucent images, 291
transparent color, 111
troubleshooting, 26–27
type selector, 60–61

U
 element, 47, 263
underlined text, 205
Undersized Columns design pattern,

344–345, 364–365
Unicode UTF-8, 9
units of measure

fixed, 24
flexible, 24
ratios between, 25

universal selector (*), 14, 61
unordered lists, 47, 263
unordered sets, 257

V
validated code, 41
values, 8
vertical margins, 22, 269
vertical-align property, 245, 247, 335, 319
vertical-align selector, 67
Vertical-aligned Content design pattern,

244–245
Vertical-aligned Data design pattern, 317,

334–335
Vertical-aligned design pattern, 237
Vertical-offset Content design pattern, 237,

247
Vertical-offset design pattern, 246
videos, embedding into documents, 37
Visibility design pattern, 107, 118–119
visibility property, 81
visibility:hidden property, 331, 333
visual inheritance, 74–75
Visual Structure design pattern, 255, 258–259

W
white-space:no wrap property, 221
white-space:pre property, 223
whitespace

HTML, 56–57
in CSS, 10
preserving, 222–223

■INDEX 493

Fin
d

it
faster

at
h

ttp
://su

p
e
rin

d
ex.a

p
re

ss.co
m

/

http://freepdf-books.com

width property, 22
assigned to cells, 344
boxes, 81–99
column, 344, 346–347
inner width, 377
multiple meanings of, 1
shrinkwrapped elements, 103
sized elements, 101
stretched elements, 105
tables, 319, 341

width:+VALUE property, 97
width:100% property, 97, 105
width:auto property, 97, 105

X
XHTML, 38–40
XHTML HTML, validated, 41

Y
yahoo.js, 387

Z
z-index property, 75, 91, 127, 137, 139, 159
z-index values, 131
z-order property, 131
Zebra Striped design pattern, 337

■INDEX494

http://freepdf-books.com

	Pro CSS and HTML Design Patterns
	Table of Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Index

